# Supporting Information for

# Unusually stable tungstenacyclobutadienes featuring an ONO trianionic pincer-type ligand.

Matthew E. O'Reilly,<sup>‡</sup> Ion Ghiviriga,<sup>‡</sup> Khalil A. Abboud,<sup>‡</sup> and Adam S. Veige.<sup>‡</sup>\*

<sup>‡</sup>Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, FL, 32611. <sup>¶</sup>

| Index                                                                   | Page    |
|-------------------------------------------------------------------------|---------|
| General considerations and synthesis procedures for complexes 2-8       | S2-S4   |
| Table of <sup>1</sup> H and <sup>13</sup> C NMR peaks for complexes 2-8 | S5-S8   |
| NMR Spectra of 2                                                        | S8-S14  |
| NMR Spectra of <b>3</b>                                                 | S15-S19 |
| NMR Spectra of <b>4</b>                                                 | S20-S27 |
| NMR Spectra of <b>5</b>                                                 | S28-S34 |
| NMR Spectra of 6                                                        | S35-S37 |
| NMR Spectra of 7                                                        | S38-S41 |
| NMR Spectra of 8                                                        | S42-S45 |
| NMR Spectra of <b>5</b> and MeCN                                        | S46-S47 |
| Single X-ray crystallographic data                                      |         |
| Crystallographic data of <b>5</b>                                       | S48-S53 |
| Crystallographic data of <b>6</b>                                       | S54-S59 |
| Crystallographic data of <b>7</b>                                       | S60-S65 |
| Crystallographic data of 8                                              | S66-S71 |
| DFT optimized structures                                                |         |
| DFT Optimized Structure of <b>5</b>                                     | S72-S73 |
| DFT Optimized Structure of <b>6</b>                                     | S73-S75 |
| References                                                              | S78     |

#### **General Considerations**

Unless specified otherwise, all manipulations were performed under an inert atmosphere using standard Schlenk or glove-box techniques. Pentane, hexanes, toluene, diethyl ether, tetrahydrofuran, and acetonitrile were dried using a GlassContour drying column. Benzene- $d_6$  and toluene- $d_8$  (Cambridge Isotopes) were dried over sodium–benzophenone ketyl, distilled or vacuum transferred and stored over 4Å molecular sieves. The pincer proligand, [CF<sub>3</sub>-ONO]H<sub>3</sub> (1), (<sup>t</sup>BuO)W=C'Bu,<sup>1</sup> cyclooctyne,<sup>2</sup> and Ph<sub>3</sub>PCH<sub>2</sub><sup>3</sup> were prepared according to published procedures. <sup>1</sup>H, <sup>13</sup>C{1H}, and 2D NMR spectra were obtained on an Inova 500 MHz, and the <sup>19</sup>F{<sup>1</sup>H} and <sup>31</sup>P{<sup>1</sup>H} were acquired on a Varian Mercury Broad Band 300 MHz or Varian Mercury 300 MHz spectrometers. Chemical shifts are reported in  $\delta$  (ppm). For <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra, the residual solvent peak was used as an internal reference. Elemental analyses were performed at Complete Analysis Laboratory Inc., Parsippany, New Jersey.

#### **DFT Calculations**

Geometry optimization, single point analysis, and vibration frequency analysis of **5** and **6** were performed using spin-restricted density functional theory calculations, using a hybrid functional B3LYP<sup>4, 5</sup> and LANL2DZ<sup>6</sup> basis as implemented in the Gaussian 03 program suite.<sup>7</sup> The atomic coordinates from the crystal structures were used as an initial input for the geometry optimized structures. Molecular orbital pictures were generated from Gabedit<sup>8</sup> at their reported isovalues.

## Synthesis of [CF<sub>3</sub>-ONO]W=CH<sup>t</sup>Bu(O<sup>t</sup>Bu) (2).

A benzene solution (1 mL) containing **1** (0.324 g, 6.11 x10<sup>-4</sup> mol) was added drop-wise to a benzene (1 mL) solution of (<sup>1</sup>BuO)W≡C<sup>1</sup>Bu (0.289 g, 6.11 x10<sup>-4</sup> mol). The reaction mixture was allowed to stir for 1 h before evaporating all volatiles under vacuum for 4 h. The brownish-red powder was dissolved in pentane and filtered. The filtrate was collected and concentrated to 3 mL. Cooling the solution to -35 °C yields crystals of **2**. A second batch of crystals was obtained after further concentrating and once again cooling the solution to -35 °C. Total yield is 0.350 g (66 %). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 7.71 (s, 1H, Ar-*H*), 7.69 (s, 1H, Ar-*H*), 6.82 (d, 1H, Ar-*H*, <sup>3</sup>*J* = 8.21 Hz), 6.66 (d, 1H, Ar-*H*, <sup>3</sup>*J* = 8.50 Hz), 6.57 (d, 2H, Ar-*H*, <sup>3</sup>*J* = 8.50 Hz), 6.44 (s, 1H, W=C*H*<sup>r</sup>Bu, <sup>2</sup>*J*(<sup>1</sup>H, <sup>183</sup>W) = 8.80 Hz), 1.99 (s, 3H, Ar-CH<sub>3</sub>), 1.94 (s, 3H, Ar-CH<sub>3</sub>), 1.24 (s, 9H, OC(CH<sub>3</sub>)<sub>3</sub>), and 1.15 (s, 9H, WCHC(CH<sub>3</sub>)<sub>3</sub>) ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = -70.71 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 8.48 Hz), -71.52 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 10.90 Hz), -73.44 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 10.90 Hz), and -77.31 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 8.48 Hz) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 262.6 (s, WCH<sup>r</sup>Bu), 146.5 (s, Ar *C*), 145.4 (s, Ar *C*), 134.4 (s, Ar *C*), 123.6 (s, Ar *C*), 133.0 (s, Ar *C*), 131.0 (s, Ar *C*), 127.5 (s, Ar *C*), 127.3 (s, Ar *C*), 126.2 (s, Ar *C*), 123.9 (s, Ar *C*), 123.5 (s, Ar *C*), 90.4 (s, OCMe<sub>3</sub>), 41.0 (s, WCHC(CH<sub>3</sub>)<sub>3</sub>), 35.0 (s, WCHC(CH<sub>3</sub>)<sub>3</sub>), 29.2 (s, OC(CH<sub>3</sub>)<sub>3</sub>), 21.3 (s, Ar-CH<sub>3</sub><sup>2</sup>), and 20.1 (s, Ar-CH<sub>3</sub>) ppm. Anal. Calcd. for C<sub>30</sub>H<sub>33</sub>F<sub>12</sub>NO<sub>3</sub>W (867.41 g/mol): C: 41.54%; H: 3.83%; N: 1.61%, Found; C: 41.42%; H: 3.73; N: 1.59%.

# Synthesis of $\{CH_3Ph_3P\}\{[CF_3-ONO]W\equiv C^tBu(O^tBu)\}$ (3).

A pentane solution (5 mL) of Ph<sub>3</sub>PCH<sub>2</sub> (0.088 g,  $3.19 \times 10^{-4}$  mol) was added drop-wise to a stirring pentane solution of **2** (0.277 g,  $3.19 \times 10^{-4}$  mol) resulting in the precipitation of a pink powder. The mixture was stirred for 4 h and then the pentane layer was decanted from the solid. The solid was stirred in fresh pentane for another 2 h. The solid was collect by filtration and dried under vacuum for 1 h (0.228 g, 80%). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 7.76$  (s, 1H, Ar-*H*), 7.61 (s, 1H, Ar-*H*), 7.47 (d, 1H, Ar-*H*, <sup>3</sup>*J* = 8.49 Hz), 7.95-7.15 (bs, 16 H, Ar-*H*), 6.92 (d, 1H, Ar-*H*, <sup>3</sup>*J* = 8.49 Hz), 6.75 (d, 1H, Ar-*H*, <sup>3</sup>*J* = 8.49 Hz), 2.36 (d, 3H, CH<sub>3</sub>PPh<sub>3</sub>, <sup>2</sup>*J*<sub>HP</sub> = 13.31 Hz), 2.14 (s, 3H, Ar-CH<sub>3</sub>), 2.06 (s, 3H, Ar-CH<sub>3</sub>'), 1.66 (s, 9H, OC(CH<sub>3</sub>)<sub>3</sub>), and 1.17 (s, 9H, WCC(CH<sub>3</sub>)<sub>3</sub>) ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = -68.67$  (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.61 Hz), -71.19 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.61 Hz), -74.39 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.61 Hz), and -76.20 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.61 Hz) ppm. <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 21.59$  (s) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 286.0$  (s, WC<sup>1</sup>Bu), 155.5 (s, Ar *C*), 154.5 (s, Ar *C*), 134.6 (s, Ar *C*), 132.5 (s, Ar *C*), 131.5 (s, Ar *C*), 130.3 (s, Ar *C*), 130.2 (s, Ar *C*), 130.0 (s, Ar *C*), 127.8 (s, Ar *C*), 127.2 (s, Ar *C*), 127.0 (s, Ar *C*), 126.2 (s, Ar *C*), 122.9 (s, Ar *C*), 122.6 (s, Ar *C*), 121.0 (s, Ar *C*), 118.5 (s, Ar *C*), 77.1 (s, OCMe<sub>3</sub>), 49.4 (s, W≡CC(CH<sub>3</sub>)<sub>3</sub>), 33.7 (s, W≡CC(CH<sub>3</sub>)<sub>3</sub>),

33.5 (s, OC(*C*H<sub>3</sub>)<sub>3</sub>), 20.7 (s, Ar-*C*H<sub>3</sub><sup>'</sup>), 20.5 (s, Ar-*C*H<sub>3</sub>), and 8.5 (d,  $H_3$ CPPh<sub>3</sub>,  ${}^{1}J_{PC} = 57.8$  Hz) ppm. Anal. Calcd. for C<sub>48</sub>H<sub>48</sub>F<sub>12</sub>NO<sub>3</sub>PW (1129.69 g/mol): C: 51.03%; H: 4.28%; N: 1.24%, Found; C: 50.98%; H: 4.38%; N: 1.18%.

#### Synthesis of {CH<sub>3</sub>PPh<sub>3</sub>}{[CF<sub>3</sub>-ONO]W≡C<sup>*t*</sup>Bu(OTf)}•0.5 {CH<sub>3</sub>PPh<sub>3</sub>}{OTf} (4).

Benzene solutions (2 mL) of **3** (0.201 g,  $1.78 \times 10^{-4}$  mol) and MeOTf (0.040 g,  $2.44 \times 10^{-4}$  mol) were mixed together and stirred for 0.5 h. The solvent was removed in-vacuo and the resulting residue dried for 1 h under vacuum. The residue was then dissolved in minimal benzene and added drop-wise into a cold pentane solution to form an oily dark-blue precipitate which was collected by filtration (2x). The collected precipitate was dried under vacuum to yield a dark-blue powder containing 4 and inseparable  $\{CH_3PPh_3\}$  {OTf}. Isolated yield was 0.1162 g (approximate yield 50% based on W). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$ = 7.83 (s, 1H, Ar-*H*), 7.68 (s, 1H, Ar-*H*), 7.32 (d, 1H, Ar-*H*,  ${}^{3}J = 8.24$  Hz), 7.25-7.00 (bs, ~30 H, Ar-*H*), 6.97 (d, 1H, Ar-H,  ${}^{3}J$  = 8.65 Hz), 6.90 (d, 1H, Ar-H,  ${}^{3}J$  = 8. 24 Hz), 6.80 (d, 1H, Ar-H,  ${}^{3}J$  = 8. 65 Hz), 2.29 (d, ~4.75 H,  $CH_3PPh_3$ ,  $^2J_{HP} = 13.31$  Hz), 2.10 (s, 3H, Ar- $CH_3$ ), 2.07 (s, 3H, Ar- $CH_3$ '), and 1.07 (s, 9H, WCC(CH<sub>3</sub>)<sub>3</sub>) ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = -68.98 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>J = 8.48 Hz), -73.18 (q, 3F, -CF<sub>3</sub>,  ${}^{4}J = 8.48$  Hz), -73.93 (q, 3F, -CF<sub>3</sub>,  ${}^{4}J = 9.69$  Hz), -76.64 (q, 3F, -CF<sub>3</sub>,  ${}^{4}J = 9.69$  Hz), -76.68 (s, 3F, W-OSO<sub>2</sub>CF<sub>3</sub>), and -78.20 (s, 1.29 F, free 0.5 OTf) ppm.  ${}^{31}P{}^{1}H$  NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 21.98$  (s) ppm.  ${}^{13}C{}^{1}H$ NMR  $(C_6 D_6)$ :  $\delta = 308.6$  (s, WC<sup>4</sup>Bu), 152.4 (s, Ar C), 151.4 (s, Ar C), 135.5 (s, Ar C), 134.7 (s, Ar C), 132.6 (s, Ar C), 130.8 (s, Ar C), 130.6 (s, Ar C), 130.0 (s, Ar C), 127.5 (s, Ar C), 127.1 (s, Ar C), 126.2 (s, Ar C), 121.1 (s, Ar C), 120.1 (s, Ar C), 118.6 (s, Ar C), 118.0 (s, Ar C), 49.5 (s, W≡CC(CH<sub>3</sub>)<sub>3</sub>), 33.7 (s, W=CC(CH<sub>3</sub>)<sub>3</sub>), 20.7 (s, Ar-CH<sub>3</sub><sup>2</sup>), 20.3 (s, Ar-CH<sub>3</sub>), and 8.3 (d, H<sub>3</sub>CPPh<sub>3</sub><sup>-1</sup> $J_{PC} = 57.8$  Hz) ppm.

#### Synthesis of $[CF_3-ONO]W(\equiv C^tBu)(OEt_2)$ (5).

Complex **4** (0.1162 g) was dissolved in diethyl ether (2 mL). The solution changes from dark blue to light blue and a white precipitate formed. The white solid was removed by filtration. Cooling the filtrate precipitates additional white solid, which was subsequently removed via decanting. Slow evaporation of the diethyl ether solution yielded blue crystals of **5** suitable for single crystal X-ray diffraction concomitant with inseparable {CH<sub>3</sub>PPh<sub>3</sub>}{OTF}. Isolated yield was 0.080 g. In C<sub>6</sub>D<sub>6</sub>, the free 'OTf coordinates and displaces diethyl ether. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 7.77$  (s, 1H, Ar-*H*), 7.69 (s, 1H, Ar-*H*), 7.10 (d, 1H, Ar-*H*, <sup>3</sup>*J* = 8.21 Hz), 7.01 (d, 1H, Ar-*H*, <sup>3</sup>*J* = 8.21 Hz), 6.74 (s, 2H, Ar-*H*), 3.89-3.78 (m, 2H, O(C(*H*)(H')CH<sub>3</sub>)<sub>2</sub>), 3.71-3.58 (m, 2H, O(C(H)(H')CH<sub>3</sub>)<sub>2</sub>), 2.06 (s, 3H, Ar-CH<sub>3</sub>), 2.05 (s, 3H, Ar-CH<sub>3</sub>'), 0.89 (t, 6H, O(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), and 0.085 (s, 9H, WCC(CH<sub>3</sub>)<sub>3</sub>) ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = -69.23$  (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 8.48 Hz), -71.80 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.69 Hz), -75.43 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.69 Hz), and -77.19 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 8.48 Hz) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 311.5$  (s, WC'Bu), 151.0 (s, Ar *C*), 150.5 (s, Ar *C*), 135.3 (s, Ar *C*), 132.5 (s, Ar *C*), 131.3 (s, Ar *C*), 131.0 (s, Ar *C*), 128.7 (s, Ar *C*), 127.5 (s, Ar *C*), 126.8 (s, Ar *C*), 122.3 (s, Ar *C*), 119.3 (s, Ar *C*), 79.2 (s, O(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>), 49.9 (s, W≡CC(CH<sub>3</sub>)<sub>3</sub>), 33.6 (s, W≡CC(CH<sub>3</sub>)<sub>3</sub>), 20.6 (s, Ar-CH<sub>3</sub>'), 20.2 (s, Ar-CH<sub>3</sub>), and 13.4 (s, O(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>) ppm.

# Synthesis of $[CF_3-ONO]W[\kappa^2-C(^tBu)C(Me)C(Ph)]$ (6).

A diethyl ether solution of **3** (0.139 g, 1.23 x10<sup>-4</sup> mol), MeOTf (0.020 g, 1.23 x10<sup>-4</sup> mol), and PhC=CMe (0.014 g, 1.23 x10<sup>-4</sup> mol) was allowed to stir overnight. The solution was filtered and the filtrate reduced. The resulting oily residue was dissolved in pentane, filtered, and the filtrate was reduced under vacuum. The residue was taken up in Et<sub>2</sub>O and slow evaporation yielded crystals of the product. The crystals were rinsed quickly with pentane and dried (0.058 g, 51%). Crystals suitable for X-ray diffraction experiments were grown by recrystallizing the material above via a slow evaporation of a pentane solution. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 7.62$  (s, 1H, Ar-*H*), 7.61 (s, 1H, Ar-*H*), 7.02-7.13 (m, 6H, Ar-*H*), 6.90 (d, 1H, Ar-*H*, <sup>3</sup>*J* = 7.55 Hz), 6.87 (d, 1H, Ar-*H*, <sup>3</sup>*J* = 8.10 Hz), 6.80 (d, 1H, Ar-*H*, <sup>3</sup>*J* = 8.51 Hz), 2.76 (s, 3H, WC<sub>3</sub>-CH<sub>3</sub>), 2.00 (s, 3H, Ar-CH<sub>3</sub>), 1.98 (s, 3H, Ar-CH<sub>3</sub>'), 1.18 (s, 9H, WCC(CH<sub>3</sub>)<sub>3</sub>) ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = -71.49$  (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.69 Hz), -72.07 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.69 Hz), -76.06 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.69 Hz), and -76.53 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.69 Hz) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta = 244.6$  (s, WC<sub>a</sub>), 242.3 (s, WC<sub>a</sub>), 146.0 (s, Ar *C*), 144.9 (s, Ar *C*), 138.2 (s, WC<sub>2</sub>C<sub>6</sub>), 138.2 (s, Ar *C*), 132.4 (s, Ar *C*), 131.9 (s, Ar *C*), 131.9 (s, Ar *C*),

129.9 (s, Ar C), 129.2 (s, Ar C), 128.3 (s, Ar C), 127.7 (s, Ar C), 127.3 (s, Ar C), 127.1 (s, Ar C), 126.9 (s, Ar C), 124.9 (s, Ar C), 124.5 (s, Ar C), 42.3 (s, WC<sub>3</sub>- $C(CH_3)_3$ ), 30.2 (s, WC<sub>3</sub>- $C(CH_3)_3$ ), 20.4 (s, Ar- $CH_3$ ), 20.3 (s, Ar- $CH_3$ ), and 15.8 (s, WC<sub>3</sub>- $CH_3$ ) ppm. Anal. Calcd. for C<sub>35</sub>H<sub>31</sub>F<sub>12</sub>NO<sub>2</sub>W (909.45 g/mol): C: 46.22%; H: 3.44%; N: 1.54%, Found; C: 46.31%; H: 3.50%; N: 1.60%.

## Synthesis of $[CF_3-ONO]W[\kappa^2-C(^tBu)C(Me)C(^tBu)]$ (7).

A C<sub>6</sub>D<sub>6</sub> solution of 4,4-dimethyl-2-pentyne (0.018 g, 1.9 x10<sup>-4</sup> mol) and complex **5**, that was generated insitu from **3** (0.183 g, 1.62 x10<sup>-4</sup> mol) and MeOTf (0.027 g, 1.7 x10<sup>-4</sup> mol), was heated in a J-young tube at 60° C for 3 h. The solvent was removed in-vacuo. The solid residue was dissolved in Et<sub>2</sub>O (1 mL) and precipitated by the addition of hexanes to yield a purple powder. The solid was removed by filtration and the filtrate was reduced to give a brown powder. The powder was quickly rinsed with pentanes, and then dissolved in Et<sub>2</sub>O. Slow evaporation of the ether solution yielded brown crystals of **7** (0.068 g, 47 %). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 7.62 (s, 2H, Ar-*H*), 7.06 (d, 2H, Ar-H, <sup>3</sup>*J* = 8.37 Hz), 6.84 (d, 2H, Ar-H, <sup>3</sup>*J* = 8.37 Hz), 2.97 (s, 3H, WC<sub>3</sub>-CH<sub>3</sub>), 2.00 (s, 6H, Ar-CH<sub>3</sub>), and 1.19 (s, 18 H, WC<sub>3</sub>-C(CH<sub>3</sub>)<sub>3</sub>) ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = -71.87 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.69 Hz) and -76.53 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>*J* = 9.69 Hz) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 252.8 (s, WC<sub>a</sub>), 146.4 (s, Ar C), 139.0 (s, WC<sub>2</sub>C<sub>β</sub>), 132.9 (s, Ar C), 132.6 (s, Ar C), 128.9 (s, Ar C), 127.3 (s, Ar C), 125.6 (s, Ar C), 43.3 (s, WC<sub>3</sub>-C(CH<sub>3</sub>)<sub>3</sub>), 30.9 (s, WC<sub>3</sub>-C(CH<sub>3</sub>)<sub>3</sub>), 21.1 (s, Ar-CH<sub>3</sub>), and 12.3 (s, WC<sub>3</sub>-CH<sub>3</sub>) ppm. Anal. Calcd. for C<sub>33</sub>H<sub>35</sub>F<sub>12</sub>NO<sub>2</sub>W (909.45 g/mol): C: 44.56%; H: 3.97%; N: 1.57%, Found; C: 44.45%; H: 4.08%; N: 1.57%.

