Electronic Supplementary Information

Lanthanide Coordination Polymers Based on 5-(2'- Carboxylphenyl) Nicotinate:

Syntheses, Structure Diversity, Dehydration/Hydration, Luminescence and

Magnetic Properties

Jinzhong Gu*, Jiang Wu, Dongyu Lv, Yu Tang, Kongyang Zhu, Jincai Wu

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 (P. R. China)

Fax: (+86) 931-891-5196 E-mail: <u>gujzh@lzu.edu.cn</u>

Table S1 Crystal data and structure refinements for the compounds 2, 3, 5, 7, 8, 12.

Complex	2	3	5	7	8	12
Empirical formula	C ₃₈ H ₂₅ TbN ₄ O ₉	C ₃₈ H ₂₅ HoN ₄ O ₉	$C_{39}H_{35}Y_2N_3O_{19}$	C ₃₉ H ₃₅ Dy ₂ N ₃ O ₁₉	C ₃₉ H ₃₅ Ho ₂ N ₃ O ₁₉	C ₂₅ H ₁₅ LuN ₄ O ₇
Formula weight	840.54	846.55	1027.52	1174.70	1179.56	658.38
Crystal system	Trigonal	Trigonal	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	<i>R</i> -3	<i>R</i> -3	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	$P2_{1}/n$
a (Å)	30.870(8)	30.7627(5)	12.725(19)	12.825(9)	12.7551(18)	12.385(4)
b(Å)	30.870(8)	30.7627(5)	13.57(2)	13.672(10)	13.617(2)	10.429(3)
c (Å)	17.963(4)	17.9693(3)	14.12(2)	14.227(10)	14.137(2)	17.436(5)
α(°)	90	90	66.224(14)	66.182(6)	66.2800(10)	90
β(°)	90	90	67.182(15)	66.800(6)	67.1400(10)	93.704(3)
γ(°)	120	120	77.113(14)	77.064(6)	77.1490(10)	90
Volume (Å ³)	14825(6)	14726.8	2051(5)	2091(3)	2065.1(5)	2247.2(11)
Z	18	18	2	2	2	4
Dcalcd (g cm ⁻³)	1.695	1.718	1.664	1.866	1.897	1.946
M (Mo K α) (mm ⁻¹)	2.213	5.080	2.900	3.629	3.888	4.450
F(000)	7524	7560	1040	1148	1152	1280
Data/restraints/parameters	6136/0/470	6395/0/470	7504/0/569	7513 / 0 / 568	7562/0/572	4186/6/ 334
Goodness-of-fit on F ²	1.047	1.069	1.036	1.064	1.039	1.038
Final R indices, [I >	$R_1 = 0.0266,$	$R_1 = 0.0299,$	$R_1 = 0.0625$	$R_1 = 0.0357$	$R_1 = 0.0274$	$R_1 = 0.0310$
R indices (all data)	$R_1 = 0.0411$	$R_1 = 0.0323$	$R_1 = 0.1161$	$R_1 = 0.0465$	$R_1 = 0.0338$	$R_1 = 0.0409$

Table S2 Selected bond lengths [Å] and angles $[\circ]$ for the compounds $1-12^a$.

1					
Sm(1)-O(1)	2.500(6)	Sm(1)-O(2)	2.496(6)	Sm(1)-O(5)	2.596(6)
Sm(1)-O(6)	2.612(6)	Sm(1)-O(6)#1	2.391(5)	Sm(1)-O(7)#3	2.439(5)
Sm(1)-O(8)#2	2.404(5)	Sm(1)-N(3)	2.616(7)	Sm(1)-N(4)	2.636(7)
Sm(1)#1-O(6)-Sm(1)	107.25(19)	O(6)#1-Sm(1)-O(8)#2	71.51(19)	O(6)#1-Sm(1)-O(7)#3	76.09(19)
O(8)#2-Sm(1)-O(7)#3	137.22(18)	O(6)#1-Sm(1)-O(2)	76.95(19)	O(8)#2-Sm(1)-O(2)	120.41(19)
O(7)#3-Sm(1)-O(2)	77.02(19)	O(6)#1-Sm(1)-O(1)	95.5(2)	O(8)#2-Sm(1)-O(1)	81.5(2)
