Electronic Supplementary Information for

Dinuclear mixed-valence Co^{III}Co^{II} complexes derived from a macrocyclic ligand: unique example of a Co^{III}Co^{II} complex showing catecholase activity

Samit Majumder,^{*,a} Suraj Mondal,^a Pascale Lemoine^b and Sasankasekhar Mohanta^{*,a}

Table S1 The molar conductance values $(ohm^{-1} cm^{-1} mol^{-1} l)$ at 298 K for 1–3 in different solvents.

Solvent	1	2	3
DMF	8	17	75
MeCN	2.9	40	158
MeOH	10	-	_

Table S2 Selected bond lengths (Å) and angles (°) for $[Co^{II}Co^{II}L(N_3)_3] \cdot CH_3CN$ (1).

Co(1)–O(1)	1.929(3)	Co(2)–O(1)	2.076(3)
Co(1)–O(2)	1.933(3)	Co(2)–O(2)	2.042(3)
Co(1)–N(1)	1.915(3)	Co(2)–N(3)	2.059(3)
Co(1)–N(2)	1.911(3)	Co(2)–N(4)	2.039(4)
Co(1)–N(5)	1.969(3)	Co(2)–N(11)	1.978(4)
Co(1)–N(8)	1.947(4)	Co(1)Co(2)	3.064
N(5)-Co(1)-N(8)	178.30(15)	O(1)-Co(2)-N(3)	150.01(12)
O(1)-Co(1)-N(2)	173.20(13)	O(2)-Co(2)-N(4)	145.53(12)
O(2)–Co(1)–N(1)	172.89(13)	N(11)-Co(2)-O(1)	109.35(14)
N(5)-Co(1)-O(1)	90.81(13)	N(11)-Co(2)-O(2)	113.05(15)
N(5)-Co(1)-O(2)	90.43(13)	N(11)-Co(2)-N(3)	100.19(15)
N(5)-Co(1)-N(1)	88.87(14)	N(11)-Co(2)-N(4)	100.95(16)
N(5)-Co(1)-N(2)	89.57(14)	O(1)–Co(2)–O(2)	75.39(10)
N(8)-Co(1)-O(1)	89.36(13)	O(1)-Co(2)-N(4)	88.51(12)
N(8)-Co(1)-O(2)	91.26(13)	O(2)-Co(2)-N(3)	88.62(12)
N(8)-Co(1)-N(1)	89.44(14)	N(3)-Co(2)-N(4)	90.94(14)
N(8)-Co(1)-N(2)	90.46(15)	Co(1)-O(1)-Co(2)	99.74(12)
O(1)–Co(1)–O(2)	81.41(11)	Co(1)–O(2)–Co(2)	100.82(12)
O(1)–Co(1)–N(1)	91.53(13)		
O(2)–Co(1)–N(2)	91.80(13)		
N(1)-Co(1)-N(2)	95.27(14)		

Co(1)–O(1)	1.945(4)	Co(2)–O(1)	2.074(4)
Co(1)–O(2)	1.930(4)	Co(2)–O(2)	2.036(4)
Co(1)–N(1)	1.919(5)	Co(2)–N(3)	2.055(5)
Co(1)–N(2)	1.910(5)	Co(2)–N(4)	2.068(5)
Co(1)–N(5)	1.700(12)	Co(2)–N(7)	1.950(7)
Co(1)–N(6)	1.945(6)	Co(1)…Co(2)	3.067
N(5)-Co(1)-N(6)	178.7(3)	O(1)–Co(2)–N(3)	139.91(19)
O(1)-Co(1)-N(2)	171.82(19)	O(2)–Co(2)–N(4)	149.34(19)
O(2)–Co(1)–N(1)	172.84(19)	N(7)–Co(2)–O(1)	122.4(2)
N(5)-Co(1)-O(1)	89.0(2)	N(7)–Co(2)–O(2)	107.0(2)
N(5)-Co(1)-O(2)	92.6(2)	N(7)-Co(2)-N(3)	97.3(2)
N(5)-Co(1)-N(1)	89.3(2)	N(7)-Co(2)-N(4)	103.4(2)
N(5)-Co(1)-N(2)	90.5(2)	O(1)–Co(2)–O(2)	74.97(15)
N(6)-Co(1)-O(1)	89.9(2)	O(1)–Co(2)–N(4)	85.62(19)
N(6)-Co(1)-O(2)	88.0(2)	O(2)–Co(2)–N(3)	89.04(17)
N(6)-Co(1)-N(1)	90.0(2)	N(3)-Co(2)-N(4)	91.0(2)
N(6)-Co(1)-N(2)	90.6(2)	Co(1)-O(1)-Co(2)	99.36(17)
O(1)-Co(1)-O(2)	80.38(16)	Co(1)-O(2)-Co(2)	101.20(17)
O(1)-Co(1)-N(1)	92.74(19)		
O(2)–Co(1)–N(2)	91.48(18)		
N(1)-Co(1)-N(2)	95.4(2)		

Table S3 Selected bond lengths (Å) and angles (°) for $[Co^{II}Co^{II}L(OCN)_3]$ ·CH₃CN (2).