# Synthesis of $[CF_3-ONO]W[\kappa^2-C(^tBu)C(CH_2(CH_2)_4CH_2)C]$ (8).

A diethyl ether solution of cyclooctyne (0.040 g,  $3.7 \times 10^{-4}$  mol) was added to an Et<sub>2</sub>O solution containing complex 5 that was generated in-situ from 3 (0.213 g,  $1.89 \times 10^{-4}$  mol) and MeOTf (0.070 g,  $4.27 \times 10^{-4}$ mol). The solution was stirred for 0.5 h and the solution changed color from blue to red-brown. The solution was filtered and reduced to provide an oily solid. The residue was dissolved in pentanes and filtered. Slow evaporation of the pentane filtrate yielded crystals of 8. The solution was decanted from the crystals and the collected material was recrystallized a second time from a slow evaporating diethyl ether solution (0.065 g, 38%). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 7.69 (s, Ar-*H*), 7.61 (s, Ar-*H*), 7.12 (d, 1H, Ar-*H*, <sup>3</sup>J = 7.82 Hz), 7.10 (d, 1H, Ar-H,  ${}^{3}J = 7.69$  Hz), 6.88 (d, 1H, Ar-H,  ${}^{3}J = 8.37$  Hz), 6.85 (d, 1H, Ar-H,  ${}^{3}J = 8.51$  Hz), 3.82 (dt, 1H, WC<sub>3</sub>-C(H)(H')-R,  ${}^{2}J = 11.67$  Hz,  ${}^{3}J = 4.80$  Hz), 3.66 (m, 1H, WC<sub>3</sub>-[C(H)(H')(CH<sub>2</sub>)<sub>4</sub>CH<sub>2</sub>]),  $3.36 \text{ (m, 1H, WC_3-[CH_2(CH_2)_4C(H)(H')])}, 3.18 \text{ (m, 1H, WC_3-C(H)(H')-R)}, 2.05 \text{ (s, 3H, Ar-CH_3)}, 2.01 \text{ (s, })$ 3H, Ar-CH<sub>3</sub>'), 1.18 (s, 9H, WC<sub>3</sub>-C(CH<sub>3</sub>)<sub>3</sub>), and 0.90-1.55 (bs, 8H, WC<sub>3</sub>-[CH<sub>2</sub>(CH<sub>2</sub>)<sub>4</sub>CH<sub>2</sub>]) ppm.  ${}^{19}F{}^{1}H{}$ NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = -70.92 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>J = 9.69 Hz), -72.22 (q, 3F, -CF<sub>3</sub>, <sup>4</sup>J = 9.69 Hz), -76.06 (q, 3F, - $CF_3$ ,  ${}^4J = 9.69$  Hz), and -76.56 (q, 3F, -CF<sub>3</sub>,  ${}^4J = 9.69$  Hz) ppm.  ${}^{13}C{}^{1}H{} = 252.8$  (s, WC<sub>a</sub>), 238.6 (s,  $WC_{0}$ , 145.1 (s, Ar C), 144.6 (s, Ar C), 142.8 (s,  $WC_{2}C_{\beta}$ ), 132.4 (s, Ar C), 132.0 (s, Ar C), 131.9 (s, Ar C), 131.4 (s, Ar C), 127.3 (s, Ar C), 126.9 (s, Ar C), 126.0 (s, Ar C), 125.8 (s, Ar C), 125.0 (s, Ar C), 124.2 (s, Ar C), 42.0 (s, WC<sub>3</sub>-C(CH<sub>3</sub>)<sub>3</sub>), 35.5 (s, WC<sub>3</sub>-[CH<sub>2</sub>(CH<sub>2</sub>)<sub>4</sub>CH<sub>2</sub>]), 31.0 (s, WC<sub>3</sub>-C(CH<sub>3</sub>)<sub>3</sub>), 31.0 (s, WC3-[CH<sub>2</sub>(*C*H<sub>2</sub>)<sub>4</sub>CH<sub>2</sub>]), 29.5 (s, WC3-[CH<sub>2</sub>(*C*H<sub>2</sub>)<sub>4</sub>CH<sub>2</sub>]), 26.9 (s, WC3-[CH<sub>2</sub>(CH<sub>2</sub>)<sub>4</sub>CH<sub>2</sub>]), 26.0 (s, WC3-[CH<sub>2</sub>(CH<sub>2</sub>)<sub>4</sub>CH<sub>2</sub>]), 24.0 (s, WC3-[CH<sub>2</sub>(CH<sub>2</sub>)<sub>4</sub>CH<sub>2</sub>]), 20.4 (s, Ar-CH<sub>3</sub>), and 20.3 (s, Ar-CH<sub>3</sub>') ppm. Anal. Calcd. for C<sub>34</sub>H<sub>35</sub>F<sub>12</sub>NO<sub>2</sub>W (901.47 g/mol): C: 45.30%; H: 3.91%; N: 1.55%, Found; C: 45.31%; H: 3.97%; N: 1.56%.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

















| C1   82.8   83.6   86.2   86.2   80.8   81.2   80.8     C2   123.5   121.0   135.5   135.3   124.9   124.8   125.0     C3   146.5   154.5   152.4   151.0   146.0   145.7   144.6     C4   123.9   122.9   nm   nm   127.7   126.5   125.8     C5   131.0   130.3   130.6   131.0   131.9   132.1   132.0     C6   133.6   122.6   130.8   132.5   121.9   126.9   127.1   126.9     C8   124.6   nm   nm   nm   123.5   123.9     C10   20.1   20.5   20.7   20.6   20.3   20.3   20.3     C13   145.4   155.5   151.4   150.5   144.9   = C2   124.2     C13   145.4   155.5   151.4   150.5   144.9   = C3   145.1     C14   123.9   126.2<                                                                                                                | Compd. | 2     | 3     | 4     | 5     | 6     | <b>7</b> <sup>a</sup> | 8     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|-------|-------|-------|-----------------------|-------|
| C2 123.5 121.0 135.5 135.3 124.9 124.8 125.0   C3 146.5 154.5 152.4 151.0 146.0 145.7 144.6   C4 123.9 122.9 nm nm 127.7 126.5 132.8   C5 131.0 130.3 130.6 131.0 131.9 132.1 132.0   C6 133.6 122.6 130.8 132.5 131.9 131.8 131.4   C7 126.2 127.0 127.5 127.5 126.9 127.1 126.9   C8 124.6 nm nm nm 123.5 123.9 123.3   C10 20.1 20.5 20.7 20.6 20.3 20.3 20.3   C11 84.3 85.4 85.4 84.9 81.6 = C1 81.8   C12 127.5 131.5 118.0 119.3 124.5 = C2 124.2   C13 130.0 130.8 131.3 132.4 = C5 132.4   C16 134.4 <t< td=""><td>C1</td><td>82.8</td><td>83.6</td><td>86.2</td><td>86.2</td><td>80.8</td><td>81.2</td><td>80.8</td></t<>                                                                                                                           | C1     | 82.8  | 83.6  | 86.2  | 86.2  | 80.8  | 81.2                  | 80.8  |
| C3 146.5 154.5 152.4 151.0 146.0 145.7 144.6   C4 123.9 122.9 nm nm 127.7 126.5 132.8   C5 131.0 130.3 130.6 131.0 131.9 132.1 132.8 131.4   C7 126.2 127.0 127.5 127.5 126.9 127.1 126.9   C8 124.6 nm nm nm nm 123.9 123.3   C9 123.7 nm 124.8 124.5 nm 123.5 123.9   C10 20.1 20.5 20.7 20.6 20.3 20.3 20.3   C11 84.3 85.4 85.4 84.9 81.6 = C1 81.8   C12 127.5 131.5 118.0 119.3 124.5 = C2 124.2   C13 145.4 155.5 151.4 150.5 144.9 = C3 145.1   C14 123.9 126.2 128.7 128.7 127.3 127.1 126.6 131.9                                                                                                                                                                                                                                                   | C2     | 123.5 | 121.0 | 135.5 | 135.3 | 124.9 | 124.8                 | 125.0 |
| C4123.9122.9nmnm127.7126.5125.8C5131.0130.3130.6131.0131.9132.1132.0C6133.6122.6130.8132.5131.9131.8131.4C7126.2127.0127.5127.5126.9127.1126.9C8124.6nmnmnmnm123.5123.3C9123.7nm124.8124.5nm123.5123.9C1020.120.520.720.620.320.320.3C1184.385.485.484.981.6= C181.8C12127.5131.5118.0119.3124.5= C2124.2C13145.4155.5151.4150.5144.9= C3145.1C14123.9126.2121.1122.3127.1= C4126.0C15133.0130.2130.8131.3132.4= C6131.9C17127.3127.2127.1126.8127.3= C7127.3C18124.3nm124.5124.3nm= C9123.5C2020.320.720.320.220.4= C1020.4C21262.6286.0308.6311.5242.325.0238.6C2241.049.449.549.9138.2138.2138.2142.8C2335.033.733.733.6 <td>C3</td> <td>146.5</td> <td>154.5</td> <td>152.4</td> <td>151.0</td> <td>146.0</td> <td>145.7</td> <td>144.6</td>              | C3     | 146.5 | 154.5 | 152.4 | 151.0 | 146.0 | 145.7                 | 144.6 |
| C5 131.0 130.3 130.6 131.0 131.9 132.1 132.0   C6 133.6 122.6 130.8 132.5 131.9 131.8 131.4   C7 126.2 127.0 127.5 127.5 126.9 127.1 126.9   C8 124.6 nm nm nm nm 123.5 123.3   C9 123.7 nm 124.8 124.5 nm 123.5 123.9   C10 20.1 20.5 20.7 20.6 20.3 20.3 20.3   C11 84.3 85.4 85.4 84.9 81.6 = C1 81.8   C12 127.5 131.5 118.0 119.3 124.5 = C2 124.2   C13 130.4 155.5 151.4 150.5 144.9 = C3 145.1   C14 123.9 126.2 121.1 122.3 127.1 = C6 131.9   C17 127.3 127.2 127.1 126.8 127.3 = C7 127.3   C17 1                                                                                                                                                                                                                                                  | C4     | 123.9 | 122.9 | nm    | nm    | 127.7 | 126.5                 | 125.8 |
| C6 133.6 122.6 130.8 132.5 131.9 131.8 131.4   C7 126.2 127.0 127.5 126.9 127.1 126.9   C8 124.6 nm nm nm nm 123.9 123.3   C9 123.7 nm 124.8 124.5 nm 123.5 123.9   C10 20.1 20.5 20.7 20.6 20.3 20.3 20.3   C11 84.3 85.4 84.9 81.6 = C1 81.8   C12 127.5 131.5 118.0 119.3 124.5 = C2 124.2   C13 145.4 155.5 151.4 150.5 144.9 = C3 145.1   C14 123.9 126.2 121.1 122.3 127.1 = C4 126.0   C15 133.0 130.2 130.8 131.3 132.4 = C5 132.4   C16 134.4 127.8 126.2 128.7 nm = C4 123.5   C17 123.7 nm 124.7 </td <td>C5</td> <td>131.0</td> <td>130.3</td> <td>130.6</td> <td>131.0</td> <td>131.9</td> <td>132.1</td> <td>132.0</td>                                                                                                                         | C5     | 131.0 | 130.3 | 130.6 | 131.0 | 131.9 | 132.1                 | 132.0 |
| C7126.2127.0127.5127.5126.9127.1126.9C8124.6nmnmnmnm123.9123.3C9123.7nm124.8124.5nm123.5123.9C1020.120.520.720.620.320.320.3C1184.385.485.484.981.6= C181.8C12127.5131.5118.0119.3124.5= C2124.2C13145.4155.5151.4150.5144.9= C3145.1C14123.9126.2121.1122.3127.1= C4126.0C15133.0130.2130.8131.3132.4= C5132.4C16134.4127.8126.2128.7132.4= C6131.9C17127.3127.2127.1126.8127.3= C7127.3C18124.3nm124.5124.3nm= C9123.5C2020.320.720.320.220.4= C1020.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6= C21252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.2 <td< td=""><td>C6</td><td>133.6</td><td>122.6</td><td>130.8</td><td>132.5</td><td>131.9</td><td>131.8</td><td>131.4</td></td<>        | C6     | 133.6 | 122.6 | 130.8 | 132.5 | 131.9 | 131.8                 | 131.4 |
| C8   124.6   nm   nm   nm   nm   123.9   123.3     C9   123.7   nm   124.8   124.5   nm   123.5   123.9     C10   20.1   20.5   20.7   20.6   20.3   20.3   20.3     C11   84.3   85.4   85.4   84.9   81.6   = C1   81.8     C12   127.5   131.5   118.0   119.3   124.5   = C2   124.2     C13   145.4   155.5   151.4   150.5   144.9   = C3   145.1     C14   123.9   126.2   121.1   122.3   127.1   = C4   126.0     C15   133.0   130.2   130.8   131.3   132.4   = C5   132.4     C16   134.4   127.8   126.2   128.7   132.4   = C6   131.9     C17   127.3   127.2   127.1   126.8   127.3   = C7   127.3     C20   20.7   20.3                                                                                                                     | C7     | 126.2 | 127.0 | 127.5 | 127.5 | 126.9 | 127.1                 | 126.9 |
| C9   123.7   nm   124.8   124.5   nm   123.5   123.9     C10   20.1   20.5   20.7   20.6   20.3   20.3   20.3     C11   84.3   85.4   85.4   84.9   81.6   = C1   81.8     C12   127.5   131.5   118.0   119.3   124.5   = C2   124.2     C13   145.4   155.5   151.4   150.5   144.9   = C3   145.1     C14   123.9   126.2   121.1   122.3   127.1   = C6   131.9     C15   133.0   130.2   130.8   131.3   132.4   = C6   131.9     C17   127.3   127.2   127.1   126.8   127.3   = C7   127.3     C18   124.3   nm   124.7   123.7   nm   = C8   123.5     C19   123.7   nm   124.7   123.7   nm   = C9   123.5     C20   20.3   20.7                                                                                                                     | C8     | 124.6 | nm    | nm    | nm    | nm    | 123.9                 | 123.3 |
| C1020.120.520.720.620.320.320.3C1184.385.485.484.981.6= C181.8C12127.5131.5118.0119.3124.5= C2124.2C13145.4155.5151.4150.5144.9= C3145.1C14123.9126.2121.1122.3127.1= C4126.0C15133.0130.2130.8131.3132.4= C5132.4C16134.4127.8126.2128.7132.4= C6131.9C17127.3127.2127.1126.8127.3= C7127.3C18124.3nm124.5124.3nm= C8123.5C19123.7nm124.7123.7nm= C9123.5C2020.320.720.320.220.4= C1020.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6= C21252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-128.3-                                                                                                                                                 | C9     | 123.7 | nm    | 124.8 | 124.5 | nm    | 123.5                 | 123.9 |
| C1184.385.485.484.981.6 $= C1$ 81.8C12127.5131.5118.0119.3124.5 $= C2$ 124.2C13145.4155.5151.4150.5144.9 $= C3$ 145.1C14123.9126.2121.1122.3127.1 $= C4$ 126.0C15133.0130.2130.8131.3132.4 $= C5$ 132.4C16134.4127.8126.2128.7132.4 $= C6$ 131.9C17127.3127.2127.1126.8127.3 $= C7$ 127.3C18124.3nm124.5124.3nm $= C8$ 123.5C2020.320.720.320.220.4 $= C10$ 20.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6 $= C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26 $-$ 8.58.3 $-$ 15.811.626.9C27 $-$ 118.7118.6 $-$ 138.2 $= C24$ 31.0C28 $-$ 132.5132.6 $-$ 129.9 $= C25$ 24.0C30 $-$ 128.3 $-$ 26                                                                              | C10    | 20.1  | 20.5  | 20.7  | 20.6  | 20.3  | 20.3                  | 20.3  |
| C12127.5131.5118.0119.3124.5= $C2$ 124.2C13145.4155.5151.4150.5144.9= $C3$ 145.1C14123.9126.2121.1122.3127.1= $C4$ 126.0C15133.0130.2130.8131.3132.4= $C5$ 132.4C16134.4127.8126.2128.7132.4= $C6$ 131.9C17127.3127.2127.1126.8127.3= $C7$ 127.3C18124.3nm124.5124.3nm= $C9$ 123.5C19123.7nm124.7123.7nm= $C9$ 123.5C2020.320.720.320.220.4= $C10$ 20.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.6244.6= $C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2= $C24$ 31.0C28-132.5132.6-129.9= $C25$ 24.0C29-129.9130.0-128.3- </td <td>C11</td> <td>84.3</td> <td>85.4</td> <td>85.4</td> <td>84.9</td> <td>81.6</td> <td>= C1</td> <td>81.8</td> | C11    | 84.3  | 85.4  | 85.4  | 84.9  | 81.6  | = C1                  | 81.8  |
| C13145.4155.5151.4150.5144.9= $C3$ 145.1C14123.9126.2121.1122.3127.1= $C4$ 126.0C15133.0130.2130.8131.3132.4= $C5$ 132.4C16134.4127.8126.2128.7132.4= $C6$ 131.9C17127.3127.2127.1126.8127.3= $C7$ 127.3C18124.3nm124.5124.3nm= $C9$ 123.5C19123.7nm124.7123.7nm= $C9$ 123.5C2020.320.720.320.220.4= $C10$ 20.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6= $C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2= $C24$ 31.0C28-132.5132.6-129.9= $C25$ 24.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.5 </td <td>C12</td> <td>127.5</td> <td>131.5</td> <td>118.0</td> <td>119.3</td> <td>124.5</td> <td>= C2</td> <td>124.2</td>   | C12    | 127.5 | 131.5 | 118.0 | 119.3 | 124.5 | = C2                  | 124.2 |
| C14123.9126.2121.1122.3127.1 $= C4$ 126.0C15133.0130.2130.8131.3132.4 $= C5$ 132.4C16134.4127.8126.2128.7132.4 $= C6$ 131.9C17127.3127.2127.1126.8127.3 $= C7$ 127.3C18124.3nm124.5124.3nm $= C8$ 123.5C19123.7nm124.7123.7nm $= C9$ 123.5C2020.320.720.320.220.4 $= C10$ 20.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6 $= C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2 $= C24$ 31.0C28-132.5132.6-129.9 $= C25$ 24.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.529.5C3135.5 <tr< td=""><td>C13</td><td>145.4</td><td>155.5</td><td>151.4</td><td>150.5</td><td>144.9</td><td>= C3</td><td>145.1</td></tr<>                 | C13    | 145.4 | 155.5 | 151.4 | 150.5 | 144.9 | = C3                  | 145.1 |
| C15133.0130.2130.8131.3132.4= C5132.4C16134.4127.8126.2128.7132.4= C6131.9C17127.3127.2127.1126.8127.3= C7127.3C18124.3nm124.5124.3nm= C8123.5C19123.7nm124.7123.7nm= C9123.5C2020.320.720.320.220.4= C1020.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6= C21252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2= C2431.0C28-132.5132.6-129.9= C2524.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.55.5C490.47.057.777.057.007.027.07H46.547.057.277.057.007.027.07H5 <td>C14</td> <td>123.9</td> <td>126.2</td> <td>121.1</td> <td>122.3</td> <td>127.1</td> <td>= C4</td> <td>126.0</td>                                                  | C14    | 123.9 | 126.2 | 121.1 | 122.3 | 127.1 | = C4                  | 126.0 |
| C16134.4127.8126.2128.7132.4 $= C6$ 131.9C17127.3127.2127.1126.8127.3 $= C7$ 127.3C18124.3nm124.5124.3nm $= C8$ 123.5C19123.7nm124.7123.7nm $= C9$ 123.5C2020.320.720.320.220.4 $= C10$ 20.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6 $= C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2 $= C24$ 31.0C28-132.5132.6-129.9 $= C25$ 24.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.5C31N225.7149.3165.5178.3208.6204.4202.1H46.547.057.277.057.007.027.07H56.336.72                                                                                                                                                              | C15    | 133.0 | 130.2 | 130.8 | 131.3 | 132.4 | = C5                  | 132.4 |
| C17127.3127.2127.1126.8127.3 $= C7$ 127.3C18124.3nm124.5124.3nm $=C8$ 123.5C19123.7nm124.7123.7nm $=C9$ 123.5C2020.320.720.320.220.4 $=C10$ 20.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6 $=C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2 $=C24$ 31.0C28-132.5132.6-129.9 $=C25$ 24.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.5C31N225.7149.3165.5178.3208.6204.4202.1H46.547.057.277.057.007.027.07H56.336.726.856.806.676.806.80H77.687.597.77 <t< td=""><td>C16</td><td>134.4</td><td>127.8</td><td>126.2</td><td>128.7</td><td>132.4</td><td>= C6</td><td>131.9</td></t<>                                              | C16    | 134.4 | 127.8 | 126.2 | 128.7 | 132.4 | = C6                  | 131.9 |
| C18124.3nm124.5124.3nm $=C8$ 123.5C19123.7nm124.7123.7nm $=C9$ 123.5C2020.320.720.320.220.4 $=C10$ 20.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6 $=C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2 $=C24$ 31.0C28-132.5132.6-129.9 $=C25$ 24.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.5C3135.5H46.547.057.277.057.007.027.07H56.336.726.856.806.676.806.80H77.687.597.777.737.587.577.65H101.972.032.062.011.951.962.00H146.547.446.916.70 <td>C17</td> <td>127.3</td> <td>127.2</td> <td>127.1</td> <td>126.8</td> <td>127.3</td> <td><i>= C7</i></td> <td>127.3</td>                                                      | C17    | 127.3 | 127.2 | 127.1 | 126.8 | 127.3 | <i>= C7</i>           | 127.3 |
| C19123.7nm124.7123.7nm $= C9$ 123.5C2020.320.720.320.220.4 $= C10$ 20.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6 $= C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2 $= C24$ 31.0C28-132.5132.6-129.9 $= C25$ 24.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.5C3135.5H46.547.057.277.057.007.027.07H56.336.726.856.806.676.806.80H77.687.597.777.737.587.577.65H101.972.032.062.011.951.962.00H146.547.446.916.707.05 $= H4$ 7.06H156.786.906.7                                                                                                                                                                                 | C18    | 124.3 | nm    | 124.5 | 124.3 | nm    | <i>=C8</i>            | 123.5 |
| C2020.320.720.320.220.4 $= C10$ 20.4C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6 $= C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2 $= C24$ 31.0C28-132.5132.6-129.9 $= C25$ 24.0C29-129.9130.0-128.3-20.5C3135.5H46.547.057.277.057.007.027.07H56.336.726.856.806.676.806.80H77.687.597.777.737.587.577.65H101.972.032.062.011.951.962.00H146.547.446.916.707.05 $= H4$ 7.06H156.786.906.746.706.84 $= H5$ 6.83                                                                                                                                                                                                                       | C19    | 123.7 | nm    | 124.7 | 123.7 | nm    | <i>= C9</i>           | 123.5 |
| C21262.6286.0308.6311.5242.3252.0238.6C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6= $C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2= $C24$ 31.0C28-132.5132.6-129.9= $C25$ 24.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.5C3135.5H46.547.057.277.057.007.027.07H56.336.726.856.806.676.806.80H77.687.597.777.737.587.577.65H101.972.032.062.011.951.962.00H146.547.446.916.707.05= H47.06H156.786.906.746.706.84= H56.83                                                                                                                                                                                                                                              | C20    | 20.3  | 20.7  | 20.3  | 20.2  | 20.4  | = C10                 | 20.4  |
| C2241.049.449.549.9138.2138.2142.8C2335.033.733.733.6244.6= $C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2= $C24$ 31.0C28-132.5132.6-129.9= $C25$ 24.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.5C3135.5H46.547.057.277.057.007.027.07H56.336.726.856.806.676.806.80H77.687.597.777.737.587.577.65H101.972.032.062.011.951.962.00H146.547.446.916.707.05= H47.06H156.786.906.746.706.84= H56.83                                                                                                                                                                                                                                                                                    | C21    | 262.6 | 286.0 | 308.6 | 311.5 | 242.3 | 252.0                 | 238.6 |
| C2335.033.733.733.6244.6 $= C21$ 252.8C2490.477.1120.179.342.343.542.0C2529.233.5nm13.430.230.131.0C26-8.58.3-15.811.626.9C27-118.7118.6-138.2 $= C24$ 31.0C28-132.5132.6-129.9 $= C25$ 24.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.5C3135.5N225.7149.3165.5178.3208.6204.4202.1H46.547.057.277.057.007.027.07H56.336.726.856.806.676.806.80H77.687.597.777.737.587.577.65H101.972.032.062.011.951.962.00H146.547.446.916.707.05 $= H4$ 7.06H156.786.906.746.706.84 $= H5$ 6.83                                                                                                                                                                                                                                                                       | C22    | 41.0  | 49.4  | 49.5  | 49.9  | 138.2 | 138.2                 | 142.8 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C23    | 35.0  | 33.7  | 33.7  | 33.6  | 244.6 | = C21                 | 252.8 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C24    | 90.4  | 77.1  | 120.1 | 79.3  | 42.3  | 43.5                  | 42.0  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C25    | 29.2  | 33.5  | nm    | 13.4  | 30.2  | 30.1                  | 31.0  |
| C27-118.7118.6-138.2= C2431.0C28-132.5132.6-129.9= C2524.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.5C3135.5N225.7149.3165.5178.3208.6204.4202.1H46.547.057.277.057.007.027.07H56.336.726.856.806.676.806.80H77.687.597.777.737.587.577.65H101.972.032.062.011.951.962.00H146.547.446.916.707.05= H47.06H156.786.906.746.706.84= H56.83                                                                                                                                                                                                                                                                                                                                                                                                                 | C26    | -     | 8.5   | 8.3   | -     | 15.8  | 11.6                  | 26.9  |
| C28-132.5132.6-129.9 $= C25$ 24.0C29-129.9130.0-128.3-26.0C30-134.6134.7129.2-29.5C3135.5N225.7149.3165.5178.3208.6204.4202.1H46.547.057.277.057.007.027.07H56.336.726.856.806.676.806.80H77.687.597.777.737.587.577.65H101.972.032.062.011.951.962.00H146.547.446.916.707.05 $= H4$ 7.06H156.786.906.746.706.84 $= H5$ 6.83                                                                                                                                                                                                                                                                                                                                                                                                                                  | C27    | -     | 118.7 | 118.6 | -     | 138.2 | = C24                 | 31.0  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C28    | -     | 132.5 | 132.6 | -     | 129.9 | = C25                 | 24.0  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C29    | -     | 129.9 | 130.0 | -     | 128.3 | -                     | 26.0  |
| C31   -   -   -   -   -   35.5     N   225.7   149.3   165.5   178.3   208.6   204.4   202.1     H4   6.54   7.05   7.27   7.05   7.00   7.02   7.07     H5   6.33   6.72   6.85   6.80   6.67   6.80   6.80     H7   7.68   7.59   7.77   7.73   7.58   7.57   7.65     H10   1.97   2.03   2.06   2.01   1.95   1.96   2.00     H14   6.54   7.44   6.91   6.70   7.05   = H4   7.06     H15   6.78   6.90   6.74   6.70   6.84   = H5   6.83                                                                                                                                                                                                                                                                                                               | C30    | -     | 134.6 | 134.7 |       | 129.2 | -                     | 29.5  |
| N   225.7   149.3   165.5   178.3   208.6   204.4   202.1     H4   6.54   7.05   7.27   7.05   7.00   7.02   7.07     H5   6.33   6.72   6.85   6.80   6.67   6.80   6.80     H7   7.68   7.59   7.77   7.73   7.58   7.57   7.65     H10   1.97   2.03   2.06   2.01   1.95   1.96   2.00     H14   6.54   7.44   6.91   6.70   7.05   = H4   7.06     H15   6.78   6.90   6.74   6.70   6.84   = H5   6.83                                                                                                                                                                                                                                                                                                                                                  | C31    | -     | -     | -     | -     | -     | -                     | 35.5  |
| N   225.7   149.3   165.5   178.3   208.6   204.4   202.1     H4   6.54   7.05   7.27   7.05   7.00   7.02   7.07     H5   6.33   6.72   6.85   6.80   6.67   6.80   6.80     H7   7.68   7.59   7.77   7.73   7.58   7.57   7.65     H10   1.97   2.03   2.06   2.01   1.95   1.96   2.00     H14   6.54   7.44   6.91   6.70   7.05   = H4   7.06     H15   6.78   6.90   6.74   6.70   6.84   = H5   6.83                                                                                                                                                                                                                                                                                                                                                  |        |       |       |       |       |       |                       |       |
| H4 $6.54$ $7.05$ $7.27$ $7.05$ $7.00$ $7.02$ $7.07$ H5 $6.33$ $6.72$ $6.85$ $6.80$ $6.67$ $6.80$ $6.80$ H7 $7.68$ $7.59$ $7.77$ $7.73$ $7.58$ $7.57$ $7.65$ H10 $1.97$ $2.03$ $2.06$ $2.01$ $1.95$ $1.96$ $2.00$ H14 $6.54$ $7.44$ $6.91$ $6.70$ $7.05$ $=$ H4 $7.06$ H15 $6.78$ $6.90$ $6.74$ $6.70$ $6.84$ $=$ H5 $6.83$                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν      | 225.7 | 149.3 | 165.5 | 178.3 | 208.6 | 204.4                 | 202.1 |
| H4 $6.54$ $7.05$ $7.27$ $7.05$ $7.00$ $7.02$ $7.07$ H5 $6.33$ $6.72$ $6.85$ $6.80$ $6.67$ $6.80$ $6.80$ H7 $7.68$ $7.59$ $7.77$ $7.73$ $7.58$ $7.57$ $7.65$ H10 $1.97$ $2.03$ $2.06$ $2.01$ $1.95$ $1.96$ $2.00$ H14 $6.54$ $7.44$ $6.91$ $6.70$ $7.05$ $= H4$ $7.06$ H15 $6.78$ $6.90$ $6.74$ $6.70$ $6.84$ $= H5$ $6.83$                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |       |       |       |       |       |                       |       |
| H56.336.726.856.806.676.806.80H77.687.597.777.737.587.577.65H101.972.032.062.011.951.962.00H146.547.446.916.707.05= H47.06H156.786.906.746.706.84= H56.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H4     | 6.54  | 7.05  | 7.27  | 7.05  | 7.00  | 7.02                  | 7.07  |
| H77.687.597.777.737.587.577.65H101.972.032.062.011.951.962.00H146.547.446.916.707.05= H47.06H156.786.906.746.706.84= H56.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H5     | 6.33  | 6.72  | 6.85  | 6.80  | 6.67  | 6.80                  | 6.80  |
| H101.972.032.062.011.951.962.00H146.547.446.916.707.05= H47.06H156.786.906.746.706.84= H56.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H7     | 7.68  | 7.59  | 7.77  | 7.73  | 7.58  | 7.57                  | 7.65  |
| H146.547.446.916.707.05= H47.06H156.786.906.746.706.84= H56.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H10    | 1.97  | 2.03  | 2.06  | 2.01  | 1.95  | 1.96                  | 2.00  |
| H15 6.78 6.90 6.74 6.70 6.84 = H5 6.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H14    | 6.54  | 7.44  | 6.91  | 6.70  | 7.05  | = H4                  | 7.06  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H15    | 6.78  | 6.90  | 6.74  | 6.70  | 6.84  | = H5                  | 6.83  |