O(7)#3-Sm(1)-O(1)	129.31(19)	O(2)-Sm(1)-O(1)	52.61(19)	O(6)#1-Sm(1)-O(5)	122.32(18)
O(8)#2-Sm(1)-O(5)	94.94(19)	O(7)#3-Sm(1)-O(5)	79.43(17)	O(2)-Sm(1)-O(5)	144.41(19)
O(1)-Sm(1)-O(5)	138.91(19)	O(6)#1-Sm(1)-O(6)	72.75(19)	O(8)#2-Sm(1)-O(6)	72.68(18)
O(7)#3-Sm(1)-O(6)	71.55(19)	O(2)-Sm(1)-O(6)	140.46(18)	O(1)-Sm(1)-O(6)	153.89(18)
O(5)-Sm(1)-O(6)	50.03(16)	O(6)#1-Sm(1)-N(3)	146.30(19)	O(8)#2-Sm(1)-N(3)	138.8(2)
O(7)#3-Sm(1)-N(3)	81.6(2)	O(2)-Sm(1)-N(3)	73.58(19)	O(1)-Sm(1)-N(3)	79.4(2)
O(5)-Sm(1)-N(3)	76.92(18)	O(6)-Sm(1)-N(3)	123.30(17)	O(6)#1-Sm(1)-N(4)	146.94(19)
O(8)#2-Sm(1)-N(4)	76.3(2)	O(7)#3-Sm(1)-N(4)	135.50(19)	O(2)-Sm(1)-N(4)	114.6(2)
O(1)-Sm(1)-N(4)	72.3(2)	O(5)-Sm(1)-N(4)	67.14(19)	O(6)-Sm(1)-N(4)	104.6(2)
2					
Tb(1)-O(1)	2.542(2)	Tb(1)-O(2)	2.550(2)	Tb(1)-O(2)#1	2.340(2)
Tb(1)-O(3)#3	2.370(2)	Tb(1)-O(4)#2	2.343(2)	Tb(1)-O(5)	2.439(2)
Tb(1)-O(6)	2.449(2)	Tb(1)-N(3)	2.564(3)	Tb(1)-N(4)	2.545(3)
O(2)#1-Tb(1)-O(4)#2	71.44(8)	O(2)#1-Tb(1)-O(3)#3	76.00(8)	O(4)#2-Tb(1)-O(3)#3	137.67(8)
O(2)#1-Tb(1)-O(5)	96.17(9)	O(4)#2-Tb(1)-O(5)	80.46(8)	O(3)#3-Tb(1)-O(5)	129.95(8)
O(2)#1-Tb(1)-O(6)	76.85(8)	O(4)#2-Tb(1)-O(6)	119.41(8)	O(3)#3-Tb(1)-O(6)	77.17(8)
O(5)-Tb(1)-O(6)	53.16(8)	O(2)#1-Tb(1)-O(1)	122.59(8)	O(4)#2-Tb(1)-O(1)	96.55(9)
O(3)#3-Tb(1)-O(1)	78.85(8)	O(5)-Tb(1)-O(1)	138.23(8)	O(6)-Tb(1)-O(1)	143.78(8)
O(2)#1-Tb(1)-N(4)	145.63(8)	O(4)#2-Tb(1)-N(4)	139.55(9)	O(3)#3-Tb(1)-N(4)	80.75(8)
O(5)-Tb(1)-N(4)	79.74(9)	O(6)-Tb(1)-N(4)	73.53(8)	O(1)-Tb(1)-N(4)	76.14(8)
O(2)#1-Tb(1)-O(2)	72.63(8)	O(4)#2-Tb(1)-O(2)	72.70(8)	O(3)#3-Tb(1)-O(2)	72.28(8)
O(5)-Tb(1)-O(2)	152.98(8)	O(6)-Tb(1)-O(2)	140.93(8)	O(1)-Tb(1)-O(2)	50.67(7)
N(4)-Tb(1)-O(2)	123.39(8)	O(2)#1-Tb(1)-N(3)	146.96(9)	O(4)#2-Tb(1)-N(3)	76.13(9)
O(3)#3-Tb(1)-N(3)	135.36(8)	O(5)-Tb(1)-N(3)	72.04(9)	O(6)-Tb(1)-N(3)	115.12(8)
O(1)-Tb(1)-N(3)	66.89(8)	N(4)-Tb(1)-N(3)	64.31(9)	Tb(1)#1-O(2)-Tb(1)	107.37(8)
3					
Ho(1)-O(1)	2.4144(19)	Ho(1)-O(2)	2.4221(18)	Ho(1)-O(5)	2.5178(18)
Ho(1)-O(6)	2.5269(17)	Ho(1)-O(6)#2	2.3218(17)	Ho(1)-O(7)#3	2.3503(16)
Ho(1)-O(8)#1	2.3202(17)	Ho(1)-N(3)	2.554(2)	Ho(1)-N(4)	2.523(2)
O(8)#1-Ho(1)-O(6)#2	71.83(6)	O(8)#1-Ho(1)-O(7)#3	138.09(6)	O(6)#2-Ho(1)-O(7)#3	75.98(6)
O(8)#1-Ho(1)-O(1)	79.87(7)	O(6)#2-Ho(1)-O(1)	96.23(7)	O(7)#3-Ho(1)-O(1)	130.31(6)
O(8)#1-Ho(1)-O(2)	119.51(7)	O(6)#2-Ho(1)-O(2)	76.67(6)	O(7)#3-Ho(1)-O(2)	76.92(6)
O(1)-Ho(1)-O(2)	53.78(7)	O(8)#1-Ho(1)-O(5)	97.14(7)	O(6)#2-Ho(1)-O(5)	122.69(6)