Table S4 Selected bond lengths (Å) and angles (°) for $[Co^{II}Co^{II}L(\mu-CH_3COO)_2](ClO_4)$ (3).

Co(1)–O(1)	1.923(2)	Co(2)–O(1)	2.020(2)
Co(1)–O(2)	1.922(2)	Co(2)–O(2)	2.018(2)
Co(1)–N(1)	1.934(3)	Co(2)–N(3)	2.016(3)
Co(1)–N(2)	1.931(3)	Co(2)–N(4)	2.017(3)
Co(1)–O(4)	1.933(2)	Co(2)–O(3)	2.279(2)
Co(1)–O(6)	1.909(2)	Co(2)–O(5)	2.100(3)
Co(1)…Co(2)	2.8557(8)		
O(2)–Co(1)–N(1)	177.85(10)	O(3)–Co(2)–O(5)	151.86(9)
O(1)-Co(1)-N(2)	177.22(10)	O(1)-Co(2)-N(3)	169.17(10)
O(4)–Co(1)–O(6)	176.18(10)	O(2)–Co(2)–N(4)	169.60(10)
O(4)–Co(1)–O(1)	89.64(8)	O(3)–Co(2)–O(1)	77.82(9)
O(4)–Co(1)–O(2)	89.55(9)	O(3)–Co(2)–O(2)	78.69(8)
O(4)–Co(1)–N(1)	90.03(11)	O(3)–Co(2)–N(3)	92.26(10)
O(4)–Co(1)–N(2)	90.64(10)	O(3)–Co(2)–N(4)	92.17(10)
O(6)–Co(1)–O(1)	87.25(9)	O(5)–Co(2)–O(1)	80.53(9)
O(6)–Co(1)–O(2)	88.22(10)	O(5)–Co(2)–O(2)	81.55(9)
O(6)–Co(1)–N(1)	92.08(12)	O(5)–Co(2)–N(3)	107.39(12)
O(6)–Co(1)–N(2)	92.36(11)	O(5)–Co(2)–N(4)	105.16(10)
N(1)-Co(1)-O(1)	88.04(10)	O(1)–Co(2)–O(2)	84.50(8)
O(2)–Co(1)–O(1)	89.85(8)	O(1)–Co(2)–N(4)	88.74(10)
O(2)–Co(1)–N(2)	87.39(10)	O(2)–Co(2)–N(3)	89.32(9)
N(1)-Co(1)-N(2)	94.72(12)	N(3)-Co(2)-N(4)	96.06(11)
Co(1)–O(1)–Co(2)	92.77(8)		
Co(1)–O(2)–Co(2)	92.87(8)		

Fig. S1 The spectral profile showing the increase of quinone band at 400 nm after the addition of 100 fold of 3,5-DTBCH₂ to a solution containing complex $[Co^{III}Co^{II}L(N_3)_3]$ ·CH₃CN (1) (0.25×10⁻⁴ M) in MeOH. The spectra were recorded after each 5 min.

Fig. S2 Initial rates versus substrate concentration for the 3,5-DTBCH₂ \rightarrow 3,5-DTBQ oxidation reaction catalyzed by complex [Co^{III}Co^{II}L(N₃)₃]·CH₃CN (1) in methanol. Inset shows Lineweaver-Burk plot. Symbols and solid lines represent the observed and simulated profiles, respectively.

Fig. S3 Electrospray mass spectrum (ESI-MS positive) of $[Co^{II}Co^{II}L(OCN)_3] \cdot CH_3CN$ (2) in acetonitrile showing observed and simulated isotopic distribution pattern.

Fig. S4 Electrospray mass spectrum (ESI-MS positive) of $[Co^{III}Co^{II}L(\mu-CH_3COO)_2](ClO_4)$ (3) in acetonitrile showing observed and simulated isotopic distribution pattern.