Table S1. <sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F and <sup>15</sup>N chemical shifts in compounds 1-7.

| H17             | 7.67   | 7.73   | 7.62   | 7.65       | 7.60   | = H7   | 7.57       |
|-----------------|--------|--------|--------|------------|--------|--------|------------|
| H20             | 1.91   | 2.12   | 2.02   | 2.00       | 1.98   | = H10  | 1.96       |
| H21             | 6.42   | -      | -      | -          | -      | -      | -          |
| H23             | 1.12   | 1.15   | 1.02   | 0.80       | -      | -      | -          |
| H24             | -      | -      | -      | 3.58, 3.78 | -      | -      | -          |
| H25             | 1.21   | 1.64   | -      | 0.84       | 1.15   | 1.15   | 1.13       |
| H26             | -      | 2.33   | 2.27   | -          | 2.78   | 2.93   | 3.76, 3.30 |
| H27             | -      | -      | -      | -          | -      | -      | 1.30, 1.30 |
| H28             | -      | 6.99   | 7.10   | -          | 7.02   | = H25  | 1.13, 0.90 |
| H29             | -      | 6.99   | 7.15   | -          | 7.09   | -      | 1.15, 0.90 |
| H30             | -      | 7.07   | 7.23   | -          | 6.86   | -      | 1.45, 1.35 |
| H31             | -      | -      | -      | -          | -      | -      | 3.12, 3.61 |
|                 |        |        |        |            |        |        |            |
| F8 <sup>e</sup> | -71.11 | -68.95 | -68.50 | -68.74     | -71.57 | -71.39 | -75.72     |
| F9              | -73.03 | -72.15 | -76.19 | -76.71     | -75.55 | -76.05 | -71.89     |
| F18             | -70.29 | -66.43 | -72.75 | -71.30     | -70.99 | = F8   | -76.23     |
| F19             | -76.90 | -73.95 | -73.38 | -74.94     | -76.02 | = F9   | -70.59     |
| F24             | -      | -      | -76.22 | -          | -      | -      | -          |
| F25             | -      | -      | -77.68 | -          | -      | -      | -          |

The fluorine signals in compounds **2-8** are quartets with a typical coupling constant of 9-10 Hz. "nm" abbreviates signals too weak to measure. <sup>a</sup> Complex **7** is  $C_2$ -symmetric resulting in equivalent positions.

Compounds **2-7** were characterized by <sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F and <sup>15</sup>N NMR. The chemical shifts are presented in Table 1. The assignments were made primarily based on the cross-peaks seen in the <sup>1</sup>H-<sup>13</sup>C gHMBC spectra. The chemical shifts of the fluorinated carbons were measured in the <sup>19</sup>F-<sup>13</sup>C gHSQC spectra, and their assignment to positions 8 and 9 *vs.* 18 and 19 was made based on the long-range coupling of the fluorines to the quaternary carbon two bonds away, coupling seen in the <sup>19</sup>F-<sup>13</sup>C gHMBC spectra. The chemical shift of the <sup>15</sup>N was measured in the <sup>1</sup>H-<sup>15</sup>N gHMBC spectrum, where it shows cross-peaks with H4 and H14. No stereochemical assignments were made, *i.e.* H7 and H17 are interchangeable, as well as C8 and C9. In Table 1, C1 and C2 were assigned as the most shielded of the pairs C1, C11 and C2, C12; F8 and F9 were assigned as the most deshielded of the pairs F8, F18 and F9, F19.

In a typical assignment procedure, H7 displays cross-peaks with a carbon around 20 ppm, assigned as C10, with a carbon around 80-85 ppm, assigned as C1, with a carbon around 150-160 ppm, assigned as C3 and with a carbon around 130 ppm, assigned as C5. H10, H5 and C7 were then identified by onebond correlations, or by the couplings H10-C5, H10-C7, H5-C7. H4 was identified as coupling with H5, or by its coupling with C6, the third carbon coupling with H10. One coupling of F8 or F9 with C1 was sufficient to identify these fluorines, since the pairs H8-F9 and F18-F19 are revealed by selective decoupling in the <sup>19</sup>F spectra. The assignments for the positions 11-20 was done in a similar way to the one for positions 1-10. The proton signals for positions 21-27 can be assigned based on their intensity and multiplicity. The carbons in these positions were assigned based on their one-bond and long-range couplings to protons. The <sup>13</sup>C chemical shifts difference in positions 3/13and 6/16 as well as the <sup>15</sup>N chemical shifts difference between compounds **3**, **4**, and **5** on one hand and **2**, **6**, **7** and **8** on the other suggest that in **3**, **4**, and **5** the nitrogen is more 'amino-like' while in **2**, **6**, **7** and **8** is more 'imine-like'.



**Figure S1.** <sup>1</sup>H NMR spectrum of **2** in  $C_6D_6$ .



Figure S2.  ${}^{19}F{}^{1}H$  NMR spectrum of 2 in C<sub>6</sub>D<sub>6</sub>.



**Figure S3.**  ${}^{1}H{}^{13}C{}$  gHSQC NMR spectrum of **2** in C<sub>6</sub>D<sub>6</sub>.



**Figure S4.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **2** in C<sub>6</sub>D<sub>6</sub>.



**Figure S5.**  ${}^{1}H{}^{15}N{}$  gHMBC NMR spectrum of **2** in C<sub>6</sub>D<sub>6</sub>.



**Figure S6.** <sup>19</sup>F{<sup>1</sup>H} NMR spectra of **2** in C<sub>6</sub>D<sub>6</sub> (bottom) and with selective decoupling (top).



**Figure S7.** <sup>19</sup>F{<sup>13</sup>C} gHMBC NMR spectrum of **2** in C<sub>6</sub>D<sub>6</sub>, expanded.





**Figure S8.**  ${}^{19}F{}^{13}C{}$  gHSQC NMR spectrum of **2** in C<sub>6</sub>D<sub>6</sub>, expanded.

**Figure S9.** <sup>19</sup>F{<sup>13</sup>C} gHSQC NMR spectrum of **2** in C<sub>6</sub>D<sub>6</sub>, expanded.



**Figure S10.** <sup>1</sup>H NMR spectrum of **3** in  $C_6D_6$ .



**Figure S11.** <sup>19</sup>F{<sup>1</sup>H} NMR spectrum of **3** in C<sub>6</sub>D<sub>6</sub>.



**Figure S12.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of **3** in  $C_6D_6$ .



**Figure S13.**  ${}^{1}H{}^{13}C{}$  gHSQC NMR spectrum of **3** in C<sub>6</sub>D<sub>6</sub>.



**Figure S14.** <sup>1</sup>H{<sup>13</sup>C} gHMBC NMR spectrum of **3** in C<sub>6</sub>D<sub>6</sub>. The signals at 278.5 and 16.0 in *f1* are 8.5 and 286.0, foled.



**Figure S15.**  ${}^{1}H{}^{15}N{}$  gHMBC NMR spectrum of **3** in C<sub>6</sub>D<sub>6</sub>.





**Figure S16.** <sup>19</sup>F $\{^{1}H\}$  NMR spectra of **3** in C<sub>6</sub>D<sub>6</sub> (bottom) and with selective decoupling (top).

**Figure S17.** <sup>19</sup>F{<sup>13</sup>C} gHMBC NMR spectrum of **3** in C<sub>6</sub>D<sub>6</sub>, expanded.



**Figure S18.** <sup>1</sup>H NMR spectrum of **4** in  $C_6D_6$ .



. Figure S19.  $^{19}\mathrm{F}\{^1\mathrm{H}\}$  NMR spectrum of 4 in C<sub>6</sub>D<sub>6</sub>.



Figure S20. <sup>31</sup>P{ $^{1}$ H} NMR spectrum of 4 in C<sub>6</sub>D<sub>6</sub>.



**Figure S21.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **4** in C<sub>6</sub>D<sub>6</sub>.



**Figure S22.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **4** in C<sub>6</sub>D<sub>6</sub>, expanded.





**Figure S23.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of 4 in C<sub>6</sub>D<sub>6</sub>, expanded.

**Figure S24.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **4** in C<sub>6</sub>D<sub>6</sub>, expanded.



**Figure S25.**  ${}^{1}H{}^{15}N{}$  gHMBC NMR spectrum of **4** in C<sub>6</sub>D<sub>6</sub>, expanded.



**Figure S26.**  ${}^{19}F{}^{13}C{}$  gHMBC NMR spectrum of **4** in C<sub>6</sub>D<sub>6</sub>, expanded.



**Figure S27.** <sup>19</sup>F{<sup>13</sup>C} gHSQC NMR spectrum of **4** in C<sub>6</sub>D<sub>6</sub>.



**Figure S28.** <sup>1</sup>H NMR spectrum of **5** in  $C_6D_6$ .





**Figure S29.** <sup>19</sup>F{<sup>1</sup>H} NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub>.

**Figure S30.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub>.



**Figure S31.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub>, expanded.





**Figure S32.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub>, expanded.

**Figure S33.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub>, expanded.



**Figure S34.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub>, expanded.



**Figure S35.**  ${}^{1}H{}^{15}N{}$  gHMBC NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub>, expanded.



**Figure S36.** <sup>19</sup> $F{^1H}$  NMR spectra of **5** in C<sub>6</sub>D<sub>6</sub> (bottom) and with selective decoupling (top).



**Figure S37.** <sup>19</sup>F{<sup>13</sup>C} gHMBC NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub>.



**Figure S38.**  ${}^{19}F{}^{13}C{}$  gHSQC NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub>.



**Figure S39.** <sup>1</sup>H NMR spectrum of **6** in  $C_6D_6$ .



**Figure S40.** <sup>19</sup>F{<sup>1</sup>H} NMR spectrum of **6** in C<sub>6</sub>D<sub>6</sub>.



Figure S41. <sup>13</sup>C $\{^{1}H\}$  NMR spectrum of 6 in C<sub>6</sub>D<sub>6</sub>.




**Figure S42.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **6** in C<sub>6</sub>D<sub>6</sub>.

**Figure S43.**  ${}^{1}H{}^{15}N{}$  gHMBC NMR spectrum of **6** in C<sub>6</sub>D<sub>6</sub>.



**Figure S44.** <sup>19</sup>F{<sup>1</sup>H} NMR spectra of **6** in C<sub>6</sub>D<sub>6</sub> (bottom) and with selective decoupling (top).



**Figure S45.** <sup>1</sup>H NMR spectrum of **7** in  $C_6D_6$ .



Figure S46.  ${}^{19}F{}^{1}H$  NMR spectrum of 7 in C<sub>6</sub>D<sub>6</sub>.



Figure S47. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 7 in  $C_6D_6$ .



**Figure S48.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **7** in C<sub>6</sub>D<sub>6</sub>.



Figure S49.  ${}^{19}F{}^{13}C$  gHSQC NMR spectrum of 7 in C<sub>6</sub>D<sub>6</sub>.



Figure S50. <sup>1</sup>H NMR spectrum of 8 in C<sub>6</sub>D<sub>6</sub>.



**Figure S51.**  ${}^{19}F{}^{1}H{}$  NMR spectrum of **8** in C<sub>6</sub>D<sub>6</sub>.



Figure S52.  ${}^{13}C{}^{1}H$  NMR spectrum of 8 in C<sub>6</sub>D<sub>6</sub>.





**Figure S53.**  ${}^{1}H{}^{13}C{}$  gHMBC NMR spectrum of **8** in C<sub>6</sub>D<sub>6</sub>.

**Figure S54.**  ${}^{1}H{}^{15}N{}$  gHMBC NMR spectrum of **8** in C<sub>6</sub>D<sub>6</sub>.



**Figure S55.**  $^{19}F{^{13}C}$  gHMBC NMR spectrum of **8** in C<sub>6</sub>D<sub>6</sub>.



**Figure S56.** <sup>19</sup>F{<sup>13</sup>C} gHSQC NMR spectrum of **8** in C<sub>6</sub>D<sub>6</sub>.



**Figure S57.** <sup>1</sup>H NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub> and 15 equiv. of MeCN. (<sup>*t*</sup>BuCCMe = 1.54 and 1.20 ppm; **7** = 3.13 and 1.18 ppm).