O(7)#3-Ho(1)-O(5)	78.35(6)	O(1)-Ho(1)-O(5)	138.21(7)	O(2)-Ho(1)-O(5)	143.11(7)
O(8)#1-Ho(1)-N(4)	139.59(6)	O(6)#2-Ho(1)-N(4)	145.21(6)	O(7)#3-Ho(1)-N(4)	80.32(6)
O(1)-Ho(1)-N(4)	80.09(7)	O(2)-Ho(1)-N(4)	73.39(7)	O(5)-Ho(1)-N(4)	75.81(6)
O(8)#1-Ho(1)-O(6)	72.64(6)	O(6)#2-Ho(1)-O(6)	72.42(6)	O(7)#3-Ho(1)-O(6)	72.54(6)
O(1)-Ho(1)-O(6)	152.32(6)	O(2)-Ho(1)-O(6)	140.69(6)	O(5)-Ho(1)-O(6)	51.16(5)
N(4)-Ho(1)-O(6)	123.66(6)	O(8)#1-Ho(1)-N(3)	75.62(7)	O(6)#2-Ho(1)-N(3)	146.90(6)
O(7)#3-Ho(1)-N(3)	135.35(7)	O(1)-Ho(1)-N(3)	72.00(7)	O(2)-Ho(1)-N(3)	115.62(7)
O(5)-Ho(1)-N(3)	66.99(6)	N(4)-Ho(1)-N(3)	64.92(7)	O(6)-Ho(1)-N(3)	103.50(6)
$H_{0}(1)#2 O(6) H_{0}(1)$	107 59(6)				

4	0.471/0		0.405/22		2.426/22
Sm(1)-O(1)	2.471(3)	Sm(1)-O(2)	2.495(3)	Sm(1)-O(5)	2.426(3)
Sm(1)-O(6)#2	2.392(3)	Sm(1)-O(7)#3	2.396(3)	Sm(1)-O(8)#1	2.375(3)
Sm(1)-O(8)#3	2.756(4)	Sm(1)-N(3)	2.601(4)	Sm(1)-N(4)	2.592(4)
O(8)#1-Sm(1)-O(6)#2	74.50(11)	O(8)#1-Sm(1)-O(7)#3	127.45(12)	O(6)#2-Sm(1)-O(7)#3	89.64(12)
O(8)#1-Sm(1)-O(5)	77.50(11)	O(6)#2-Sm(1)-O(5)	136.31(11)	O(7)#3-Sm(1)-O(5)	81.48(12)
O(8)#1-Sm(1)-O(1)	88.86(12)	O(6)#2-Sm(1)-O(1)	81.28(11)	O(7)#3-Sm(1)-O(1)	138.66(11)
O(5)-Sm(1)-O(1)	131.05(11)	O(8)#1-Sm(1)-O(2)	77.45(12)	O(6)#2-Sm(1)-O(2)	125.37(12)
O(7)#3-Sm(1)-O(2)	143.52(13)	O(5)-Sm(1)-O(2)	78.95(12)	O(1)-Sm(1)-O(2)	52.13(11)
O(8)#1-Sm(1)-N(4)	143.65(12)	O(6)#2-Sm(1)-N(4)	139.80(12)	O(7)#3-Sm(1)-N(4)	74.79(13)
O(5)-Sm(1)-N(4)	78.63(12)	O(1)-Sm(1)-N(4)	86.53(12)	O(2)-Sm(1)-N(4)	71.36(13)
O(8)#1-Sm(1)-N(3)	147.47(12)	O(6)#2-Sm(1)-N(3)	77.24(12)	O(7)#3-Sm(1)-N(3)	67.53(12)
O(5)-Sm(1)-N(3)	134.96(12)	O(1)-Sm(1)-N(3)	71.12(12)	O(2)-Sm(1)-N(3)	107.04(12)
N(4)-Sm(1)-N(3)	62.58(13)	O(8)#1-Sm(1)-O(8)#3	77.79(12)	O(6)#2-Sm(1)-O(8)#3	72.96(11)
O(7)#3-Sm(1)-O(8)#3	49.69(10)	O(5)-Sm(1)-O(8)#3	68.78(10)	O(1)-Sm(1)-O(8)#3	153.31(11)
O(2)-Sm(1)-O(8)#3	142.73(10)	N(4)-Sm(1)-O(8)#3	117.79(12)	N(3)-Sm(1)-O(8)#3	108.86(11)
Sm(1)#1-O(8)-Sm(1)#4	102.21(12)				
5					
Y(1)-O(1)	2.284(5)	Y(1)-O(3)#3	2.366(5)	Y(1)-O(3)#4	2.496(5)
Y(1)-O(4)#4	2.390(5)	Y(1)-O(5)	2.322(6)	Y(1)-O(6)#2	2.340(5)
Y(1)-O(11)#1	2.212(5)	Y(1)-O(13)	2.335(6)	Y(2)-O(2)	2.242(5)
Y(2)-O(7)	2.290(5)	Y(2)-O(8)#5	2.381(5)	Y(2)-O(9)	2.388(6)
Y(2)-O(10)	2.471(6)	Y(2)-O(12)#1	2.298(5)	Y(2)-O(14)	2.394(5)
Y(2)-O(15)	2.395(6)	O(11)#1-Y(1)-O(1)	82.16(19)	O(11)#1-Y(1)-O(5)	88.1(2)
O(1)-Y(1)-O(5)	77.17(19)	O(11)#1-Y(1)-O(13)	80.9(2)	O(1)-Y(1)-O(13)	74.26(19)