**Figure S58.** <sup>19</sup> $F{^1H}$  NMR spectrum of **5** in C<sub>6</sub>D<sub>6</sub> and 15 equiv. of MeCN (blue) along with <sup>19</sup> $F{^1H}$  NMR spectrum of **7** (red)



Figure S59. Molecular Structure of 5.

<u>X-Ray experimental for 5</u>: X-Ray Intensity data were collected at 100 K on a Bruker **DUO** diffractometer using MoK $\alpha$  radiation ( $\lambda$  = 0.71073 Å) and an APEXII CCD area detector.

Raw data frames were read by program SAINT<sup>1</sup> and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces.

The structure was solved and refined in SHELXTL6.1, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The C28 unit is disordered and was refined in two parts (against the minor part C28'). Their site occupation factors were fxed at 50% ratio after refined to this value. In the final cycle of refinement, 7092 reflections (of which 5724 are observed with I >  $2\sigma(I)$ ) were used to refine 412 parameters and the resulting R<sub>1</sub>, wR<sub>2</sub> and S (goodness of fit) were 2.42%, 4.73% and 1.056, respectively. The refinement was carried out by minimizing the wR<sub>2</sub> function using F<sup>2</sup> rather than F values. R<sub>1</sub> is calculated to provide a reference to the conventional R value but its function is not minimized.

| Identification code                     | orei36                                      |                               |
|-----------------------------------------|---------------------------------------------|-------------------------------|
| Empirical formula                       | C29 H31 F12 N O3 W                          |                               |
| Formula weight                          | 853.40                                      |                               |
| Temperature                             | 100(2) K                                    |                               |
| Wavelength                              | 0.71073 Å                                   |                               |
| Crystal system                          | Monoclinic                                  |                               |
| Space group                             | $P2_{1}/n$                                  |                               |
| Unit cell dimensions                    | a = 11.4139(18) Å                           | <i>α</i> = 90°.               |
|                                         | b = 9.5278(15)  Å                           | $\beta = 97.389(3)^{\circ}$ . |
|                                         | c = 28.609(5)  Å                            | $\gamma = 90^{\circ}$ .       |
| Volume                                  | 3085.4(8) Å <sup>3</sup>                    | •                             |
| Z                                       | 4                                           |                               |
| Density (calculated)                    | $1.837 \text{ Mg/m}^3$                      |                               |
| Absorption coefficient                  | 3.849 mm <sup>-1</sup>                      |                               |
| F(000)                                  | 1672                                        |                               |
| Crystal size                            | 0.42 x 0.10 x 0.02 mm <sup>3</sup>          |                               |
| Theta range for data collection         | 1.85 to 27.50°.                             |                               |
| Index ranges                            | -14≤h≤14, -12≤k≤12, -37≤l≤37                |                               |
| Reflections collected                   | 43295                                       |                               |
| Independent reflections                 | 7092 [R(int) = 0.0459]                      |                               |
| Completeness to theta = $27.50^{\circ}$ | 100.0 %                                     |                               |
| Absorption correction                   | Numerical                                   |                               |
| Max. and min. transmission              | 0.9201 and 0.2954                           |                               |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                               |
| Data / restraints / parameters          | 7092 / 0 / 412                              |                               |
| Goodness-of-fit on F <sup>2</sup>       | 1.056                                       |                               |
| Final R indices [I>2sigma(I)]           | R1 = 0.0242, wR2 = 0.0473 [57]              | /24]                          |
| R indices (all data)                    | R1 = 0.0350, wR2 = 0.0496                   |                               |
| Largest diff. peak and hole             | 1.537 and -0.767 e.Å <sup>-3</sup>          |                               |
|                                         |                                             |                               |

| Table S2. | Crystal | data | and | structure | refinement | for | 5 |
|-----------|---------|------|-----|-----------|------------|-----|---|
|           | Crystar | uata | anu | suucture  | rennement  | 101 | 2 |

| $R1 = \sum(  F_0  -  F_c  ) / \sum  F_0 $                                                       |
|-------------------------------------------------------------------------------------------------|
| $wR2 = \left[\sum \left[w(F_0^2 - F_c^2)^2\right] / \sum \left[w(F_0^2)^2\right]\right]^{1/2}$  |
| $S = \left[\sum \left[w(F_0^2 - F_c^2)^2\right] / (n-p)\right]^{1/2}$                           |
| w= $1/[\sigma^2(F_0^2)+(m^*p)^2+n^*p]$ , p = $[max(F_0^2,0)+2^*F_c^2]/3$ , m & n are constants. |

| Table          | <b>S3.</b> | Atomic coordinates (x 10     | 0 <sup>4</sup> ) and equivalent | isotropic displacement para            | meters (Å <sup>2</sup> x 10 <sup>3</sup> ) |
|----------------|------------|------------------------------|---------------------------------|----------------------------------------|--------------------------------------------|
| for <b>5</b> . | U(e        | q) is defined as one third o | f the trace of the of           | orthogonalized U <sup>ij</sup> tensor. |                                            |

| Atom | Х       | Y        | Z       | U(eq) |  |
|------|---------|----------|---------|-------|--|
| W1   | 2542(1) | 10022(1) | 3572(1) | 11(1) |  |
| F1   | -169(2) | 9337(2)  | 4292(1) | 25(1) |  |
| F2   | -986(1) | 8840(2)  | 3594(1) | 24(1) |  |
| F3   | -989(1) | 7324(2)  | 4146(1) | 22(1) |  |
| F4   | -145(2) | 6522(2)  | 3193(1) | 25(1) |  |
| F5   | 330(2)  | 5315(2)  | 3824(1) | 23(1) |  |
| F6   | 1667(2) | 5973(2)  | 3408(1) | 24(1) |  |
| F7   | 5320(2) | 9786(2)  | 2600(1) | 22(1) |  |
| F8   | 5440(2) | 11870(2) | 2887(1) | 20(1) |  |

| F9   | 6908(1) | 10462(2) | 3030(1) | 20(1) |  |
|------|---------|----------|---------|-------|--|
| F10  | 5896(2) | 12077(2) | 3826(1) | 25(1) |  |
| F11  | 6946(1) | 10217(2) | 3957(1) | 21(1) |  |
| F12  | 5303(2) | 10409(2) | 4241(1) | 19(1) |  |
| O1   | 1225(2) | 8710(2)  | 3522(1) | 13(1) |  |
| O2   | 4023(2) | 10487(2) | 3342(1) | 13(1) |  |
| O3   | 1593(2) | 11282(2) | 3045(1) | 18(1) |  |
| N1   | 3447(2) | 8401(2)  | 3889(1) | 11(1) |  |
| C1   | 874(2)  | 7769(3)  | 3846(1) | 12(1) |  |
| C2   | 1784(2) | 7498(3)  | 4282(1) | 12(1) |  |
| C3   | 2994(2) | 7754(3)  | 4276(1) | 11(1) |  |
| C4   | 3782(2) | 7388(3)  | 4674(1) | 14(1) |  |
| C5   | 3396(3) | 6796(3)  | 5064(1) | 15(1) |  |
| C6   | 2201(3) | 6538(3)  | 5077(1) | 15(1) |  |
| C7   | 1421(2) | 6892(3)  | 4685(1) | 14(1) |  |
| C8   | -329(3) | 8312(3)  | 3973(1) | 17(1) |  |
| C9   | 671(3)  | 6385(3)  | 3569(1) | 17(1) |  |
| C10  | 1781(3) | 5899(4)  | 5507(1) | 24(1) |  |
| C11  | 5172(2) | 10001(3) | 3417(1) | 12(1) |  |
| C12  | 5214(2) | 8391(3)  | 3468(1) | 11(1) |  |
| C13  | 4359(2) | 7689(3)  | 3699(1) | 12(1) |  |
| C14  | 4446(2) | 6221(3)  | 3734(1) | 14(1) |  |
| C15  | 5331(3) | 5482(3)  | 3560(1) | 17(1) |  |
| C16  | 6184(2) | 6156(3)  | 3339(1) | 17(1) |  |
| C17  | 6109(2) | 7610(3)  | 3301(1) | 15(1) |  |
| C18  | 5726(2) | 10532(3) | 2982(1) | 16(1) |  |
| C19  | 5836(2) | 10677(3) | 3866(1) | 15(1) |  |
| C20  | 7151(3) | 5346(3)  | 3147(1) | 25(1) |  |
| C21  | 2363(2) | 11017(3) | 4074(1) | 13(1) |  |
| C22  | 2411(3) | 11896(3) | 4508(1) | 16(1) |  |
| C23  | 2936(3) | 11016(4) | 4933(1) | 27(1) |  |
| C24  | 1174(3) | 12400(3) | 4579(1) | 23(1) |  |
| C25  | 3202(3) | 13175(3) | 4454(1) | 26(1) |  |
| C26  | 890(3)  | 12526(3) | 3135(1) | 24(1) |  |
| C27  | -347(3) | 12141(4) | 3193(2) | 43(1) |  |
| C28  | 1156(7) | 10644(8) | 2583(2) | 29(2) |  |
| C28' | 1660(6) | 11005(7) | 2542(2) | 22(1) |  |
| C29  | 1877(3) | 9493(4)  | 2466(1) | 35(1) |  |

Table S4.Bond lengths [Å] for 5.

| Bond   | Length     | Bond    | Length   |
|--------|------------|---------|----------|
| W1-C21 | 1.754(3)   | F7-C18  | 1.336(3) |
| W1-O2  | 1.9419(18) | F8-C18  | 1.336(3) |
| W1-O1  | 1.9462(18) | F9-C18  | 1.340(3) |
| W1-N1  | 2.008(2)   | F10-C19 | 1.341(3) |
| W1-O3  | 2.1144(19) | F11-C19 | 1.335(3) |
| F1-C8  | 1.332(3)   | F12-C19 | 1.325(3) |
| F2-C8  | 1.335(3)   | O1-C1   | 1.385(3) |
| F3-C8  | 1.340(3)   | O2-C11  | 1.382(3) |
| F4-C9  | 1.335(3)   | O3-C26  | 1.473(3) |
| F5-C9  | 1.340(3)   | O3-C28' | 1.474(6) |
| F6-C9  | 1.339(3)   | O3-C28  | 1.481(7) |

| N1-C13  | 1.409(3) | C12-C17  | 1.397(4) |
|---------|----------|----------|----------|
| N1-C3   | 1.422(3) | C12-C13  | 1.414(4) |
| C1-C2   | 1.538(4) | C13-C14  | 1.406(4) |
| C1-C9   | 1.540(4) | C14-C15  | 1.375(4) |
| C1-C8   | 1.554(4) | C15-C16  | 1.384(4) |
| C2-C7   | 1.399(4) | C16-C17  | 1.392(4) |
| C2-C3   | 1.405(4) | C16-C20  | 1.507(4) |
| C3-C4   | 1.401(4) | C21-C22  | 1.494(4) |
| C4-C5   | 1.371(4) | C22-C24  | 1.530(4) |
| C5-C6   | 1.391(4) | C22-C23  | 1.534(4) |
| C6-C7   | 1.383(4) | C22-C25  | 1.536(4) |
| C6-C10  | 1.505(4) | C26-C27  | 1.488(5) |
| C11-C12 | 1.541(4) | C28-C29  | 1.437(8) |
| C11-C19 | 1.544(4) | C28'-C29 | 1.483(7) |
| C11-C18 | 1.551(4) |          |          |

Table S5.Bond angles [°] for 5.

| Bond        | Angle      | Bond        | Angle    |
|-------------|------------|-------------|----------|
| C21-W1-O2   | 110.62(11) | C7-C6-C5    | 117.8(2) |
| C21-W1-O1   | 103.76(10) | C7-C6-C10   | 121.5(3) |
| O2-W1-O1    | 144.97(8)  | C5-C6-C10   | 120.7(3) |
| C21-W1-N1   | 98.87(11)  | C6-C7-C2    | 122.8(3) |
| O2-W1-N1    | 84.79(8)   | F1-C8-F2    | 107.0(2) |
| O1-W1-N1    | 83.51(9)   | F1-C8-F3    | 107.2(2) |
| C21-W1-O3   | 100.02(10) | F2-C8-F3    | 106.3(2) |
| O2-W1-O3    | 90.97(8)   | F1-C8-C1    | 110.9(2) |
| O1-W1-O3    | 89.50(8)   | F2-C8-C1    | 110.9(2) |
| N1-W1-O3    | 160.94(8)  | F3-C8-C1    | 114.1(2) |
| C1-O1-W1    | 130.73(16) | F4-C9-F6    | 106.7(2) |
| C11-O2-W1   | 136.15(16) | F4-C9-F5    | 106.9(2) |
| C26-O3-C28' | 114.4(3)   | F6-C9-F5    | 106.4(2) |
| C26-O3-C28  | 111.0(3)   | F4-C9-C1    | 111.9(2) |
| C28'-O3-C28 | 27.1(3)    | F6-C9-C1    | 110.5(2) |
| C26-O3-W1   | 124.91(17) | F5-C9-C1    | 114.0(2) |
| C28'-O3-W1  | 120.6(3)   | O2-C11-C12  | 111.5(2) |
| C28-O3-W1   | 119.1(3)   | O2-C11-C19  | 110.1(2) |
| C13-N1-C3   | 117.0(2)   | C12-C11-C19 | 109.3(2) |
| C13-N1-W1   | 123.92(17) | O2-C11-C18  | 104.1(2) |
| C3-N1-W1    | 117.86(17) | C12-C11-C18 | 112.9(2) |
| O1-C1-C2    | 115.4(2)   | C19-C11-C18 | 108.9(2) |
| O1-C1-C9    | 104.3(2)   | C17-C12-C13 | 119.1(2) |
| C2-C1-C9    | 108.3(2)   | C17-C12-C11 | 120.9(2) |
| O1-C1-C8    | 106.4(2)   | C13-C12-C11 | 120.0(2) |
| C2-C1-C8    | 113.0(2)   | C14-C13-N1  | 120.0(2) |
| C9-C1-C8    | 109.0(2)   | C14-C13-C12 | 117.2(2) |
| C7-C2-C3    | 118.4(2)   | N1-C13-C12  | 122.8(2) |
| C7-C2-C1    | 119.8(2)   | C15-C14-C13 | 122.2(3) |
| C3-C2-C1    | 121.6(2)   | C14-C15-C16 | 121.3(3) |
| C4-C3-C2    | 118.6(2)   | C15-C16-C17 | 117.3(3) |
| C4-C3-N1    | 118.8(2)   | C15-C16-C20 | 121.3(3) |
| C2-C3-N1    | 122.7(2)   | C17-C16-C20 | 121.4(3) |
| C5-C4-C3    | 121.5(3)   | C16-C17-C12 | 122.9(3) |
| C4-C5-C6    | 120.9(3)   | F8-C18-F7   | 106.9(2) |

| E0 C10 E0   | 106 6(2) | CO1 CO2 CO4  | 110 5(0) |
|-------------|----------|--------------|----------|
| F8-C18-F9   | 106.6(2) | C21-C22-C24  | 110.5(2) |
| F7-C18-F9   | 107.3(2) | C21-C22-C23  | 108.8(2) |
| F8-C18-C11  | 111.1(2) | C24-C22-C23  | 109.9(2) |
| F7-C18-C11  | 110.4(2) | C21-C22-C25  | 108.7(2) |
| F9-C18-C11  | 114.2(2) | C24-C22-C25  | 109.2(2) |
| F12-C19-F11 | 107.5(2) | C23-C22-C25  | 109.8(3) |
| F12-C19-F10 | 107.1(2) | O3-C26-C27   | 111.5(3) |
| F11-C19-F10 | 106.6(2) | C29-C28-O3   | 112.6(5) |
| F12-C19-C11 | 111.4(2) | O3-C28'-C29  | 110.3(4) |
| F11-C19-C11 | 112.2(2) | C28-C29-C28' | 27.4(3)  |
| F10-C19-C11 | 111.7(2) |              |          |
| C22-C21-W1  | 171.2(2) |              |          |

|                 | U <sup>11</sup>       | U <sup>22</sup>       | U <sup>33</sup>   | U <sup>23</sup>      | U <sup>13</sup>     | U <sup>12</sup> |
|-----------------|-----------------------|-----------------------|-------------------|----------------------|---------------------|-----------------|
| W1              | 10(1)                 | 11(1)                 | 12(1)             | 3(1)                 | 2(1)                | 1(1)            |
| F1              | 22(1)                 | 24(1)                 | 31(1)             | -10(1)               | 8(1)                | 3(1)            |
| F2              | 13(1)                 | 33(1)                 | 27(1)             | 9(1)                 | 1(1)                | 4(1)            |
| F3              | 14(1)                 | 27(1)                 | 27(1)             | 5(1)                 | 8(1)                | -4(1)           |
| F4              | 26(1)                 | 29(1)                 | $\frac{1}{18(1)}$ | -5(1)                | -6(1)               | -6(1)           |
| F5              | $\frac{20(1)}{31(1)}$ | 13(1)                 | 26(1)             | 0(1)                 | 4(1)                | -8(1)           |
| F6              | 22(1)                 | 23(1)                 | 27(1)             | -10(1)               | 9(1)                | 0(1)            |
| F7              | 31(1)                 | 22(1)                 | 12(1)             | -1(1)                | 4(1)                | -7(1)           |
| F8              | 26(1)                 | 15(1)                 | 21(1)             | 6(1)                 | 6(1)                | -3(1)           |
| F9              | 14(1)                 | 25(1)                 | 24(1)             | 3(1)                 | 9(1)                | -4(1)           |
| F10             | 42(1)                 | $\frac{23(1)}{11(1)}$ | 21(1)<br>21(1)    | -1(1)                | -3(1)               | -4(1)           |
| F11             | 12(1)<br>14(1)        | 29(1)                 | 20(1)             | -2(1)                | -2(1)               | -1(1)           |
| F12             | 22(1)                 | 24(1)                 | 11(1)             | 0(1)                 | $\frac{2(1)}{4(1)}$ | 0(1)            |
| 01              | 10(1)                 | $\frac{1}{16(1)}$     | 12(1)             | 5(1)                 | 0(1)                | -3(1)           |
| $\frac{01}{02}$ | 8(1)                  | 15(1)                 | 12(1)<br>17(1)    | 5(1)<br>6(1)         | 4(1)                | 2(1)            |
| 03              | 18(1)                 | 19(1)                 | 17(1)<br>15(1)    | 3(1)                 | 0(1)                | 5(1)            |
| N1              | 12(1)                 | 10(1)                 | 13(1)<br>12(1)    | 3(1)                 | 4(1)                | 2(1)            |
| C1              | 12(1)<br>13(1)        | 13(1)                 | 12(1)<br>11(1)    | 0(1)                 | 3(1)                | -2(1)           |
| $C^2$           | 12(1)                 | 13(1)<br>12(1)        | 12(1)             | -2(1)                | 1(1)                | 0(1)            |
| $C_2$           | 12(1)<br>16(1)        | 7(1)                  | 12(1)<br>10(1)    | $\frac{2(1)}{1(1)}$  | A(1)                | 1(1)            |
| C4              | 13(1)                 | $\frac{7(1)}{14(1)}$  | 10(1)<br>14(1)    | 2(1)                 | $\frac{1}{2(1)}$    | 0(1)            |
| C5              | 13(1)<br>18(1)        | 14(1)                 | 11(1)             | 0(1)                 | -3(1)               | -1(1)           |
| C6              | 20(2)                 | 1+(1)<br>16(1)        | 10(1)             | 0(1)                 | -3(1)               | -1(1)<br>-2(1)  |
| C7              | 14(1)                 | 13(1)                 | 15(1)             | -1(1)                | $\frac{4(1)}{4(1)}$ | -2(1)           |
| C8              | 14(1)<br>16(2)        | 13(1)<br>18(1)        | 13(1)<br>18(1)    | 2(1)                 | $\frac{4(1)}{4(1)}$ | -2(1)           |
| $C_0$           | 10(2)<br>17(1)        | 17(1)                 | 18(1)             | -2(1)                | $\frac{1}{2(1)}$    | -3(1)           |
| C10             | 22(2)                 | 32(2)                 | 16(2)             | $\frac{-2(1)}{7(1)}$ | $\frac{2(1)}{4(1)}$ | -5(1)           |
| C10             | 10(1)                 | $\frac{32(2)}{14(1)}$ | 10(2)<br>13(1)    | 1(1)                 | $\frac{1}{1}$       | -3(1)           |
| C12             | 10(1)<br>12(1)        | 17(1)                 | 13(1)<br>11(1)    | -1(1)                | 0(1)                | -1(1)           |
| C12             | 12(1)<br>11(1)        | 12(1)<br>13(1)        | 11(1)<br>12(1)    | -1(1)<br>0(1)        | 1(1)                | -1(1)<br>0(1)   |
| C14             | 14(1)                 | 15(1)                 | 12(1)<br>15(1)    | 2(1)                 | 3(1)                | -1(1)           |
| C14             | 17(2)                 | 13(1)<br>12(1)        | 20(1)             | 2(1) 2(1)            | $\frac{3(1)}{1(1)}$ | -1(1)<br>3(1)   |
| C16             | 17(2)<br>14(1)        | 12(1)<br>17(1)        | 20(1)             | -3(1)                | 2(1)                | 2(1)            |
| C17             | 13(1)                 | 17(1)<br>16(1)        | 16(1)             | -1(1)                | $\frac{2(1)}{3(1)}$ | -2(1)           |
| C18             | 13(1)<br>13(1)        | 10(1)<br>17(1)        | 10(1)<br>17(1)    | -1(1) 1(1)           | 2(1)                | -2(1)           |
| C19             | 16(1)                 | 17(1)<br>13(1)        | 17(1)<br>15(1)    | 0(1)                 | $\frac{2(1)}{1(1)}$ | -3(1)           |
| C20             | 21(2)                 | 19(2)                 | 35(2)             | -3(1)                | 10(1)               | 5(1)            |
| C21             | 12(1)                 | 9(1)                  | 18(1)             | 4(1)                 | 4(1)                | 1(1)            |
| C22             | 12(1)<br>17(2)        | 13(1)                 | 18(1)             | 0(1)                 | 3(1)                | 0(1)            |
| C22             | 38(2)                 | 27(2)                 | 10(1)<br>14(1)    | -1(1)                | -2(1)               | 6(2)            |
| C24             | 23(2)                 | 27(2)<br>23(2)        | 24(2)             | -3(1)                | $\frac{2(1)}{8(1)}$ | 2(1)            |
| C27             | 28(2)                 | 20(2)                 | $\frac{2}{30(2)}$ | -7(1)                | 10(1)               | -4(1)           |
| C26             | 23(2)<br>24(2)        | 18(2)                 | 29(2)             | 5(1)                 | 0(1)                | 11(1)           |
| C27             | 22(2)                 | 32(2)                 | 74(3)             | 1(2)                 | 7(2)                | 5(2)            |
| 027             | 22(2)                 | 52(2)                 | (1(3)             | 1(2)                 | /(2)                | 5(2)            |

**Table S6.** Anisotropic displacement parameters (Ųx 10³) for **5**. The anisotropicdisplacement factor exponent takes the form:  $-2\pi^2$ [ h² a\*²U<sup>11</sup> + ... + 2 h k a\* b\* U<sup>12</sup> ]



Figure S60. Molecular Structure of 6.