O(5)-Y(1)-O(13)	150.50(16)	O(11)#1-Y(1)-O(6)#2	106.00(19)	O(1)-Y(1)-O(6)#2	142.55(18)
O(5)-Y(1)-O(6)#2	138.27(17)	O(13)-Y(1)-O(6)#2	71.24(18)	O(11)#1-Y(1)-O(3)#3	80.89(17)
O(1)-Y(1)-O(3)#3	145.75(19)	O(5)-Y(1)-O(3)#3	72.74(17)	O(13)-Y(1)-O(3)#3	131.33(17)
O(6)#2-Y(1)-O(3)#3	71.17(19)	O(11)#1-Y(1)-O(4)#4	152.81(17)	O(1)-Y(1)-O(4)#4	73.3(2)
O(5)-Y(1)-O(4)#4	97.5(2)	O(13)-Y(1)-O(4)#4	81.3(2)	O(6)#2-Y(1)-O(4)#4	87.4(2)
O(3)#3-Y(1)-O(4)#4	126.20(17)	O(11)#1-Y(1)-O(3)#4	152.12(17)	O(1)-Y(1)-O(3)#4	111.69(17)
O(5)-Y(1)-O(3)#4	72.5(2)	O(13)-Y(1)-O(3)#4	125.4(2)	O(6)#2-Y(1)-O(3)#4	78.16(17)
O(3)#3-Y(1)-O(3)#4	74.38(17)	O(4)#4-Y(1)-O(3)#4	52.76(16)	O(2)-Y(2)-O(7)	89.2(2)
O(2)-Y(2)-O(12)#1	89.5(2)	O(7)-Y(2)-O(12)#1	156.65(17)	O(2)-Y(2)-O(8)#5	146.18(17)
O(7)-Y(2)-O(8)#5	85.99(19)	O(12)#1-Y(2)-O(8)#5	82.2(2)	O(2)-Y(2)-O(9)	85.9(2)
O(7)-Y(2)-O(9)	132.21(18)	O(12)#1-Y(2)-O(9)	70.90(18)	O(8)#5-Y(2)-O(9)	121.29(17)
O(2)-Y(2)-O(14)	74.63(18)	O(7)-Y(2)-O(14)	77.26(19)	O(12)#1-Y(2)-O(14)	79.93(18)
O(8)#5-Y(2)-O(14)	71.66(17)	O(9)-Y(2)-O(14)	144.97(19)	O(2)-Y(2)-O(15)	147.84(19)
O(7)-Y(2)-O(15)	86.7(2)	O(12)#1-Y(2)-O(15)	106.3(2)	O(8)#5-Y(2)-O(15)	65.27(18)
O(9)-Y(2)-O(15)	73.6(2)	O(14)-Y(2)-O(15)	134.85(18)	O(2)-Y(2)-O(10)	77.23(18)
O(7)-Y(2)-O(10)	79.70(19)	O(12)#1-Y(2)-O(10)	122.63(19)	O(8)#5-Y(2)-O(10)	134.23(18)
O(9)-Y(2)-O(10)	52.86(16)	O(14)-Y(2)-O(10)	143.56(16)	O(15)-Y(2)-O(10)	70.65(18)
Y(1)#6-O(3)-Y(1)#4	105.62(17)		× -7		(-)
6	()				
Tb(1)-O(1)	2.248(3)	Tb(1)-O(5)	2.418(3)	Tb(1)-O(6)	2.528(3)
Tb(1)-O(6)#4	2.392(3)	Tb(1)-O(7)#1	2.311(3)	Tb(1)-O(11)#3	2.368(3)
Tb(1)-O(12)#2	2.365(3)	Tb(1)-O(13)	2.383(3)	Tb(2)-O(2)	2,338(3)
Tb(2)-O(3)#5	2.494(3)	Tb(2)-O(4)#5	2.431(3)	Tb(2)-O(8)#1	2.275(3)
Tb(2)-O(9)	2.400(3)	Tb(2)- $O(10)$ #3	2.318(3)	Tb(2)-O(14)	2.407(3)
$T_{0}(2) = O(15)$	2.100(3)	O(1)-Tb(1)-O(7)#1	82 27(12)	O(1)-Th(1)-O(12)#2	106 86(12)
10(2) 0(13)	2.711(7)		02.2/(12)	$O(1) 10(1) O(12) \pi 2$	100.00(12)

O(7)#1-Tb(1)-O(12)#2	142.58(12)	O(1)-Tb(1)-O(11)#3	87.88(12)	O(7)#1-Tb(1)-O(11)#3	77.47(11)
O(12)#2-Tb(1)-O(11)#3	137.62(10)	O(1)-Tb(1)-O(13)	80.29(12)	O(7)#1-Tb(1)-O(13)	74.68(12)
O(12)#2-Tb(1)-O(13)	71.46(11)	O(11)#3-Tb(1)-O(13)	150.91(11)	O(1)-Tb(1)-O(6)#4	81.38(11)
O(7)#1-Tb(1)-O(6)#4	146.14(12)	O(12)#2-Tb(1)-O(6)#4	70.93(11)	O(11)#3-Tb(1)-O(6)#4	72.48(11)
O(13)-Tb(1)-O(6)#4	130.74(12)	O(1)-Tb(1)-O(5)	153.10(11)	O(7)#1-Tb(1)-O(5)	73.38(12)