<u>X-Ray experimental for 6</u>: X-Ray Intensity data were collected at 100 K on a Bruker **DUO** diffractometer using MoK $\alpha$  radiation ( $\lambda$  = 0.71073 Å) and an APEXII CCD area detector.

Raw data frames were read by program SAINT<sup>1</sup> and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces.

The structure was solved and refined in SHELXTL6.1, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. In the final cycle of refinement, 7644 reflections (of which 6905 are observed with I >  $2\sigma(I)$ ) were used to refine 457 parameters and the resulting R<sub>1</sub>, wR<sub>2</sub> and S (goodness of fit) were 1.45%, 3.69% and 1.052, respectively. The refinement was carried out by minimizing the wR<sub>2</sub> function using F<sup>2</sup> rather than F values. R<sub>1</sub> is calculated to provide a reference to the conventional R value but its function is not minimized.

| Table 57. Crystal data and structure refinement for | 0.                                          |                               |
|-----------------------------------------------------|---------------------------------------------|-------------------------------|
| Identification code                                 | orei33                                      |                               |
| Empirical formula                                   | C34 H29 F12 N O2 W                          |                               |
| Formula weight                                      | 895.43                                      |                               |
| Temperature                                         | 100(2) K                                    |                               |
| Wavelength                                          | 0.71073 Å                                   |                               |
| Crystal system                                      | Monoclinic                                  |                               |
| Space group                                         | $P2_1/c$                                    |                               |
| Unit cell dimensions                                | a = 10.6462(5)  Å                           | $\alpha = 90^{\circ}$ .       |
|                                                     | b = 15.7072(7) Å                            | $\beta = 95.374(1)^{\circ}$ . |
|                                                     | c = 19.9882(9) Å                            | $\gamma = 90^{\circ}$ .       |
| Volume                                              | 3327.8(3) Å <sup>3</sup>                    |                               |
| Z                                                   | 4                                           |                               |
| Density (calculated)                                | 1.787 Mg/m <sup>3</sup>                     |                               |
| Absorption coefficient                              | 3.571 mm <sup>-1</sup>                      |                               |
| F(000)                                              | 1752                                        |                               |
| Crystal size                                        | 0.29 x 0.17 x 0.05 mm <sup>3</sup>          |                               |
| Theta range for data collection                     | 1.65 to 27.50°.                             |                               |
| Index ranges                                        | -13≤h≤13, -20≤k≤20, -25≤l≤25                |                               |
| Reflections collected                               | 104900                                      |                               |
| Independent reflections                             | 7644 [R(int) = $0.0372$ ]                   |                               |
| Completeness to theta = $27.50^{\circ}$             | 100.0 %                                     |                               |
| Absorption correction                               | Numerical                                   |                               |
| Max. and min. transmission                          | 0.8388 and 0.4230                           |                               |
| Refinement method                                   | Full-matrix least-squares on F <sup>2</sup> |                               |
| Data / restraints / parameters                      | 7644 / 0 / 457                              |                               |
| Goodness-of-fit on F <sup>2</sup>                   | 1.052                                       |                               |
| Final R indices [I>2sigma(I)]                       | R1 = 0.0145, wR2 = 0.0369 [69]              | 905]                          |
| R indices (all data)                                | R1 = 0.0178, wR2 = 0.0376                   |                               |
| Largest diff. peak and hole                         | 0.827 and -0.431 e.Å <sup>-3</sup>          |                               |
|                                                     |                                             |                               |

| Table S7. | Crystal | data and | structure | refinement | for <b>6</b> . |
|-----------|---------|----------|-----------|------------|----------------|
|-----------|---------|----------|-----------|------------|----------------|

$$\begin{split} &\mathsf{R1} = \sum (||\mathsf{F}_0| - |\mathsf{F}_c||) \, / \, \sum |\mathsf{F}_0| \\ &\mathsf{wR2} = [\sum [\mathsf{w}(\mathsf{F}_0{}^2 - \mathsf{F}_c{}^2)^2] \, / \, \sum [\mathsf{w}(\mathsf{F}_0{}^2)^2]]^{1/2} \\ &\mathsf{S} = [\sum [\mathsf{w}(\mathsf{F}_0{}^2 - \mathsf{F}_c{}^2)^2] \, / \, (\mathsf{n}\text{-}\mathsf{p})]^{1/2} \\ &\mathsf{w} = 1/[\sigma^2(\mathsf{F}_0{}^2) + (\mathsf{m}^*\mathsf{p})^2 + \mathsf{n}^*\mathsf{p}], \, \mathsf{p} = \, [\mathsf{max}(\mathsf{F}_0{}^2, 0) + 2^* \, \mathsf{F}_c{}^2]/3, \, \mathsf{m} \, \& \, \mathsf{n} \, \mathsf{are \, constants.} \end{split}$$

| Atom       | Х                    | Y        | Z                   | U(eq)             |  |
|------------|----------------------|----------|---------------------|-------------------|--|
| W1         | 8673(1)              | 598(1)   | 7892(1)             | 11(1)             |  |
| F1         | 7832(1)              | -1208(1) | 6441(1)             | 32(1)             |  |
| F2         | 8375(1)              | -2040(1) | 7270(1)             | 28(1)             |  |
| F3         | 6512(1)              | -2135(1) | 6766(1)             | 36(1)             |  |
| F4         | 6882(1)              | -2032(1) | 8278(1)             | 28(1)             |  |
| F5         | 5113(1)              | -1625(1) | 7770(1)             | 32(1)             |  |
| F6         | 6092(1)              | -823(1)  | 8517(1)             | 27(1)             |  |
| F7         | 8904(1)              | 2190(1)  | 9782(1)             | 24(1)             |  |
| F8         | 10130(1)             | 2773(1)  | 9122(1)             | 26(1)             |  |
| F9         | 8534(1)              | 3467(1)  | 9412(1)             | 25(1)             |  |
| F10        | 9046(1)              | 3305(1)  | 7921(1)             | 27(1)             |  |
| F11        | 7195(1)              | 3603(1)  | 8206(1)             | 23(1)             |  |
| F12        | 7438(1)              | 2605(1)  | 7491(1)             | 21(1)             |  |
| 01         | 8067(1)              | -570(1)  | 7793(1)             | 15(1)             |  |
| 02         | 8856(1)              | 1626(1)  | 8453(1)             | 15(1)             |  |
| N1         | 6835(1)              | 861(1)   | 7957(1)             | 13(1)             |  |
| C1         | 6965(2)              | -903(1)  | 7468(1)             | 15(1)             |  |
| C2         | 6095(2)              | -235(1)  | 7109(1)             | 13(1)             |  |
| C3         | 6036(2)              | 584(1)   | 7386(1)             | 13(1)             |  |
| C4         | 5202(2)              | 1178(1)  | 7062(1)             | 14(1)             |  |
| C5         | 4463(2)              | 974(1)   | 6482(1)             | 15(1)             |  |
| C6         | 4521(2)              | 166(1)   | 6194(1)             | 15(1)             |  |
| C7         | 5329(2)              | -424(1)  | 6517(1)             | 15(1)             |  |
| C8         | 7423(2)              | -1581(1) | 6980(1)             | 23(1)             |  |
| C9         | 6256(2)              | -1353(1) | 8010(1)             | 21(1)             |  |
| C10        | 3713(2)              | -54(1)   | 5556(1)             | 20(1)             |  |
| Cll        | 8117(2)              | 2293(1)  | 8633(1)             | 15(1)             |  |
| C12        | 6823(2)              | 1997(1)  | 8808(1)             | 13(1)             |  |
| CI3        | 6242(2)              | 1309(1)  | 8456(1)             | 13(1)             |  |
| CI4        | 5050(2)              | 1043(1)  | 8618(1)             | 15(1)             |  |
|            | 4448(2)              | 1443(1)  | 9114(1)             | 1/(1)             |  |
| C16        | 5014(2)              | 2125(1)  | 94/1(1)             | 18(1)             |  |
| C1/        | 6188(2)              | 2393(1)  | 9309(1)             | 1/(1)             |  |
| C10        | 8924(2)<br>7052(2)   | 2090(1)  | 9241(1)             | 20(1)             |  |
| C19<br>C20 | 1955(2)              | 2939(1)  | 8039(1)<br>10010(1) | 18(1)<br>28(1)    |  |
| C20        | 4330(2)<br>9510(2)   | 2309(1)  | 7111(1)             | 20(1)<br>15(1)    |  |
| C21<br>C22 | 10556(2)             | 550(1)   | 7111(1)<br>7576(1)  | 15(1)<br>16(1)    |  |
| C22        | 10330(2)<br>10325(2) | 268(1)   | 8256(1)             | 10(1)<br>15(1)    |  |
| C23        | 9/19(2)              | 1152(1)  | 6394(1)             | 13(1)<br>19(1)    |  |
| C25        | 8051(2)              | 1245(1)  | 6143(1)             | $\frac{1}{24(1)}$ |  |
| C26        | 10067(2)             | 516(1)   | 5947(1)             | 2+(1)<br>35(1)    |  |
| C27        | 10087(2)<br>10080(2) | 2033(1)  | 6374(1)             | 31(1)             |  |
| C28        | 11910(2)             | 610(1)   | 7410(1)             | 22(1)             |  |
| C29        | 11243(2)             | 60(1)    | 8818(1)             | 18(1)             |  |
| C30        | 12231(2)             | -520(1)  | 8764(1)             | 26(1)             |  |
| C31        | 13060(2)             | -703(1)  | 9321(1)             | 32(1)             |  |
| C32        | 12921(2)             | -314(1)  | 9931(1)             | 32(1)             |  |
| C33        | 11938(2)             | 250(1)   | 9992(1)             | 29(1)             |  |
| C34        | 11096(2)             | 435(1)   | 9438(1)             | 22(1)             |  |

**Table S8.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **6**. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| Bond    | Length     | Bond    | Length   |
|---------|------------|---------|----------|
| W1-C21  | 1.9046(16) | C5-C6   | 1.397(2) |
| W1-C23  | 1.9106(18) | C6-C7   | 1.383(2) |
| W1-O1   | 1.9489(11) | C6-C10  | 1.511(2) |
| W1-O2   | 1.9631(11) | C11-C12 | 1.525(2) |
| W1-N1   | 2.0158(14) | C11-C19 | 1.550(2) |
| W1-C22  | 2.1589(18) | C11-C18 | 1.551(2) |
| F1-C8   | 1.335(2)   | C12-C13 | 1.402(2) |
| F2-C8   | 1.331(2)   | C12-C17 | 1.404(2) |
| F3-C8   | 1.343(2)   | C13-C14 | 1.402(2) |
| F4-C9   | 1.342(2)   | C14-C15 | 1.382(2) |
| F5-C9   | 1.336(2)   | C15-C16 | 1.393(3) |
| F6-C9   | 1.336(2)   | C16-C17 | 1.386(2) |
| F7-C18  | 1.339(2)   | C16-C20 | 1.510(2) |
| F8-C18  | 1.334(2)   | C21-C22 | 1.450(3) |
| F9-C18  | 1.3435(19) | C21-C24 | 1.514(2) |
| F10-C19 | 1.337(2)   | C22-C23 | 1.473(2) |
| F11-C19 | 1.3436(19) | C22-C28 | 1.512(2) |
| F12-C19 | 1.335(2)   | C23-C29 | 1.455(2) |
| 01-C1   | 1.389(2)   | C24-C26 | 1.531(3) |
| O2-C11  | 1.3797(19) | C24-C25 | 1.533(3) |
| N1-C13  | 1.417(2)   | C24-C27 | 1.540(3) |
| N1-C3   | 1.426(2)   | C29-C34 | 1.394(3) |
| C1-C2   | 1.533(2)   | C29-C30 | 1.403(3) |
| C1-C9   | 1.548(2)   | C30-C31 | 1.385(3) |
| C1-C8   | 1.552(2)   | C31-C32 | 1.383(3) |
| C2-C3   | 1.404(2)   | C32-C33 | 1.386(3) |
| C2-C7   | 1.404(2)   | C33-C34 | 1.389(3) |
| C3-C4   | 1.404(2)   |         |          |
| C4-C5   | 1.377(2)   |         |          |

**Table S9.** Bond lengths [Å] for 6.

Table S10.Bond angles [°] for 6.

| Bond       | Angle      | Bond      | Angle      |
|------------|------------|-----------|------------|
| C21-W1-C23 | 83.09(7)   | C13-N1-C3 | 116.32(14) |
| C21-W1-O1  | 105.78(6)  | C13-N1-W1 | 130.22(11) |
| C23-W1-O1  | 93.85(6)   | C3-N1-W1  | 113.36(10) |
| C21-W1-O2  | 106.38(6)  | O1-C1-C2  | 114.02(13) |
| C23-W1-O2  | 88.16(6)   | O1-C1-C9  | 106.85(14) |
| O1-W1-O2   | 147.78(5)  | C2-C1-C9  | 109.08(14) |
| C21-W1-N1  | 122.99(7)  | O1-C1-C8  | 104.57(14) |
| C23-W1-N1  | 153.60(6)  | C2-C1-C8  | 112.85(14) |
| O1-W1-N1   | 83.38(5)   | C9-C1-C8  | 109.19(14) |
| O2-W1-N1   | 80.83(5)   | C3-C2-C7  | 118.82(15) |
| C21-W1-C22 | 41.22(7)   | C3-C2-C1  | 119.39(15) |
| C23-W1-C22 | 41.90(7)   | C7-C2-C1  | 121.78(15) |
| O1-W1-C22  | 104.24(6)  | C4-C3-C2  | 118.50(15) |
| O2-W1-C22  | 98.61(6)   | C4-C3-N1  | 118.07(14) |
| N1-W1-C22  | 163.57(6)  | C2-C3-N1  | 123.32(15) |
| C1-O1-W1   | 131.31(10) | C5-C4-C3  | 121.35(15) |
| C11-O2-W1  | 138.19(11) | C4-C5-C6  | 120.94(16) |

| C7-C6-C5    | 117.82(16) | F7-C18-F9   | 107.32(13) |
|-------------|------------|-------------|------------|
| C7-C6-C10   | 121.38(15) | F8-C18-C11  | 111.85(14) |
| C5-C6-C10   | 120.79(15) | F7-C18-C11  | 110.29(14) |
| C6-C7-C2    | 122.54(15) | F9-C18-C11  | 113.77(15) |
| F2-C8-F1    | 107.27(15) | F12-C19-F10 | 106.87(13) |
| F2-C8-F3    | 106.62(14) | F12-C19-F11 | 106.97(15) |
| F1-C8-F3    | 107.86(15) | F10-C19-F11 | 106.87(13) |
| F2-C8-C1    | 111.70(15) | F12-C19-C11 | 110.96(13) |
| F1-C8-C1    | 110.52(14) | F10-C19-C11 | 112.80(15) |
| F3-C8-C1    | 112.62(16) | F11-C19-C11 | 112.03(13) |
| F6-C9-F5    | 106.99(15) | C22-C21-C24 | 132.01(15) |
| F6-C9-F4    | 106.68(15) | C22-C21-W1  | 78.84(10)  |
| F5-C9-F4    | 106.91(14) | C24-C21-W1  | 149.07(14) |
| F6-C9-C1    | 110.76(13) | C21-C22-C23 | 119.89(15) |
| F5-C9-C1    | 112.46(15) | C21-C22-C28 | 122.13(16) |
| F4-C9-C1    | 112.69(15) | C23-C22-C28 | 117.78(16) |
| O2-C11-C12  | 112.18(13) | C21-C22-W1  | 59.94(9)   |
| O2-C11-C19  | 110.28(13) | C23-C22-W1  | 60.00(9)   |
| C12-C11-C19 | 109.54(14) | C28-C22-W1  | 173.09(13) |
| O2-C11-C18  | 102.83(14) | C29-C23-C22 | 128.45(16) |
| C12-C11-C18 | 112.89(13) | C29-C23-W1  | 151.93(13) |
| C19-C11-C18 | 108.93(13) | C22-C23-W1  | 78.11(10)  |
| C13-C12-C17 | 118.71(15) | C21-C24-C26 | 110.58(15) |
| C13-C12-C11 | 119.03(14) | C21-C24-C25 | 107.23(14) |
| C17-C12-C11 | 122.26(15) | C26-C24-C25 | 109.11(16) |
| C14-C13-C12 | 118.67(15) | C21-C24-C27 | 110.19(15) |
| C14-C13-N1  | 119.17(15) | C26-C24-C27 | 111.07(16) |
| C12-C13-N1  | 122.14(15) | C25-C24-C27 | 108.54(16) |
| C15-C14-C13 | 121.41(16) | C34-C29-C30 | 119.30(17) |
| C14-C15-C16 | 120.66(16) | C34-C29-C23 | 117.92(16) |
| C17-C16-C15 | 118.04(15) | C30-C29-C23 | 122.75(17) |
| C17-C16-C20 | 121.02(17) | C31-C30-C29 | 119.94(19) |
| C15-C16-C20 | 120.93(17) | C32-C31-C30 | 120.3(2)   |
| C16-C17-C12 | 122.50(16) | C31-C32-C33 | 120.31(19) |
| F8-C18-F7   | 106.83(15) | C32-C33-C34 | 119.92(19) |
| F8-C18-F9   | 106.42(14) | C33-C34-C29 | 120.24(18) |

|     | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| W1  | 9(1)            | 13(1)           | 11(1)           | -1(1)           | 0(1)            | 0(1)            |
| F1  | 34(1)           | 38(1)           | 24(1)           | -6(1)           | 5(1)            | 14(1)           |
| F2  | 24(1)           | 23(1)           | 36(1)           | -7(1)           | -7(1)           | 12(1)           |
| F3  | 33(1)           | 20(1)           | 49(1)           | -16(1)          | -18(1)          | 4(1)            |
| F4  | 25(1)           | 20(1)           | 39(1)           | 13(1)           | 0(1)            | 4(1)            |
| F5  | 18(1)           | 29(1)           | 49(1)           | 14(1)           | -5(1)           | -10(1)          |
| F6  | 31(1)           | 25(1)           | 26(1)           | 6(1)            | 10(1)           | 2(1)            |
| F7  | 28(1)           | 29(1)           | 15(1)           | -1(1)           | -3(1)           | -2(1)           |
| F8  | 18(1)           | 31(1)           | 28(1)           | -10(1)          | 0(1)            | -8(1)           |
| F9  | 30(1)           | 20(1)           | 26(1)           | -11(1)          | 2(1)            | -2(1)           |
| F10 | 21(1)           | 29(1)           | 31(1)           | 8(1)            | 7(1)            | -7(1)           |
| F11 | 27(1)           | 16(1)           | 27(1)           | 2(1)            | 6(1)            | 4(1)            |
| F12 | 27(1)           | 22(1)           | 14(1)           | 2(1)            | 1(1)            | -1(1)           |
| 01  | 11(1)           | 13(1)           | 21(1)           | -2(1)           | -3(1)           | 0(1)            |
| O2  | 12(1)           | 16(1)           | 16(1)           | -3(1)           | 1(1)            | -1(1)           |
| N1  | 11(1)           | 14(1)           | 13(1)           | -2(1)           | 1(1)            | 0(1)            |
| C1  | 13(1)           | 12(1)           | 20(1)           | -1(1)           | -2(1)           | 0(1)            |
| C2  | 9(1)            | 14(1)           | 17(1)           | 0(1)            | 0(1)            | -1(1)           |
| C3  | 11(1)           | 15(1)           | 13(1)           | 0(1)            | 3(1)            | -2(1)           |
| C4  | 13(1)           | 14(1)           | 16(1)           | 0(1)            | 4(1)            | -1(1)           |
| C5  | 12(1)           | 18(1)           | 15(1)           | 5(1)            | 2(1)            | 1(1)            |
| C6  | 12(1)           | 20(1)           | 14(1)           | 1(1)            | 2(1)            | -3(1)           |
| C7  | 14(1)           | 15(1)           | 17(1)           | -2(1)           | 1(1)            | -2(1)           |
| C8  | 22(1)           | 19(1)           | 27(1)           | -5(1)           | -6(1)           | 4(1)            |
| C9  | 16(1)           | 16(1)           | 30(1)           | 6(1)            | -3(1)           | -1(1)           |
| C10 | 19(1)           | 24(1)           | 18(1)           | 0(1)            | -3(1)           | -2(1)           |
| C11 | 16(1)           | 14(1)           | 13(1)           | -2(1)           | 1(1)            | -2(1)           |
| C12 | 15(1)           | 13(1)           | 12(1)           | 2(1)            | 2(1)            | 1(1)            |
| C13 | 13(1)           | 13(1)           | 11(1)           | 2(1)            | 2(1)            | 3(1)            |
| C14 | 14(1)           | 16(1)           | 15(1)           | 4(1)            | 0(1)            | 1(1)            |
| C15 | 14(1)           | 20(1)           | 18(1)           | 7(1)            | 5(1)            | 3(1)            |
| C16 | 21(1)           | 19(1)           | 15(1)           | 4(1)            | 6(1)            | 6(1)            |
| C17 | 21(1)           | 15(1)           | 14(1)           | 0(1)            | 2(1)            | 2(1)            |
| C18 | 21(1)           | 19(1)           | 20(1)           | -5(1)           | 2(1)            | -2(1)           |
| C19 | 17(1)           | 17(1)           | 20(1)           | 0(1)            | 5(1)            | -3(1)           |
| C20 | 32(1)           | 30(1)           | 25(1)           | -3(1)           | 13(1)           | 4(1)            |
| C21 | 12(1)           | 19(1)           | 15(1)           | -3(1)           | 3(1)            | -2(1)           |
| C22 | 13(1)           | 18(1)           | 19(1)           | -4(1)           | 3(1)            | -1(1)           |
| C23 | 13(1)           | 14(1)           | 17(1)           | -1(1)           | 0(1)            | 0(1)            |
| C24 | 16(1)           | 29(1)           | 12(1)           | 1(1)            | 2(1)            | -2(1)           |
| C25 | 19(1)           | 37(1)           | 15(1)           | 4(1)            | 0(1)            | -2(1)           |
| C26 | 32(1)           | 55(1)           | 18(1)           | -4(1)           | 7(1)            | 10(1)           |
| C27 | 29(1)           | 40(1)           | 22(1)           | 11(1)           | -3(1)           | -13(1)          |
| C28 | 11(1)           | 30(1)           | 25(1)           | 1(1)            | 4(1)            | 1(1)            |
| C29 | 12(1)           | 20(1)           | 21(1)           | 5(1)            | -1(1)           | -3(1)           |
| C30 | 22(1)           | 25(1)           | 30(1)           | 4(1)            | -1(1)           | 4(1)            |
| C31 | 22(1)           | 31(1)           | 42(1)           | 14(1)           | -2(1)           | 7(1)            |
| C32 | 22(1)           | 43(1)           | 30(1)           | 22(1)           | -7(1)           | -6(1)           |
| C33 | 24(1)           | 42(1)           | 20(1)           | 9(1)            | -1(1)           | -6(1)           |
| C34 | 18(1)           | 29(1)           | 21(1)           | 7(1)            | 2(1)            | -1(1)           |
|     |                 |                 |                 |                 |                 |                 |

**Table S11.** Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 6. The anisotropicdisplacement factor exponent takes the form:  $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$ 



Figure S61. Molecular Structure of 7.