O(12)#2-Tb(1)-O(5)	86.69(12)	O(11)#3-Tb(1)-O(5)	97.64(12)	O(13)-Tb(1)-O(5)	82.35(12)
O(6)#4-Tb(1)-O(5)	125.42(10)	O(1)-Tb(1)-O(6)	152.57(11)	O(7)#1-Tb(1)-O(6)	110.83(11)
O(12)#2-Tb(1)-O(6)	77.82(11)	O(11)#3-Tb(1)-O(6)	72.49(11)	O(13)-Tb(1)-O(6)	125.75(11)
O(6)#4-Tb(1)-O(6)	74.63(11)	O(5)-Tb(1)-O(6)	51.83(10)	O(8)#1-Tb(2)-O(10)#3	88.63(12)
O(8)#1-Tb(2)-O(2)	89.61(11)	O(10)#3-Tb(2)-O(2)	156.30(11)	O(8)#1-Tb(2)-O(9)	145.99(11)
O(10)#3-Tb(2)-O(9)	86.44(11)	O(2)-Tb(2)-O(9)	81.90(11)	O(8)#1-Tb(2)-O(14)	74.12(12)
O(10)#3-Tb(2)-O(14)	77.18(11)	O(2)-Tb(2)-O(14)	79.61(11)	O(9)-Tb(2)-O(14)	71.97(11)
O(8)#1-Tb(2)-O(15)	147.74(13)	O(10)#3-Tb(2)-O(15)	86.24(15)	O(2)-Tb(2)-O(15)	107.20(15)
O(9)-Tb(2)-O(15)	65.39(12)	O(14)-Tb(2)-O(15)	134.97(12)	O(8)#1-Tb(2)-O(4)#5	86.39(13)
O(10)#3-Tb(2)-O(4)#5	132.38(11)	O(2)-Tb(2)-O(4)#5	71.03(11)	O(9)-Tb(2)-O(4)#5	120.93(12)
O(14)-Tb(2)-O(4)#5	144.77(12)	O(15)-Tb(2)-O(4)#5	74.00(14)	O(8)#1-Tb(2)-O(3)#5	77.49(11)
O(10)#3-Tb(2)-O(3)#5	80.15(11)	O(2)-Tb(2)-O(3)#5	122.43(11)	O(9)-Tb(2)-O(3)#5	134.29(11)
O(14)-Tb(2)-O(3)#5	143.78(11)	O(15)-Tb(2)-O(3)#5	70.26(12)	O(4)#5-Tb(2)-O(3)#5	52.55(11)
Tb(1)#4-O(6)-Tb(1)	105.37(11)		. /		. /
7	× /				
Dy(1)-O(1)	2.234(4)	Dy(1)-O(5)	2.419(4)	Dy(1)-O(6)	2.523(4)
Dy(1)-O(6)#2	2.384(4)	Dy(1)-O(8)#1	2.309(4)	Dy(1)-O(11)	2.356(4)
Dy(1)-O(12)#2	2.366(4)	Dy(1)-O(13)	2.367(4)	Dy(2)-O(2)	2.342(4)
Dy(2)-O(3)#4	2.425(4)	Dy(2)-O(4)#4	2.495(4)	Dy(2)-O(7)#1	2.261(4)
Dy(2)-O(9)	2.315(4)	Dy(2)-O(10)#3	2.389(4)	Dy(2)-O(14)	2.411(4)
Dy(2)-O(15)	2.421(5)	O(1)-Dy(1)-O(8)#1	82.36(15)	O(1)-Dy(1)-O(11)	88.00(16)
O(8)#1-Dy(1)-O(11)	77.07(14)	O(1)-Dy(1)-O(12)#2	106.36(15)	O(8)#1-Dy(1)-O(12)#2	142.76(14)
O(11)-Dy(1)-O(12)#2	137.98(13)	O(1)-Dy(1)-O(13)	80.55(16)	O(8)#1-Dy(1)-O(13)	74.95(15)
O(11)-Dy(1)-O(13)	150.89(13)	O(12)#2-Dy(1)-O(13)	71.12(13)	O(1)-Dy(1)-O(6)#2	81.24(14)
O(8)#1-Dy(1)-O(6)#2	145.89(15)	O(11)-Dv(1)-O(6)#2	72.67(14)	O(12)#2-Dy(1)-O(6)#2	70.96(14)
O(13)-Dy(1)-O(6)#2	130.80(14)	O(1)-Dy(1)-O(5)	152.81(14)	O(8)#1-Dy(1)-O(5)	72.96(15)
O(11)-Dy(1)-O(5)	97.21(16)	O(12)#2-Dy(1)-O(5)	87.51(16)	O(13)-Dv(1)-O(5)	82.16(15)
O(6)#2-Dv(1)-O(5)	125.81(13)	O(1)- $Dv(1)$ - $O(6)$	152.32(14)	O(8)#1-Dv(1)-O(6)	111.06(14)
O(11)-Dy(1)-O(6)	72.50(14)	O(12)#2-Dy(1)-O(6)	78.04(13)	O(13)-Dv(1)-O(6)	125.61(15)
O(6)#2-Dv(1)-O(6)	74.38(14)	O(5)-Dv(1)-O(6)	52.34(13)	O(7)#1-Dv(2)-O(9)	88.86(16)
O(7)#1-Dv(2)-O(2)	89.60(15)	O(9)-Dv(2)-O(2)	156.68(13)	O(7)#1-Dy(2)- $O(10)$ #3	145.77(14)
O(9)-Dv(2)-O(10)#3	86.27(15)	O(2)-Dy(2)-O(10)#3	81.99(15)	O(7)#1-Dy(2)-O(14)	73.93(14)
O(9)-Dy(2)-O(14)	77 30(14)	O(2)-Dy(2)-O(14)	79 92(14)	O(10)#3-Dv(2)-O(14)	71 94(13)
O(7)#1-Dv(2)-O(15)	147.73(15)	O(9)-Dv(2)-O(15)	85.71(19)	O(2)-Dv(2)-O(15)	107.33(18)
O(10)#3-Dv(2)-O(15)	65.56(15)	O(14) - Dv(2) - O(15)	134.99(15)	O(7)#1-Dv(2)-O(3)#4	86.61(16)
O(9)-Dv(2)-O(3)#4	132.02(14)	O(2)-Dv(2)-O(3)#4	71 07(14)	O(10)#3-Dv(2)-O(3)#4	121 01(15)
O(14)-Dv(2)-O(3)#4	145 09(15)	O(15)-Dv(2)-O(3)#4	73 90(18)	O(7)#1-Dv(2)- $O(4)$ #4	77 72(14)
O(9) - Dy(2) - O(4) #4	79 50(14)	$O(2)_{-}Dy(2)_{-}O(4)\#4$	122 79(14)	$O(10)$ #3- $D_{y}(2) = O(4)$ #4	134 12(14)
O(14)-Dy(2)-O(4)#4	143 41(14)	O(15) - Dy(2) - O(4) = 4	70.01(15)	O(3)#4-Dy(2)-O(4)#4	52 87(13)
$D_{y}(1) #2 O(6) D_{y}(1)$	105.62(14)	O(15)-Dy(2)-O(+)#+	/0.01(15)	0(3)#4-Dy(2)-0(4)#4	52.67(15)
Q	103.02(14)				
O $H_0(1)_{-}O(1)$	2 210(3)	$H_{0}(1)_{-}O(5)$	2 /08(3)	$H_{0}(1)_{-}O(5)\#4$	2 368(3)
$H_0(1)-O(1)$	2.219(3)	$H_0(1) - O(3)$	2.470(3)	$H_0(1) = O(1) + O(3) + 4$	2.300(3)
$H_{0}(1) - O(0)$	2.400(3)	$H_0(1) - O(0) \# 1$	2.200(3)	$H_0(2) \cap O(2)$	2.330(3)
$H_0(2) \cap (12) = 0$	2.340(3)	$H_0(1) - O(13)$	2.300(3)	$H_0(2) - O(2)$	2.311(3)
110(2)-0(3)#3	2.404(3)	TU(2)-U(4)#3	2.482(3)	$\Pi 0(2) - O(7) = 1$	2.249(3)

Ho(2)-O(9)	2.375(3)	Ho(2)-O(10)#2	2.291(3)	Ho(2)-O(14)	2.382(3)
Ho(2)-O(15)	2.408(4)	O(1)-Ho(1)-O(8)#1	82.03(11)	O(1)-Ho(1)-O(11)#2	88.01(11)
O(8)#1-Ho(1)-O(11)#2	77.26(11)	O(1)-Ho(1)-O(12)#3	106.30(11)	O(8)#1-Ho(1)-O(12)#3	142.52(11)
O(11)#2-Ho(1)-O(12)#3	138.15(10)	O(1)-Ho(1)-O(13)	80.72(12)	O(8)#1-Ho(1)-O(13)	74.43(11)
O(11)#2-Ho(1)-O(13)	150.69(10)	O(12)#3-Ho(1)-O(13)	71.17(10)	O(1)-Ho(1)-O(5)#4	81.13(11)
O(8)#1-Ho(1)-O(5)#4	145.65(11)	O(11)#2-Ho(1)-O(5)#4	72.44(10)	O(12)#3-Ho(1)-O(5)#4	71.35(11)
O(13)-Ho(1)-O(5)#4	131.32(11)	$O(1)-H_0(1)-O(6)$	152.76(11)	O(8)#1-Ho(1)-O(6)	73.11(11)
O(11)#2-Ho(1)-O(6)	97.02(11)	O(12)#3-Ho(1)-O(6)	87.69(12)	O(13)-Ho(1)-O(6)	82.01(11)
O(5)#4-Ho(1)-O(6)	125 94(10)	$O(1)-H_0(1)-O(5)$	152.23(11)	O(8)#1-Ho(1)-O(5)	111 88(10)
O(11)#2-Ho(1)-O(5)	72.76(10)	O(12)#3-Ho(1)-O(5)	77 76(10)	$O(13)-H_0(1)-O(5)$	125 42(11)
O(5)#4-Ho(1)-O(5)	74.14(10)	$O(6)-H_0(1)-O(5)$	52 56(10)	$O(7)#1-H_0(2)-O(10)#2$	89 10(11)
O(7)#1-Ho(2)-O(2)	89 60(11)	O(10)#2-Ho(2)-O(2)	156 62(11)	O(7)#1-Ho(2)- $O(9)$	145 94(11)
O(10)#2-Ho(2)-O(9)	86 24(11)	$O(2)-H_0(2)-O(9)$	81 84(10)	O(7)#1-Ho(2)-O(14)	74 12(11)