<u>X-Ray experimental for 7</u>: X-Ray Intensity data were collected at 100 K on a Bruker **DUO** diffractometer using MoK $\alpha$  radiation ( $\lambda$  = 0.71073 Å) and an APEXII CCD area detector.

Raw data frames were read by program SAINT<sup>1</sup> and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces.

The structure was solved and refined in SHELXTL6.1, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The W center is disordered and was refined in two positions with their site occupation factors dependently refine to 0.930(1) and 0.070(1), for the major and minor parts respectively. It is worth noting here that the major W center is symmetrically coordinated to the C21/C23 atoms while W2 is asymmetrically coordinated to them; 1.882(3)/1.908(3) Å for W1 compared to2.387(6)/1.768(4) Å. In the final cycle of refinement, 7570 reflections (of which 6697 are observed with I > 2 $\sigma$ (I)) were used to refine 441 parameters and the resulting R<sub>1</sub>, wR<sub>2</sub> and S (goodness of fit) were 2.20%, 4.82% and 1.089, respectively. The refinement was carried out by minimizing the wR<sub>2</sub> function using F<sup>2</sup> rather than F values. R<sub>1</sub> is calculated to provide a reference to the conventional R value but its function is not minimized.

|                                         | 1.11                                        |                                |
|-----------------------------------------|---------------------------------------------|--------------------------------|
| Identification code                     | orei35                                      |                                |
| Empirical formula                       | $C_{32}H_{33}F_{12}NO_2W$                   |                                |
| Formula weight                          | 875.44                                      |                                |
| Temperature                             | 100(2) K                                    |                                |
| Wavelength                              | 0.71073 Å                                   |                                |
| Crystal system                          | Monoclinic                                  |                                |
| Space group                             | $P2_1/c$                                    |                                |
| Unit cell dimensions                    | a = 17.6465(14)  Å                          | $\alpha = 90^{\circ}$ .        |
|                                         | b = 9.8689(8)  Å                            | $\beta = 104.391(1)^{\circ}$ . |
|                                         | c = 19.5331(16) Å                           | $\gamma = 90^{\circ}$ .        |
| Volume                                  | 3295.0(5) Å <sup>3</sup>                    |                                |
| Z                                       | 4                                           |                                |
| Density (calculated)                    | 1.765 Mg/m <sup>3</sup>                     |                                |
| Absorption coefficient                  | 3.604 mm <sup>-1</sup>                      |                                |
| F(000)                                  | 1720                                        |                                |
| Crystal size                            | 0.19 x 0.09 x 0.02 mm <sup>3</sup>          |                                |
| Theta range for data collection         | 2.15 to 27.50°.                             |                                |
| Index ranges                            | -22≤h≤22, -12≤k≤12, -25≤l≤25                | 5                              |
| Reflections collected                   | 59838                                       |                                |
| Independent reflections                 | 7570 [R(int) = 0.0320]                      |                                |
| Completeness to theta = $27.50^{\circ}$ | 100.0 %                                     |                                |
| Absorption correction                   | Semi-empirical from equivalen               | ts                             |
| Max. and min. transmission              | 0.9314 and 0.5475                           |                                |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                                |
| Data / restraints / parameters          | 7570 / 0 / 441                              |                                |
| Goodness-of-fit on F <sup>2</sup>       | 1.089                                       |                                |
| Final R indices [I>2sigma(I)]           | R1 = 0.0220, wR2 = 0.0482 [60               | 597]                           |
| R indices (all data)                    | R1 = 0.0276, wR2 = 0.0496                   |                                |
| Largest diff. peak and hole             | 0.866 and -0.821 e.Å <sup>-3</sup>          |                                |
|                                         |                                             |                                |

| Table S12. | Crystal o | data and | structure | refinement | for <b>7</b> . |
|------------|-----------|----------|-----------|------------|----------------|
|------------|-----------|----------|-----------|------------|----------------|

$$\begin{split} &\mathsf{R1} = \sum (||\mathsf{F}_0| - |\mathsf{F}_c||) \, / \, \sum |\mathsf{F}_0| \\ &\mathsf{wR2} = [\sum [\mathsf{w}(\mathsf{F}_0{}^2 - \mathsf{F}_c{}^2)^2] \, / \, \sum [\mathsf{w}(\mathsf{F}_0{}^2)^2]]^{1/2} \\ &\mathsf{S} = [\sum [\mathsf{w}(\mathsf{F}_0{}^2 - \mathsf{F}_c{}^2)^2] \, / \, (n\text{-}p)]^{1/2} \\ &\mathsf{w} = 1/[\sigma^2(\mathsf{F}_0{}^2) + (m^*p)^2 + n^*p], \, p = \, [\mathsf{max}(\mathsf{F}_0{}^2, 0) + 2^* \, \mathsf{F}_c{}^2]/3, \, m \, \& \, n \, \text{are constants.} \end{split}$$

| Atom | Х       | Y        | Z       | U(eq) |  |
|------|---------|----------|---------|-------|--|
| W1   | 2613(1) | 1137(1)  | 8118(1) | 15(1) |  |
| W2   | 2678(2) | 1030(3)  | 8412(3) | 38(1) |  |
| F1   | 1224(1) | 963(2)   | 9763(1) | 32(1) |  |
| F2   | 809(1)  | 2705(2)  | 9123(1) | 34(1) |  |
| F3   | 22(1)   | 1070(2)  | 9161(1) | 32(1) |  |
| F4   | 659(1)  | 545(2)   | 7273(1) | 30(1) |  |
| F5   | 248(1)  | 2288(2)  | 7732(1) | 33(1) |  |
| F6   | -267(1) | 334(2)   | 7801(1) | 31(1) |  |
| F7   | 4121(1) | 506(2)   | 6899(1) | 40(1) |  |
| F8   | 4953(1) | 483(2)   | 7909(1) | 42(1) |  |
| F9   | 4865(1) | -1236(2) | 7222(1) | 45(1) |  |
| F10  | 3652(1) | -2318(2) | 8712(1) | 33(1) |  |
| F11  | 4386(1) | -3044(2) | 8064(1) | 44(1) |  |
| F12  | 4794(1) | -1458(2) | 8819(1) | 52(1) |  |
| 01   | 1715(1) | 1362(2)  | 8529(1) | 21(1) |  |
| O2   | 3606(1) | 223(2)   | 8162(1) | 23(1) |  |
| N1   | 2182(1) | -767(2)  | 7962(1) | 18(1) |  |
| C1   | 1029(1) | 680(3)   | 8526(1) | 18(1) |  |
| C2   | 1154(1) | -845(2)  | 8626(1) | 17(1) |  |
| C3   | 1712(1) | -1484(3) | 8334(1) | 18(1) |  |
| C4   | 1799(2) | -2893(3) | 8414(1) | 22(1) |  |
| C5   | 1362(2) | -3640(3) | 8776(1) | 23(1) |  |
| C6   | 821(2)  | -3015(3) | 9078(1) | 22(1) |  |
| C7   | 722(1)  | -1628(3) | 8992(1) | 20(1) |  |
| C8   | 757(2)  | 1359(3)  | 9144(1) | 24(1) |  |
| C9   | 405(2)  | 969(3)   | 7824(1) | 23(1) |  |
| C10  | 358(2)  | -3822(3) | 9491(2) | 30(1) |  |
| C11  | 3800(2) | -856(3)  | 7790(1) | 22(1) |  |
| C12  | 3108(1) | -1465(3) | 7245(1) | 21(1) |  |
| C13  | 2356(1) | -1429(2) | 7370(1) | 19(1) |  |
| C14  | 1738(2) | -1999(3) | 6858(1) | 22(1) |  |
| C15  | 1852(2) | -2570(3) | 6246(1) | 25(1) |  |
| C16  | 2592(2) | -2604(3) | 6112(1) | 25(1) |  |
| C17  | 3207(2) | -2063(3) | 6623(1) | 25(1) |  |
| C18  | 4443(2) | -281(3)  | 7451(2) | 33(1) |  |
| C19  | 4166(2) | -1933(3) | 8348(2) | 31(1) |  |
| C20  | 2719(2) | -3167(3) | 5431(2) | 34(1) |  |
| C21  | 2509(2) | 2400(3)  | 7378(1) | 24(1) |  |
| C22  | 2945(2) | 3188(3)  | 7978(2) | 28(1) |  |
| C23  | 3166(2) | 2579(3)  | 8677(1) | 25(1) |  |
| C24  | 2188(2) | 2786(3)  | 6614(2) | 30(1) |  |
| C25  | 1922(2) | 1468(3)  | 6207(2) | 37(1) |  |
| C26  | 1479(2) | 3727(3)  | 6554(2) | 36(1) |  |
| C27  | 2805(2) | 3456(4)  | 6292(2) | 42(1) |  |
| C28  | 3201(2) | 4628(3)  | 7880(2) | 35(1) |  |
| C29  | 3631(2) | 3070(3)  | 9381(2) | 35(1) |  |
| C30  | 3195(2) | 4179(4)  | 9680(2) | 59(1) |  |
| C31  | 4448(2) | 3544(4)  | 9343(2) | 56(1) |  |
| C32  | 3717(2) | 1810(4)  | 9859(2) | 51(1) |  |

**Table S13.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **7**. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| Bond    | Length     | Bond    | Length   |
|---------|------------|---------|----------|
| W1-C21  | 1.882(3)   | C1-C9   | 1.557(3) |
| W1-C23  | 1.908(3)   | C2-C7   | 1.400(3) |
| W1-O2   | 1.9549(17) | C2-C3   | 1.403(3) |
| W1-O1   | 1.9587(17) | C3-C4   | 1.403(4) |
| W1-N1   | 2.022(2)   | C4-C5   | 1.382(4) |
| W1-C22  | 2.144(3)   | C5-C6   | 1.386(4) |
| W2-C21  | 2.387(6)   | C6-C7   | 1.384(4) |
| W2-C23  | 1.768(4)   | C6-C10  | 1.510(3) |
| W2-O1   | 1.800(3)   | C11-C12 | 1.530(4) |
| W2-O2   | 1.989(3)   | C11-C19 | 1.544(4) |
| W2-N1   | 2.074(3)   | C11-C18 | 1.556(4) |
| W2-C22  | 2.383(5)   | C12-C17 | 1.400(4) |
| W2-C21  | 2.387(6)   | C12-C13 | 1.407(3) |
| F1-C8   | 1.341(3)   | C13-C14 | 1.401(3) |
| F2-C8   | 1.334(3)   | C14-C15 | 1.381(4) |
| F3-C8   | 1.337(3)   | C15-C16 | 1.393(4) |
| F4-C9   | 1.333(3)   | C16-C17 | 1.386(4) |
| F5-C9   | 1.334(3)   | C16-C20 | 1.510(4) |
| F6-C9   | 1.332(3)   | C21-C22 | 1.456(4) |
| F7-C18  | 1.336(4)   | C21-C24 | 1.508(4) |
| F8-C18  | 1.333(3)   | C22-C23 | 1.453(4) |
| F9-C18  | 1.345(3)   | C22-C28 | 1.517(4) |
| F10-C19 | 1.338(3)   | C23-C29 | 1.496(4) |
| F11-C19 | 1.330(3)   | C24-C27 | 1.536(4) |
| F12-C19 | 1.337(3)   | C24-C25 | 1.536(4) |
| 01-C1   | 1.384(3)   | C24-C26 | 1.539(4) |
| O2-C11  | 1.380(3)   | C29-C30 | 1.533(5) |
| N1-C3   | 1.420(3)   | C29-C31 | 1.535(5) |
| N1-C13  | 1.426(3)   | C29-C32 | 1.539(5) |
| C1-C2   | 1.527(3)   |         |          |
| C1-C8   | 1.556(3)   |         |          |

**Table S14.** Bond lengths [Å] for 7.

**Table S15.** Bond angles [°] for 7.

| Bond       | Angle      | Bond       | Angle      |
|------------|------------|------------|------------|
| C21-W1-C23 | 83.30(12)  | O1-W2-O2   | 164.89(18) |
| C21-W1-O2  | 104.73(9)  | C23-W2-N1  | 170.7(3)   |
| C23-W1-O2  | 89.61(10)  | O1-W2-N1   | 84.13(12)  |
| C21-W1-O1  | 107.80(9)  | O2-W2-N1   | 80.77(12)  |
| C23-W1-O1  | 91.81(9)   | C23-W2-C22 | 37.41(14)  |
| O2-W1-O1   | 147.39(8)  | O1-W2-C22  | 99.12(15)  |
| C21-W1-N1  | 122.65(10) | O2-W2-C22  | 91.27(16)  |
| C23-W1-N1  | 154.02(10) | N1-W2-C22  | 135.5(3)   |
| O2-W1-N1   | 82.92(8)   | C23-W2-C21 | 72.92(18)  |
| O1-W1-N1   | 81.68(8)   | O1-W2-C21  | 94.62(19)  |
| C21-W1-C22 | 41.79(11)  | O2-W2-C21  | 87.46(18)  |
| C23-W1-C22 | 41.52(11)  | N1-W2-C21  | 100.1(2)   |
| O2-W1-C22  | 99.81(9)   | C22-W2-C21 | 35.55(12)  |
| O1-W1-C22  | 102.70(8)  | C1-O1-W2   | 139.76(18) |
| N1-W1-C22  | 164.43(10) | C1-O1-W1   | 137.67(15) |
| C23-W2-O1  | 102.23(16) | W2-O1-W1   | 16.71(16)  |
| C23-W2-O2  | 92.69(15)  | C11-O2-W1  | 132.08(16) |

| C11-O2-W2                  | 139.98(18)              | C14-C15-C16                    | 121.1(2)             |
|----------------------------|-------------------------|--------------------------------|----------------------|
| W1-O2-W2                   | 16.54(14)               | C17-C16-C15                    | 117.3(2)             |
| C3-N1-C13                  | 117.2(2)                | C17-C16-C20                    | 121.0(2)             |
| C3-N1-W1                   | 129 19(16)              | C15-C16-C20                    | 121.0(2)<br>121.7(3) |
| C13-N1-W1                  | 113 54(15)              | C16-C17-C12                    | 122.7(3)<br>122.9(2) |
| $C_3$ -N1-W2               | 116.6(2)                | F8-C18-F7                      | 107.1(2)             |
| C13 N1 W2                  | 125 63(19)              | F8 C18 F0                      | 107.1(2)<br>106.4(2) |
| W1 N1 W2                   | 123.03(19)<br>15.80(14) | F7 C18 E0                      | 100.4(2)<br>107.4(2) |
| 01 C1 C2                   | 112 2(2)                | $F_{2} = C_{12} = C_{11}$      | 107.4(2)<br>111.2(2) |
| 01-01-02                   | 112.3(2)<br>102.1(2)    | $F_7 C_{18} C_{11}$            | 111.3(2)<br>110.2(2) |
| $C_1 C_1 C_2$              | 103.1(2)<br>112.0(2)    | F/-C18-C11                     | 110.2(2)<br>114.1(2) |
| $C_2$ - $C_1$ - $C_0$      | 112.9(2)                | F9-C10-C11                     | 114.1(2)<br>107.2(2) |
|                            | 109.9(2)                | F11-C19-F12                    | 107.3(2)             |
|                            | 109.9(2)                | F11-C19-F10                    | 10/.1(2)             |
| C8-C1-C9                   | 108.5(2)                | F12-C19-F10                    | 106.9(3)             |
| C7-C2-C3                   | 119.1(2)                | FII-CI9-CII                    | 112.7(2)             |
| C/-C2-C1                   | 121.9(2)                | F12-C19-C11                    | 111.9(2)             |
| C3-C2-C1                   | 119.0(2)                | F10-C19-C11                    | 110.5(2)             |
| C4-C3-C2                   | 117.9(2)                | C22-C21-C24                    | 130.9(2)             |
| C4-C3-N1                   | 119.2(2)                | C22-C21-W1                     | 78.78(16)            |
| C2-C3-N1                   | 122.8(2)                | C24-C21-W1                     | 150.2(2)             |
| C5-C4-C3                   | 121.7(2)                | C22-C21-W2                     | 72.07(17)            |
| C4-C5-C6                   | 120.8(2)                | C24-C21-W2                     | 156.6(2)             |
| C7-C6-C5                   | 117.9(2)                | W1-C21-W2                      | 7.04(7)              |
| C7-C6-C10                  | 121.2(2)                | C23-C22-C21                    | 120.0(2)             |
| C5-C6-C10                  | 120.9(2)                | C23-C22-C28                    | 119.2(3)             |
| C6-C7-C2                   | 122.6(2)                | C21-C22-C28                    | 120.8(3)             |
| F2-C8-F3                   | 106.7(2)                | C23-C22-W1                     | 60.53(15)            |
| F2-C8-F1                   | 106.7(2)                | C21-C22-W1                     | 59.43(14)            |
| F3-C8-F1                   | 107.3(2)                | C28-C22-W1                     | 178.6(2)             |
| F2-C8-C1                   | 111.6(2)                | C23-C22-W2                     | 47.66(18)            |
| F3-C8-C1                   | 114.6(2)                | C21-C22-W2                     | 72.38(19)            |
| F1-C8-C1                   | 109.6(2)                | C28-C22-W2                     | 166.8(2)             |
| F6-C9-F4                   | 107.5(2)                | W1-C22-W2                      | 13.10(11)            |
| F6-C9-F5                   | 107.5(2)                | C22-C23-C29                    | 133.4(3)             |
| F4-C9-F5                   | 107.3(2)                | C22-C23-W2                     | 94.9(3)              |
| F6-C9-C1                   | 111.9(2)                | C29-C23-W2                     | 131.7(3)             |
| F4-C9-C1                   | 110.4(2)                | C22-C23-W1                     | 77.96(17)            |
| F5-C9-C1                   | 112.0(2)                | C29-C23-W1                     | 148.6(2)             |
| $0^{2}-C^{11}-C^{12}$      | 1142(2)                 | W2-C23-W1                      | 17.25(17)            |
| 02-C11-C19                 | 105.9(2)                | C21-C24-C27                    | 112 6(3)             |
| $C_{12}C_{11}C_{19}$       | 1100(2)                 | $C_{21}C_{24}C_{25}$           | 106.9(2)             |
| $0^{2}-C^{11}-C^{18}$      | 104.2(2)                | $C_{27}C_{24}C_{25}$           | 100.9(2)<br>108.0(2) |
| $C_{12}C_{11}C_{18}$       | 112 8(2)                | $C_{21}$ - $C_{24}$ - $C_{25}$ | 100.0(2)<br>109.1(2) |
| $C_{12}^{-}$               | 109.3(2)                | $C_{27} C_{24} C_{20}$         | 100.1(2)<br>110.7(2) |
| C17 C12 C12                | 109.3(2)                | $C_{27} - C_{24} - C_{20}$     | 110.7(2)<br>100.4(2) |
| C17 - C12 - C13            | 119.2(2)<br>121.2(2)    | $C_{23}$ $C_{20}$ $C_{20}$     | 109.4(3)<br>111.6(2) |
| $C_{17} - C_{12} - C_{11}$ | 121.3(2)<br>110.6(2)    | $C_{23} - C_{23} - C_{30}$     | 111.0(3)<br>111.2(2) |
| C13-C12-C11<br>C14-C12-C12 | 117.0(2)<br>117.9(2)    | $C_{23}$ - $C_{29}$ - $C_{21}$ | 111.2(3)<br>111.5(2) |
| C14-C13-C12                | 11/.0(2)<br>119/(2)     | $C_{22}$ $C_{22}$ $C_{22}$     | 111.3(3)<br>104.2(2) |
| C14-C13-INI<br>C12-C12-N1  | 110.4(2)<br>102.7(2)    | $C_{20}$ $C_{20}$ $C_{20}$     | 104.2(3)             |
| C12-C13-INI                | 123.7(2)                | C30-C29-C32                    | 109.2(3)             |
| CIS-CI4-CI3                | 121.8(2)                | C31-C29-C32                    | 108.8(3)             |