O(10)#2-Ho(2)-O(14)	77 47(11)	$O(2)-H_0(2)-O(14)$	79 73(10)	O(9)-Ho(2)-O(14)	71.94(10)
O(7) # 1 - Ho(2) - O(3) # 5	86 26(12)	O(10)#2-Ho(2)-O(3)#5	132 12(10)	$O(2)-H_0(2)-O(3)\#5$	71.05(10)
O(7) = 10(2) + O(3) = 5	121.06(11)	O(14) H ₂ (2) $O(3)$ #5	132.12(10) 144.80(11)	O(2)- $HO(2)$ - $O(3)$ #3	148 01(13)
$O(10)#2_Ha(2) O(15)$	85 86(15)	O(1+)-110(2)-O(3)=3 $O(2)_{2}H_{2}(2) O(15)$	106 06(15)	O(1) = 110(2)= $O(13)$	65 20(12)
O(10)#2-110(2)-O(15) O(14) Ho(2) O(15)	03.00(13)	O(2)=110(2)=O(15) O(3)==0(15)	74 16(14)	O(3) - 110(2) - O(13) $O(7) + 1 = U_2(2) = O(4) + 5$	77.20(12)
O(14)=110(2)=O(13) O(10)=2 H ₂ (2) $O(4)=5$	134.77(12)	$O(3)$ #3- $\Pi O(2)$ - $O(13)$	122 00(10)	$O(1)^{\#1}-\Pi O(2)-O(4)^{\#3}$	124 20(10)
O(10)#2-H $O(2)$ - $O(4)$ #5	/9.39(10)	O(2)-H $O(2)$ - $O(4)$ #5	122.99(10)	O(9)-HO(2)-O(4)#5	154.29(10)
O(14)-Ho(2)-O(4)#5	143.26(10)	O(3)#5-Ho(2)-O(4)#5	53.10(10)	O(15)-Ho(2)-O(4)#5	/0.63(13)
Ho(1)#4-O(5)-Ho(1)	105.86(10)				
9	2 200(2)	$L_{11}(1) O(2) \# 2$	2214(2)	$L_{\mu}(1) O(5)$	2 248(2)
Lu(1) - O(1)	2.509(3)	Lu(1) - O(2) # 3	2.314(3)	Lu(1) - O(3)	2.348(3)
Lu(1) - O(0)	2.303(3)	Lu(1) - O(0) = 3	2.333(3)	Lu(1) - O(7) # 2	2.234(3)
Lu(1)-O(12)#1	2.186(3)	Lu(1)-O(13)	2.284(3)	Lu(2) - O(3)	2.127(4)
Lu(2) - O(8) # 2	2.162(3)	Lu(2)-O(9)	2.198(3)	Lu(2)-O(10)#4	2.181(3)
Lu(2)-O(11)#1	2.209(3)	Lu(2)-O(14)	2.248(3)	O(12)#1-Lu(1)-O(7)#2	83.35(12)
O(12)#1-Lu(1)-O(13)	80.89(14)	O(7)#2-Lu(1)-O(13)	/1.61(12)	O(12)#1-Lu(1)-O(1)	96.90(12)
O(7)#2-Lu(1)-O(1)	74.89(11)	O(13)-Lu(1)-O(1)	146.46(12)	O(12)#1-Lu(1)-O(2)#3	96.56(12)
O(7)#2-Lu(1)-O(2)#3	144.75(11)	O(13)-Lu(1)-O(2)#3	73.58(12)	O(1)-Lu(1)-O(2)#3	139.45(10)
O(12)#1-Lu(1)-O(6)#3	78.05(11)	O(7)#2-Lu(1)-O(6)#3	139.10(11)	O(13)-Lu(1)-O(6)#3	138.71(12)
O(1)-Lu(1)-O(6)#3	71.65(11)	O(2)#3-Lu(1)-O(6)#3	74.06(11)	O(12)#1-Lu(1)-O(5)	152.86(11)
O(7)#2-Lu(1)-O(5)	72.37(12)	O(13)-Lu(1)-O(5)	80.09(13)	O(1)-Lu(1)-O(5)	88.48(12)
O(2)#3-Lu(1)-O(5)	96.43(13)	O(6)#3-Lu(1)-O(5)	128.57(10)	O(12)#1-Lu(1)-O(6)	154.07(11)
O(7)#2-Lu(1)-O(6)	115.20(11)	O(13)-Lu(1)-O(6)	121.05(13)	O(1)-Lu(1)-O(6)	72.63(10)
O(2)#3-Lu(1)-O(6)	78.74(10)	O(6)#3-Lu(1)-O(6)	76.14(11)	O(5)-Lu(1)-O(6)	52.53(10)
O(3)-Lu(2)-O(8)#2	88.14(15)	O(3)-Lu(2)-O(10)#4	87.27(15)	O(8)#2-Lu(2)-O(10)#4	166.35(13)
O(3)-Lu(2)-O(9)	96.83(15)	O(8)#2-Lu(2)-O(9)	85.30(13)	O(10)#4-Lu(2)-O(9)	108.01(13)
O(3)-Lu(2)-O(11)#1	176.99(14)	O(8)#2-Lu(2)-O(11)#1	94.65(12)	O(10)#4-Lu(2)-O(11)#1	90.27(13)