|      | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup>       | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|
|      | 14(1)           | 13(1)           | 18(1)                 | 2(1)            | 4(1)            | -1(1)           |
| F1   | 39(1)           | 37(1)           | 21(1)                 | -6(1)           | 7(1)            | 1(1)            |
| F2   | 41(1)           | 20(1)           | $\frac{21(1)}{48(1)}$ | -6(1)           | 23(1)           | 1(1)            |
| F3   | 28(1)           | 31(1)           | 43(1)                 | -3(1)           | 21(1)           | 1(1)            |
| F4   | 30(1)           | 40(1)           | 20(1)                 | 5(1)            | 4(1)            | 7(1)            |
| F5   | 33(1)           | 24(1)           | 41(1)                 | 12(1)           | 7(1)            | 9(1)            |
| F6   | 18(1)           | 39(1)           | 34(1)                 | 10(1)           | 2(1)            | -3(1)           |
| F7   | 35(1)           | 42(1)           | 47(1)                 | 8(1)            | 16(1)           | -12(1)          |
| F8   | 22(1)           | 46(1)           | 59(1)                 | -9(1)           | 13(1)           | -15(1)          |
| F9   | 23(1)           | 53(1)           | 66(1)                 | -14(1)          | 23(1)           | -4(1)           |
| F10  | 32(1)           | 31(1)           | 34(1)                 | 9(1)            | 4(1)            | 3(1)            |
| F11  | 32(1)           | 26(1)           | 77(1)                 | 3(1)            | 18(1)           | 12(1)           |
| F12  | 30(1)           | 41(1)           | 70(1)                 | 12(1)           | -19(1)          | -3(1)           |
| 01   | 18(1)           | 18(1)           | 28(1)                 | -2(1)           | 9(1)            | -1(1)           |
| O2   | 16(1)           | 19(1)           | 32(1)                 | -1(1)           | 4(1)            | 0(1)            |
| N1   | 15(1)           | 15(1)           | 24(1)                 | 0(1)            | 8(1)            | 0(1)            |
| C1   | 16(1)           | 18(1)           | 22(1)                 | 1(1)            | 6(1)            | 1(1)            |
| C2   | 17(1)           | 18(1)           | 16(1)                 | 1(1)            | 1(1)            | 0(1)            |
| C3   | 16(1)           | 18(1)           | 20(1)                 | 1(1)            | 3(1)            | -2(1)           |
| C4   | 20(1)           | 19(1)           | 28(1)                 | 1(1)            | 7(1)            | 2(1)            |
| C5   | 26(1)           | 17(1)           | 26(1)                 | 4(1)            | 5(1)            | -1(1)           |
| C6   | 21(1)           | 23(1)           | 21(1)                 | 3(1)            | 4(1)            | -5(1)           |
| C7   | 20(1)           | 23(1)           | 19(1)                 | 0(1)            | 5(1)            | 0(1)            |
| C8   | 25(1)           | 21(2)           | 29(1)                 | -1(1)           | 10(1)           | 2(1)            |
| C9   | 21(1)           | 22(1)           | 27(1)                 | 7(1)            | 6(1)            | 3(1)            |
| C10  | 35(2)           | 27(2)           | 32(1)                 | 5(1)            | 15(1)           | -4(1)           |
| C11  | 16(1)           | 18(1)           | 34(1)                 | 0(1)            | 8(1)            | 0(1)            |
| C12  | 17(1)           | 17(1)           | 30(1)                 | 2(1)            | 7(1)            | 0(1)            |
| C13  | 18(1)           | 14(1)           | 25(1)                 | 3(1)            | 7(1)            | 0(1)            |
| C14  | 17(1)           | 21(1)           | 28(1)                 | 2(1)            | 7(1)            | -1(1)           |
| C15  | 24(1)           | 24(1)           | 26(1)                 | 0(1)            | 5(1)            | -4(1)           |
| C16  | 30(1)           | 21(1)           | 27(1)                 | 2(1)            | 11(1)           | 0(1)            |
| C17  | 22(1)           | 23(1)           | 33(1)                 | 2(1)            | 14(1)           | 1(1)            |
| C18  | 19(1)           | 34(2)           | 47(2)                 | -3(1)           | 13(1)           | -5(1)           |
| C19  | 17(1)           | 25(2)           | 47(2)                 | 2(1)            | 1(1)            | 2(1)            |
| C20  | 40(2)           | 36(2)           | 29(1)                 | -3(1)           | 14(1)           | 0(1)            |
| C21  | 23(1)           | 21(1)           | 30(1)                 | 6(1)            | 11(1)           | 5(1)            |
| C22  | 21(1)           | 25(2)           | 41(2)                 | 3(1)            | 15(1)           | 3(1)            |
| C23  | 19(1)           | 24(1)           | 32(1)                 | -3(1)           | 8(1)            | -2(1)           |
| C24  | 31(2)           | 31(2)           | 31(1)                 | 11(1)           | 14(1)           | 9(1)            |
| C25  | 40(2)           | 43(2)           | 27(1)                 | 7(1)            | 9(1)            | 7(1)            |
| C26  | 36(2)           | 38(2)           | 34(2)                 | 13(1)           | 13(1)           | 10(1)           |
| C27  | 45(2)           | 46(2)           | 43(2)                 | 14(2)           | 24(2)           | 6(2)            |
| C28  | 35(2)           | 22(2)           | 53(2)                 | -1(1)           | 21(1)           | -2(1)           |
| C29  | 30(2)           | 39(2)           | 34(2)                 | -7(1)           | 2(1)            | -4(1)           |
| C30  | 65(3)           | 71(3)           | 39(2)                 | -23(2)          | 10(2)           | 3(2)            |
| C31  | 36(2)           | 68(3)           | 59(2)                 | -12(2)          | 0(2)            | -17(2)          |
| (100 | 13(2)           | 72(3)           | 32(2)                 | 4(2)            | 4(1)            | 7(2)            |

**Table S16.** Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 7. The anisotropicdisplacement factor exponent takes the form:  $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$ 



Figure S62. Molecular Structure of 8.

<u>X-Ray experimental for 8</u>: X-Ray Intensity data were collected at 100 K on a Bruker **DUO** diffractometer using MoK $\alpha$  radiation ( $\lambda$  = 0.71073 Å) and an APEXII CCD area detector.

Raw data frames were read by program SAINT<sup>1</sup> and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces.

The structure was solved and refined in SHELXTL6.1, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The C30-C31 unit is disordered and was refined against the minor part C30'-C31' with their site occupation factors dependently refined. In the final cycle of refinement, 7274 reflections (of which 6082 are observed with I >  $2\sigma(I)$ ) were used to refine 446 parameters and the resulting R<sub>1</sub>, wR<sub>2</sub> and S (goodness of fit) were 2.09%, 4.48% and 0.962, respectively. The refinement was carried out by minimizing the wR<sub>2</sub> function using F<sup>2</sup> rather than F values. R<sub>1</sub> is calculated to provide a reference to the conventional R value but its function is not minimized.

| Table S17. Crystal data and structure refinement for 8. |                                |  |  |  |
|---------------------------------------------------------|--------------------------------|--|--|--|
| Identification code                                     | orei34                         |  |  |  |
| Empirical formula                                       | $C_{33} H_{33} F_{12} N O_2 W$ |  |  |  |
| Formula weight                                          | 887.45                         |  |  |  |
| Temperature                                             | 100(2) K                       |  |  |  |

Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta =  $27.50^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F<sup>2</sup> Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole

0.71073 Å Monoclinic  $P2_1/c$ a = 19.6072(11) Å  $\alpha = 90^{\circ}$ . b = 9.2537(5) Å $\beta = 112.5630(10)^{\circ}$ . c = 18.9077(10) Å $\gamma = 90^{\circ}$ . 3168.0(3) Å<sup>3</sup> 4 1.861 Mg/m<sup>3</sup> 3.750 mm<sup>-1</sup> 1744 0.16 x 0.13 x 0.01 mm<sup>3</sup> 2.17 to 27.50°. -25≤h≤25, -11≤k≤12, -24≤l≤24 52389 7274 [R(int) = 0.0410] 100.0 % Numerical 0.9529 and 0.5941 Full-matrix least-squares on F<sup>2</sup> 7274 / 0 / 446 0.962 R1 = 0.0209, wR2 = 0.0448 [6082]R1 = 0.0297, wR2 = 0.04621.338 and -0.787 e.Å-3

$$\begin{split} &\mathsf{R1} = \sum(||\mathsf{F}_0| - |\mathsf{F}_c||) / \sum|\mathsf{F}_0| \\ &\mathsf{wR2} = [\sum[\mathsf{w}(\mathsf{F}_0{}^2 - \mathsf{F}_c{}^2)^2] / \sum[\mathsf{w}(\mathsf{F}_0{}^2)^2]]^{1/2} \\ &\mathsf{S} = [\sum[\mathsf{w}(\mathsf{F}_0{}^2 - \mathsf{F}_c{}^2)^2] / (\mathsf{n}\text{-}\mathsf{p})]^{1/2} \\ &\mathsf{w} = 1 / [\sigma^2(\mathsf{F}_0{}^2) + (\mathsf{m}^*\mathsf{p})^2 + \mathsf{n}^*\mathsf{p}], \mathsf{p} = [\mathsf{max}(\mathsf{F}_0{}^2, \mathsf{0}) + 2^* \mathsf{F}_c{}^2]/3, \mathsf{m} \& \mathsf{n} \text{ are constants.} \end{split}$$

| 101 <b>0</b> . $O(eq)$ is defined as 0 | the till of the t | face of the offlog | manzed 0 <sup>s</sup> tensor. |       |  |
|----------------------------------------|-------------------|--------------------|-------------------------------|-------|--|
| Atom                                   | Х                 | Y                  | Z                             | U(eq) |  |
| W1                                     | 2478(1)           | 775(1)             | 2714(1)                       | 13(1) |  |
| F1                                     | 826(1)            | -2223(2)           | 1992(1)                       | 26(1) |  |
| F2                                     | 146(1)            | -423(2)            | 2012(1)                       | 27(1) |  |
| F3                                     | 210(1)            | -2259(2)           | 2733(1)                       | 25(1) |  |
| F4                                     | 388(1)            | 689(2)             | 3386(1)                       | 27(1) |  |
| F5                                     | 921(1)            | -1027(2)           | 4164(1)                       | 26(1) |  |
| F6                                     | 1521(1)           | 900(2)             | 4142(1)                       | 26(1) |  |
| F7                                     | 3997(1)           | 4513(2)            | 3826(1)                       | 21(1) |  |
| F8                                     | 4397(1)           | 3594(2)            | 3016(1)                       | 19(1) |  |
| F9                                     | 5088(1)           | 3576(2)            | 4214(1)                       | 21(1) |  |
| F10                                    | 4774(1)           | 777(2)             | 3183(1)                       | 24(1) |  |
| F11                                    | 5187(1)           | 742(2)             | 4415(1)                       | 20(1) |  |
| F12                                    | 4257(1)           | -577(1)            | 3754(1)                       | 20(1) |  |
| 01                                     | 1499(1)           | 397(2)             | 2734(1)                       | 16(1) |  |
| O2                                     | 3400(1)           | 1895(2)            | 3117(1)                       | 14(1) |  |
| N1                                     | 2833(1)           | 166(2)             | 3826(1)                       | 13(1) |  |
| C1                                     | 1281(1)           | -717(3)            | 3094(2)                       | 16(1) |  |
| C2                                     | 1898(1)           | -1802(3)           | 3509(2)                       | 15(1) |  |
| C3                                     | 2617(1)           | -1283(3)           | 3907(1)                       | 13(1) |  |
| C4                                     | 3160(1)           | -2263(3)           | 4349(2)                       | 17(1) |  |
| C5                                     | 3002(2)           | -3715(3)           | 4362(2)                       | 17(1) |  |
| C6                                     | 2306(2)           | -4261(3)           | 3926(2)                       | 19(1) |  |
| C7                                     | 1758(2)           | -3286(3)           | 3525(2)                       | 18(1) |  |
| C8                                     | 608(2)            | -1416(3)           | 2452(2)                       | 20(1) |  |
| C9                                     | 1020(1)           | -31(3)             | 3699(2)                       | 18(1) |  |
| C10                                    | 2161(2)           | -5868(3)           | 3853(2)                       | 27(1) |  |
| C11                                    | 4030(1)           | 1943(2)            | 3777(1)                       | 12(1) |  |
| C12                                    | 3863(1)           | 1823(2)            | 4503(1)                       | 12(1) |  |
| C13                                    | 3290(1)           | 903(3)             | 4496(1)                       | 13(1) |  |
| C14                                    | 3168(1)           | 747(3)             | 5178(2)                       | 17(1) |  |
| C15                                    | 3597(2)           | 1462(3)            | 5840(2)                       | 18(1) |  |
| C16                                    | 4167(2)           | 2375(3)            | 5856(2)                       | 18(1) |  |
| C17                                    | 4287(1)           | 2537(3)            | 5181(1)                       | 16(1) |  |
| C18                                    | 4387(1)           | 3415(3)            | 3714(2)                       | 16(1) |  |
| C19                                    | 4572(1)           | 713(3)             | 3786(1)                       | 15(1) |  |
| C20                                    | 4659(2)           | 3116(3)            | 6584(2)                       | 29(1) |  |
| C21                                    | 2530(2)           | -436(3)            | 1918(2)                       | 18(1) |  |
| C22                                    | 2220(1)           | 869(3)             | 1500(2)                       | 19(1) |  |
| C23                                    | 2092(1)           | 2132(3)            | 1906(2)                       | 18(1) |  |
| C24                                    | 2782(2)           | -1836(3)           | 1678(2)                       | 22(1) |  |
| C25                                    | 2168(2)           | -2544(3)           | 992(2)                        | 30(1) |  |
| C26                                    | 3464(2)           | -1553(3)           | 1488(2)                       | 29(1) |  |
| C27                                    | 2998(2)           | -2871(3)           | 2360(2)                       | 26(1) |  |
| C28                                    | 1984(2)           | 1014(3)            | 639(2)                        | 28(1) |  |
| C29                                    | 1148(2)           | 698(4)             | 215(2)                        | 41(1) |  |
| C30                                    | 600(3)            | 1599(6)            | 545(3)                        | 29(1) |  |
| C31                                    | 644(3)            | 3253(5)            | 506(3)                        | 30(1) |  |
| C30'                                   | 664(5)            | 1767(9)            | 101(5)                        | 30(2) |  |
| C31'                                   | 532(4)            | 2126(9)            | 823(5)                        | 24(2) |  |
| C32                                    | 1017(2)           | 3825(5)            | 1272(2)                       | 53(1) |  |
| C33                                    | 1855(2)           | 3609(3)            | 1585(2)                       | 33(1) |  |

**Table S18.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **8**. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| Bond    | Length     | Bond      | Length    |
|---------|------------|-----------|-----------|
| W1-C23  | 1.897(3)   | C6-C7     | 1.386(4)  |
| W1-C21  | 1.911(3)   | C6-C10    | 1.511(4)  |
| W1-O1   | 1.9648(17) | C11-C12   | 1.532(3)  |
| W1-O2   | 1.9664(16) | C11-C19   | 1.553(3)  |
| W1-N1   | 2.023(2)   | C11-C18   | 1.557(3)  |
| W1-C22  | 2.156(3)   | C12-C17   | 1.398(3)  |
| F1-C8   | 1.336(3)   | C12-C13   | 1.405(3)  |
| F2-C8   | 1.335(3)   | C13-C14   | 1.406(3)  |
| F3-C8   | 1.349(3)   | C14-C15   | 1.379(4)  |
| F4-C9   | 1.330(3)   | C15-C16   | 1.391(4)  |
| F5-C9   | 1.339(3)   | C16-C17   | 1.392(3)  |
| F6-C9   | 1.332(3)   | C16-C20   | 1.509(4)  |
| F7-C18  | 1.337(3)   | C21-C22   | 1.443(4)  |
| F8-C18  | 1.337(3)   | C21-C24   | 1.516(4)  |
| F9-C18  | 1.345(3)   | C22-C23   | 1.473(4)  |
| F10-C19 | 1.343(3)   | C22-C28   | 1.517(4)  |
| F11-C19 | 1.331(3)   | C23-C33   | 1.496(4)  |
| F12-C19 | 1.335(3)   | C24-C27   | 1.530(4)  |
| 01-C1   | 1.390(3)   | C24-C26   | 1.536(4)  |
| O2-C11  | 1.379(3)   | C24-C25   | 1.538(4)  |
| N1-C13  | 1.416(3)   | C28-C29   | 1.550(4)  |
| N1-C3   | 1.432(3)   | C29-C30'  | 1.330(9)  |
| C1-C2   | 1.536(4)   | C29-C30   | 1.659(6)  |
| C1-C8   | 1.550(4)   | C30-C31   | 1.536(7)  |
| C1-C9   | 1.558(3)   | C31-C32   | 1.449(6)  |
| C2-C7   | 1.403(3)   | C30'-C31' | 1.521(12) |
| C2-C3   | 1.403(3)   | C31'-C32  | 1.865(9)  |
| C3-C4   | 1.404(3)   | C32-C33   | 1.531(4)  |
| C4-C5   | 1.381(4)   |           |           |
| C5-C6   | 1.390(4)   |           |           |

**Table S19.** Bond lengths [Å] for 8.

| Table S20. | Bond angles | [°] for <b>8</b> . |
|------------|-------------|--------------------|
|------------|-------------|--------------------|

| Bond       | Angle      | Bond      | Angle      |
|------------|------------|-----------|------------|
| C23-W1-C21 | 83.04(11)  | C11-O2-W1 | 137.59(14) |
| C23-W1-O1  | 92.39(9)   | C13-N1-C3 | 117.82(19) |
| C21-W1-O1  | 104.95(9)  | C13-N1-W1 | 130.02(15) |
| C23-W1-O2  | 89.20(9)   | C3-N1-W1  | 111.98(15) |
| C21-W1-O2  | 107.16(9)  | O1-C1-C2  | 113.9(2)   |
| O1-W1-O2   | 147.80(7)  | O1-C1-C8  | 104.8(2)   |
| C23-W1-N1  | 153.22(10) | C2-C1-C8  | 113.2(2)   |
| C21-W1-N1  | 123.66(10) | O1-C1-C9  | 107.9(2)   |
| O1-W1-N1   | 83.14(8)   | C2-C1-C9  | 107.9(2)   |
| O2-W1-N1   | 81.16(7)   | C8-C1-C9  | 108.9(2)   |
| C23-W1-C22 | 42.03(11)  | C7-C2-C3  | 119.2(2)   |
| C21-W1-C22 | 41.01(10)  | C7-C2-C1  | 121.9(2)   |
| O1-W1-C22  | 101.27(9)  | C3-C2-C1  | 118.8(2)   |
| O2-W1-C22  | 101.29(8)  | C2-C3-C4  | 118.3(2)   |
| N1-W1-C22  | 164.62(9)  | C2-C3-N1  | 122.7(2)   |
| C1-O1-W1   | 128.81(15) | C4-C3-N1  | 118.7(2)   |

| C5-C4-C3    | 121.0(2)   | F8-C18-C11    | 111.2(2)   |
|-------------|------------|---------------|------------|
| C4-C5-C6    | 121.2(2)   | F7-C18-C11    | 110.6(2)   |
| C7-C6-C5    | 117.9(2)   | F9-C18-C11    | 114.3(2)   |
| C7-C6-C10   | 120.7(3)   | F11-C19-F12   | 107.6(2)   |
| C5-C6-C10   | 121.3(2)   | F11-C19-F10   | 107.29(19) |
| C6-C7-C2    | 122.1(3)   | F12-C19-F10   | 106.39(19) |
| F2-C8-F1    | 106.7(2)   | F11-C19-C11   | 112.2(2)   |
| F2-C8-F3    | 106.7(2)   | F12-C19-C11   | 110.62(19) |
| F1-C8-F3    | 108.2(2)   | F10-C19-C11   | 112.4(2)   |
| F2-C8-C1    | 111.8(2)   | C22-C21-C24   | 131.9(2)   |
| F1-C8-C1    | 110.7(2)   | C22-C21-W1    | 78.64(15)  |
| F3-C8-C1    | 112.4(2)   | C24-C21-W1    | 149.1(2)   |
| F4-C9-F6    | 107.0(2)   | C21-C22-C23   | 119.9(2)   |
| F4-C9-F5    | 106.9(2)   | C21-C22-C28   | 123.6(2)   |
| F6-C9-F5    | 106.9(2)   | C23-C22-C28   | 116.5(2)   |
| F4-C9-C1    | 112.9(2)   | C21-C22-W1    | 60.35(14)  |
| F6-C9-C1    | 110.8(2)   | C23-C22-W1    | 59.54(13)  |
| F5-C9-C1    | 111.9(2)   | C28-C22-W1    | 175.2(2)   |
| O2-C11-C12  | 112.54(19) | C22-C23-C33   | 127.0(2)   |
| O2-C11-C19  | 110.95(19) | C22-C23-W1    | 78.44(15)  |
| C12-C11-C19 | 108.54(19) | C33-C23-W1    | 154.0(2)   |
| O2-C11-C18  | 103.38(19) | C21-C24-C27   | 107.5(2)   |
| C12-C11-C18 | 112.90(19) | C21-C24-C26   | 109.7(2)   |
| C19-C11-C18 | 108.41(19) | C27-C24-C26   | 108.6(2)   |
| C17-C12-C13 | 119.1(2)   | C21-C24-C25   | 112.2(2)   |
| C17-C12-C11 | 122.1(2)   | C27-C24-C25   | 108.6(2)   |
| C13-C12-C11 | 118.7(2)   | C26-C24-C25   | 110.2(2)   |
| C12-C13-C14 | 118.1(2)   | C22-C28-C29   | 111.4(2)   |
| C12-C13-N1  | 122.0(2)   | C30'-C29-C28  | 119.4(5)   |
| C14-C13-N1  | 120.0(2)   | C30'-C29-C30  | 33.1(4)    |
| C15-C14-C13 | 121.6(2)   | C28-C29-C30   | 114.8(3)   |
| C14-C15-C16 | 121.1(2)   | C31-C30-C29   | 115.3(4)   |
| C15-C16-C17 | 117.5(2)   | C32-C31-C30   | 109.4(4)   |
| C15-C16-C20 | 121.6(2)   | C29-C30'-C31' | 112.0(7)   |
| C17-C16-C20 | 120.8(2)   | C30'-C31'-C32 | 111.1(5)   |
| C16-C17-C12 | 122.6(2)   | C31-C32-C33   | 113.2(3)   |
| F8-C18-F7   | 106.8(2)   | C31-C32-C31'  | 42.5(3)    |
| F8-C18-F9   | 106.37(19) | C33-C32-C31'  | 110.5(3)   |
| F7-C18-F9   | 107.2(2)   | C23-C33-C32   | 113.3(3)   |

|     | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| W1  | 15(1)           | 11(1)           | 12(1)           | 1(1)            | 5(1)            | -1(1)           |
| F1  | 29(1)           | 26(1)           | 23(1)           | -8(1)           | 10(1)           | -6(1)           |
| F2  | 19(1)           | 26(1)           | 27(1)           | 3(1)            | 1(1)            | -1(1)           |
| F3  | 22(1)           | 22(1)           | 32(1)           | -1(1)           | 11(1)           | -8(1)           |
| F4  | 23(1)           | 28(1)           | 31(1)           | 4(1)            | 11(1)           | 12(1)           |
| F5  | 34(1)           | 23(1)           | 30(1)           | 7(1)            | 22(1)           | 5(1)            |
| F6  | 25(1)           | 24(1)           | 31(1)           | -12(1)          | 13(1)           | -4(1)           |
| F7  | 31(1)           | 12(1)           | 26(1)           | 1(1)            | 17(1)           | 1(1)            |
| F8  | 29(1)           | 17(1)           | 16(1)           | 0(1)            | 14(1)           | -6(1)           |
| F9  | 20(1)           | 20(1)           | 21(1)           | -1(1)           | 5(1)            | -8(1)           |
| F10 | 34(1)           | 25(1)           | 20(1)           | 4(1)            | 19(1)           | 8(1)            |
| F11 | 18(1)           | 21(1)           | 20(1)           | 0(1)            | 5(1)            | 3(1)            |
| F12 | 24(1)           | 10(1)           | 28(1)           | -2(1)           | 12(1)           | 0(1)            |
| 01  | 16(1)           | 14(1)           | 18(1)           | 5(1)            | 6(1)            | 0(1)            |
| O2  | 16(1)           | 14(1)           | 10(1)           | 1(1)            | 5(1)            | -3(1)           |
| N1  | 17(1)           | 10(1)           | 11(1)           | 2(1)            | 5(1)            | -2(1)           |
| C1  | 17(1)           | 12(1)           | 20(1)           | -1(1)           | 8(1)            | -2(1)           |
| C2  | 18(1)           | 13(1)           | 17(1)           | 2(1)            | 10(1)           | 2(1)            |
| C3  | 18(1)           | 11(1)           | 12(1)           | 0(1)            | 9(1)            | 1(1)            |
| C4  | 17(1)           | 20(1)           | 16(1)           | 3(1)            | 8(1)            | 4(1)            |
| C5  | 25(2)           | 14(1)           | 17(1)           | 5(1)            | 13(1)           | 8(1)            |
| C6  | 30(2)           | 12(1)           | 24(1)           | 1(1)            | 18(1)           | 1(1)            |
| C7  | 22(1)           | 14(1)           | 23(2)           | -1(1)           | 13(1)           | -1(1)           |
| C8  | 19(1)           | 18(1)           | 24(2)           | 2(1)            | 7(1)            | -2(1)           |
| C9  | 18(1)           | 15(1)           | 22(2)           | 2(1)            | 9(1)            | 2(1)            |
| C10 | 40(2)           | 12(1)           | 35(2)           | 1(1)            | 22(2)           | 1(1)            |
| C11 | 13(1)           | 10(1)           | 12(1)           | -1(1)           | 5(1)            | 0(1)            |
| C12 | 16(1)           | 9(1)            | 12(1)           | 0(1)            | 6(1)            | 3(1)            |
| C13 | 16(1)           | 10(1)           | 13(1)           | 2(1)            | 6(1)            | 4(1)            |
| C14 | 18(1)           | 16(1)           | 18(1)           | 4(1)            | 10(1)           | 4(1)            |
| C15 | 27(2)           | 18(1)           | 14(1)           | 3(1)            | 12(1)           | 5(1)            |
| C16 | 30(2)           | 11(1)           | 14(1)           | -1(1)           | 9(1)            | 4(1)            |
| C17 | 23(1)           | 8(1)            | 16(1)           | 1(1)            | 7(1)            | 1(1)            |
| C18 | 20(1)           | 14(1)           | 14(1)           | 0(1)            | 8(1)            | -2(1)           |
| C19 | 19(1)           | 14(1)           | 14(1)           | 1(1)            | 9(1)            | -1(1)           |
| C20 | 50(2)           | 20(2)           | 16(2)           | -4(1)           | 12(2)           | -5(1)           |
| C21 | 21(1)           | 19(1)           | 14(1)           | -3(1)           | 8(1)            | -6(1)           |
| C22 | 17(1)           | 25(1)           | 13(1)           | 4(1)            | 4(1)            | -7(1)           |
| C23 | 15(1)           | 20(1)           | 18(1)           | 4(1)            | 6(1)            | -2(1)           |
| C24 | 26(2)           | 22(1)           | 19(2)           | -7(1)           | 11(1)           | -3(1)           |
| C25 | 35(2)           | 30(2)           | 28(2)           | -14(1)          | 14(2)           | -9(1)           |
| C26 | 30(2)           | 36(2)           | 26(2)           | -6(1)           | 15(1)           | -4(1)           |
| C27 | 37(2)           | 20(1)           | 28(2)           | -6(1)           | 19(2)           | -2(1)           |
| C28 | 28(2)           | 40(2)           | 14(1)           | 4(1)            | 4(1)            | -10(1)          |
| C29 | 32(2)           | 56(2)           | 23(2)           | 4(2)            | -4(1)           | -16(2)          |
| C32 | 40(2)           | 87(3)           | 31(2)           | 10(2)           | 14(2)           | 37(2)           |
| C33 | 38(2)           | 30(2)           | 39(2)           | 20(2)           | 24(2)           | 12(1)           |

**Table S21.** Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **8**. The anisotropic displacement factor exponent takes the form:  $-2\pi^{2}[h^{2} a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$ 

## **DFT Calculations**

|      | indices for the geom | etty optimized struct |               |
|------|----------------------|-----------------------|---------------|
| Atom | Х                    | Y                     | Z             |
| W    | -0.1274520000        | -1.0861370000         | -0.2945080000 |
| F    | 3.9052600000         | -0.9058320000         | 0.4690710000  |
| F    | 3.8900400000         | -1.6515570000         | -1.6354470000 |
| F    | 5.0112390000         | 0.2155780000          | -1.1324000000 |
| F    | 3.0033040000         | 0.2098460000          | -3.5559800000 |
| F    | 3.5745940000         | 2.1071730000          | -2.5041160000 |
| F    | 1.4144220000         | 1.6385850000          | -2.8702880000 |
| F    | -4.0973070000        | -0.5917640000         | -2.2709930000 |
| F    | -4.4724000000        | -2.0963000000         | -0.6629870000 |
| F    | -5.5779620000        | -0.1571710000         | -0.6362620000 |
| F    | -3.7643710000        | -1.4086550000         | 1.9397330000  |
| F    | -4.5759930000        | 0.6773110000          | 1.7600950000  |
| F    | -2.4045570000        | 0.3517500000          | 2.2097160000  |
| 0    | 1.4899910000         | -0.6317180000         | -1.3253850000 |
| 0    | -2.0832400000        | -1.0291670000         | -0.3248880000 |
| 0    | -0.2675760000        | -3.0282940000         | -1.1875300000 |
| Ν    | -0.2787380000        | 0.9296310000          | -0.0991470000 |
| С    | 2.5052780000         | 0.3254790000          | -1.1345390000 |
| С    | 2.2022080000         | 1.3578050000          | -0.0218910000 |
| С    | 0.8706990000         | 1.6273670000          | 0.4090170000  |
| С    | 0.6823530000         | 2.6103860000          | 1.4112570000  |
| С    | 1.7526250000         | 3.3193350000          | 1.9595220000  |
| С    | 3.0759330000         | 3.0761500000          | 1.5260120000  |
| С    | 3.2706060000         | 2.0968000000          | 0.5383790000  |
| С    | 3.8276220000         | -0.4924360000         | -0.8635680000 |
| С    | 2.6384930000         | 1.0677980000          | -2.5162460000 |
| С    | 4.2464890000         | 3.8357390000          | 2.1209420000  |
| С    | -3.1236330000        | -0.1195480000         | -0.0800850000 |
| С    | -2.7429260000        | 1.3039360000          | -0.5326140000 |
| С    | -1.3742960000        | 1.7213340000          | -0.5628850000 |
| С    | -1.1145350000        | 3.0219810000          | -1.0785720000 |
| С    | -2.1359510000        | 3.8862040000          | -1.4744480000 |
| С    | -3.4915540000        | 3.5034150000          | -1.3803280000 |
| C    | -3.7604240000        | 2.2067950000          | -0.9151670000 |
| С    | -4.3269400000        | -0.7274220000         | -0.8973280000 |
| С    | -3.4754490000        | -0.1313550000         | 1.4537720000  |
| C    | -4.6079470000        | 4.4475720000          | -1.7842100000 |
| C    | 0.4778520000         | -1.4928800000         | 1.3203290000  |
| C    | 0.8108420000         | -1.7832120000         | 2.7583970000  |
| C    | 0.9694090000         | -0.4412800000         | 3.5314360000  |
| C    | 2.1378850000         | -2.5917700000         | 2.8504950000  |
| C    | -0.3477730000        | -2.6102890000         | 3.3918290000  |
| C    | 0.5141050000         | -4.2366330000         | -0.7693040000 |
| C    | 1.6575270000         | -4.5163310000         | -1.7426290000 |
| C    | -1.2433840000        | -3.2540020000         | -2.3138320000 |
| -    |                      | 2.22.000000           |               |

Table S22. Atomic coordinates for the geometry optimized structure of 5.
| С | -1.0288100000 | -2.2355300000 | -3.4309780000 |
|---|---------------|---------------|---------------|
| Н | -0.3300740000 | 2.7988160000  | 1.7548000000  |
| Н | 1.5642550000  | 4.0614680000  | 2.7330140000  |
| Н | 4.2842900000  | 1.9174950000  | 0.1953960000  |
| Н | 4.4080440000  | 3.5581480000  | 3.1720530000  |
| Н | 4.0731220000  | 4.9195380000  | 2.0946980000  |
| Н | 5.1754280000  | 3.6313560000  | 1.5773700000  |
| Н | -0.0839660000 | 3.3446200000  | -1.1710250000 |
| Н | -1.8768640000 | 4.8683630000  | -1.8658130000 |
| Н | -4.7975850000 | 1.8970840000  | -0.8490990000 |
| Н | -4.6398860000 | 5.3309390000  | -1.1311670000 |
| Н | -5.5868030000 | 3.9584590000  | -1.7281770000 |
| Н | -4.4730440000 | 4.8093970000  | -2.8125230000 |
| Н | 1.1910390000  | -0.6496850000 | 4.5874800000  |
| Н | 0.0484630000  | 0.1496180000  | 3.4796760000  |
| Н | 1.7875050000  | 0.1583630000  | 3.1168900000  |
| Н | 2.3822110000  | -2.7888250000 | 3.9036430000  |
| Н | 2.9672450000  | -2.0404320000 | 2.3966480000  |
| Н | 2.0494070000  | -3.5603330000 | 2.3395180000  |
| Н | -0.1159950000 | -2.8365180000 | 4.4421090000  |
| Н | -0.4917600000 | -3.5607710000 | 2.8610950000  |
| Н | -1.2905000000 | -2.0542320000 | 3.3548160000  |
| Н | -0.1985870000 | -5.0678720000 | -0.6971150000 |
| Н | 0.8808930000  | -3.9804970000 | 0.2248560000  |
| Н | 2.2381040000  | -5.3740870000 | -1.3774640000 |
| Н | 2.3232690000  | -3.6510250000 | -1.8116140000 |
| Н | 1.2922500000  | -4.7634240000 | -2.7468090000 |
| Н | -1.0761200000 | -4.2759940000 | -2.6669920000 |
| Н | -2.2352280000 | -3.1707870000 | -1.8610750000 |
| Н | -1.7124500000 | -2.4691730000 | -4.2574800000 |
| Н | -0.0003600000 | -2.2620610000 | -3.8052240000 |
| Н | -1.2618630000 | -1.2166050000 | -3.1039420000 |

 Table S23. Atomic coordinates for the geometry optimized structure of 6.

| Atom | Х             | Y             | Z             |  |
|------|---------------|---------------|---------------|--|
| W    | 0.0817270000  | 0.7693950000  | 0.0793400000  |  |
| Ν    | -0.0205670000 | -1.1618250000 | -0.4852720000 |  |
| С    | 2.7517920000  | -1.5705410000 | 1.7397770000  |  |
| F    | -3.9765110000 | -1.0019480000 | -2.9598670000 |  |
| F    | -3.1594300000 | 1.0597100000  | -3.2941560000 |  |
| F    | -1.7675480000 | -0.6972800000 | -3.2009630000 |  |
| F    | 3.1311440000  | -0.7343880000 | 2.7920380000  |  |
| С    | -1.2465740000 | -1.8649990000 | -0.1899340000 |  |
| F    | -3.9109130000 | 2.1767790000  | -0.8532110000 |  |
| С    | -3.5709150000 | -3.4116470000 | 0.4689370000  |  |
| F    | 3.5626310000  | -2.7065390000 | 1.8082280000  |  |
| С    | -1.1423410000 | -3.1467570000 | 0.4121890000  |  |
| F    | -3.9173800000 | 0.8012350000  | 0.9079420000  |  |
| С    | -2.2701670000 | -3.9034890000 | 0.7282530000  |  |

| С | -2.5496080000 | -1.3510440000 | -0.4298090000 |
|---|---------------|---------------|---------------|
| F | -5.2053490000 | 0.3565030000  | -0.8832150000 |
| С | -2.7275330000 | 0.0272700000  | -1.0844300000 |
| F | 1.4480120000  | -1.9958590000 | 2.0270410000  |
| С | 0.6520710000  | -2.7948150000 | -2.1910870000 |
| С | -3.6803690000 | -2.1363300000 | -0.1049850000 |
| С | 3.3252890000  | -2.6697350000 | -1.4208140000 |
| С | 1.6017360000  | -3.5941160000 | -2.8314180000 |
| С | -2.9184610000 | -0.1426520000 | -2.6358190000 |
| С | 2.3815760000  | -1.8462890000 | -0.7701520000 |
| С | -3.9445120000 | 0.8359910000  | -0.4947550000 |
| С | 1.0104460000  | -1.9197400000 | -1.1359690000 |
| 0 | -1.6168750000 | 0.8764960000  | -0.9184170000 |
| F | 4.3728390000  | 0.2225780000  | -1.1905710000 |
| F | 4.5016950000  | 0.8020520000  | 0.9643870000  |
| 0 | 1.9808160000  | 0.2724800000  | 0.3472450000  |
| F | 5.2858090000  | -1.1844710000 | 0.3087170000  |
| С | 0.0873100000  | 2.7699190000  | 1.0412590000  |
| С | 0.1730970000  | 4.1523010000  | 1.6648140000  |
| С | -0.8670320000 | 1.4043780000  | 3.1962180000  |
| С | -1.3850900000 | -0.0541700000 | 3.3431280000  |
| С | 1.1196010000  | 3.5597840000  | -1.2842600000 |
| С | 0.5069630000  | 4.8172540000  | -1.5248160000 |
| С | 1.0518220000  | 5.7062760000  | -2.4656630000 |
| С | 2.8278000000  | 4.1108270000  | -2.9522030000 |
| С | 2.2826980000  | 3.2138040000  | -2.0204230000 |
| С | -0.3936610000 | 1.5939610000  | 1.7661740000  |
| С | 2.9618030000  | -3.5538590000 | -2.4506480000 |
| С | 0.5582340000  | 2.5859180000  | -0.3597730000 |
| С | 2.8008220000  | -0.8633280000 | 0.3340780000  |
| С | 4.2417800000  | -0.2653790000 | 0.1138670000  |
| С | 3.9973130000  | -4.4140770000 | -3.1494570000 |
| С | -4.7998070000 | -4.2320550000 | 0.8100080000  |
| С | 0.3212570000  | 1.6034970000  | 4.1864590000  |
| С | -2.0313430000 | 2.3786060000  | 3.5408300000  |
| С | 2.2163480000  | 5.3603270000  | -3.1789530000 |
| Н | -0.1526390000 | -3.5341860000 | 0.6274410000  |
| Н | -2.1438440000 | -4.8824820000 | 1.1864790000  |
| Н | -0.3863500000 | -2.8339440000 | -2.5015670000 |
| Н | -4.6731530000 | -1.7536300000 | -0.3151710000 |
| Н | 4.3668500000  | -2.6323960000 | -1.1213650000 |
| Н | 1.2867020000  | -4.2517920000 | -3.6391350000 |
| Н | -0.7879270000 | 4.6691470000  | 1.5424430000  |
| Н | 0.9459250000  | 4.7502630000  | 1.1753060000  |
| Н | 0.3872470000  | 4.0889990000  | 2.7327770000  |
| Н | -0.5953460000 | -0.7791170000 | 3.1134350000  |
| Н | -2.2338880000 | -0.2408940000 | 2.6753420000  |
| Н | -1.7171380000 | -0.2283360000 | 4.3750050000  |
| Н | -0.4108830000 | 5.0802870000  | -1.0055250000 |

| Н | 0.5650570000  | 6.6610930000  | -2.6488610000 |
|---|---------------|---------------|---------------|
| Н | 3.7241040000  | 3.8350940000  | -3.5020680000 |
| Н | 2.7559450000  | 2.2514070000  | -1.8459830000 |
| Н | 4.9530520000  | -4.4068720000 | -2.6139150000 |
| Н | 4.1869790000  | -4.0546570000 | -4.1707290000 |
| Н | 3.6632490000  | -5.4566200000 | -3.2287460000 |
| Н | -4.7751880000 | -5.2108410000 | 0.3124150000  |
| Н | -5.7199380000 | -3.7237560000 | 0.5022060000  |
| Н | -4.8663620000 | -4.4190300000 | 1.8906400000  |
| Н | 0.7134220000  | 2.6272020000  | 4.1714730000  |
| Н | 1.1456770000  | 0.9210050000  | 3.9506060000  |
| Н | -0.0183920000 | 1.3924430000  | 5.2090980000  |
| Н | -2.8655740000 | 2.2516600000  | 2.8414690000  |
| Н | -1.7182110000 | 3.4283320000  | 3.5210880000  |
| Н | -2.3981820000 | 2.1612770000  | 4.5526440000  |
| Н | 2.6363380000  | 6.0503530000  | -3.9066600000 |
|   |               |               |               |

- 1. Z. J. Tonzetich, R. R. Schrock and P. Muller, *Organometallics*, **1985**, 4, 74.
- 2. W. Chen, D. Wang, C. Dai, D. Hamelberg and B. Wang, *Chem. Commun.*, 48, 1736.
- 3. Z. J. Tonzetich, R. R. Schrock and P. Muller, *Organometallics*, **2006**, 25, 4301.
- 4. A. D. Becke, J. Chem. Phys., **1993**, 98, 5648.
- 5. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter*, **1988**, 37, 785.
- 6. P. J. Hay and W. R. Wadt, J. Chem. Phys., **1985**, 82, 270.
- G. W. T. M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.02, Gaussian (2009). .
- 8. A. R. Allouche, *Journal of Computational Chemistry*, **2011**, 32, 174-182.