O(9)-Lu(2)-O(11)#1	82.28(12)	O(3)-Lu(2)-O(14)	90.67(14)	O(8)#2-Lu(2)-O(14)	83.90(11)
O(10)#4-Lu(2)-O(14)	83.31(12)	O(9)-Lu(2)-O(14)	166.64(12)	O(11)#1-Lu(2)-O(14)	90.77(11)
Lu(1)#3-O(6)-Lu(1)	103.86(11)				
10					
Y(1)-O(2)	2.310(4)	Y(1)-O(5)#1	2.269(4)	Y(1)-O(6)	2.351(4)
Y(1)-O(7)#2	2.299(4)	Y(1)-O(8)#3	2.329(4)	Y(1)-O(13)	2.452(4)
Y(1)-N(1)	2.557(5)	Y(1)-N(2)	2.533(5)	Y(2)-O(4)	2.175(4)
Y(2)-O(9)	2.363(4)	Y(2)-O(10)	2.551(4)	Y(2)-O(10)#6	2.344(4)
Y(2)-O(11)#5	2.306(4)	Y(2)-O(12)#4	2.305(4)	Y(2)-N(5)	2.529(5)
Y(2)-N(6)	2.549(5)	O(5)#1-Y(1)-O(7)#2	76.35(15)	O(5)#1-Y(1)-O(2)	83.24(14)
O(7)#2-Y(1)-O(2)	82.28(14)	O(5)#1-Y(1)-O(8)#3	79.55(14)	O(7)#2-Y(1)-O(8)#3	123.63(14)

O(2)-Y(1)-O(8)#3	143.53(14)	O(5)#1-Y(1)-O(6)	123.72(13)	O(7)#2-Y(1)-O(6)	77.98(13)
O(2)-Y(1)-O(6)	140.55(14)	O(8)#3-Y(1)-O(6)	74.65(14)	O(5)#1-Y(1)-O(13)	142.80(14)
O(7)#2-Y(1)-O(13)	73.19(14)	O(2)-Y(1)-O(13)	72.05(14)	O(8)#3-Y(1)-O(13)	135.81(14)
O(6)-Y(1)-O(13)	69.67(14)	O(5)#1-Y(1)-N(2)	139.45(16)	O(7)#2-Y(1)-N(2)	144.09(16)
O(2)-Y(1)-N(2)	101.41(15)	O(8)#3-Y(1)-N(2)	73.17(15)	O(6)-Y(1)-N(2)	77.07(15)
O(13)-Y(1)-N(2)	74.14(15)	O(5)#1-Y(1)-N(1)	79.56(16)	O(7)#2-Y(1)-N(1)	146.39(15)
O(2)-Y(1)-N(1)	71.85(15)	O(8)#3-Y(1)-N(1)	73.54(15)	O(6)-Y(1)-N(1)	135.45(15)
O(13)-Y(1)-N(1)	116.60(15)	N(2)-Y(1)-N(1)	64.39(17)	O(4)-Y(2)-O(12)#4	99.12(14)
O(4)-Y(2)-O(11)#5	104.30(14)	O(12)#4-Y(2)-O(11)#5	138.48(13)	O(4)-Y(2)-O(10)#6	81.89(13)
O(12)#4-Y(2)-O(10)#6	73.45(14)	O(11)#5-Y(2)-O(10)#6	76.50(13)	O(4)-Y(2)-O(9)	149.63(14)
O(12)#4-Y(2)-O(9)	96.05(14)	O(11)#5-Y(2)-O(9)	80.45(14)	O(10)#6-Y(2)-O(9)	127.84(13)
O(4)-Y(2)-N(5)	83.45(14)	O(12)#4-Y(2)-N(5)	77.06(16)	O(11)#5-Y(2)-N(5)	138.85(16)
O(10)#6-Y(2)-N(5)	144.34(15)	O(9)-Y(2)-N(5)	74.51(14)	O(4)-Y(2)-N(6)	73.74(14)
O(12)#4-Y(2)-N(6)	141.85(15)	O(11)#5-Y(2)-N(6)	78.33(15)	O(10)#6-Y(2)-N(6)	139.08(14)
O(9)-Y(2)-N(6)	78.07(14)	N(5)-Y(2)-N(6)	64.99(17)	O(4)-Y(2)-O(10)	157.25(13)
O(12)#4-Y(2)-O(10)	74.75(13)	O(11)#5-Y(2)-O(10)	70.38(13)	O(10)#6-Y(2)-O(10)	75.36(13)
O(9)-Y(2)-O(10)	52.85(13)	N(5)-Y(2)-O(10)	115.51(13)	N(6)-Y(2)-O(10)	124.54(13)
Y(2)#6-O(10)-Y(2)	104.63(13)				
11					
Tm(1)-O(1)	2.310(6)	Tm(1)-O(2)	2.339(6)	Tm(1)-O(3)#1	2.208(6)
Tm(1)-O(4)#2	2.222(5)	Tm(1)-O(5)	2.412(7)	Tm(1)-O(6)	2.389(7)
Tm(1)-N(1)	2.475(7)	Tm(1)-N(2)	2.498(6)	O(3)#1-Tm(1)-O(4)#2	94.61(19)
O(3)#1-Tm(1)-O(1)	85.4(2)	O(4)#2-Tm(1)-O(1)	136.3(2)	O(3)#1-Tm(1)-O(2)	87.0(2)
O(4)#2-Tm(1)-O(2)	81.10(19)	O(1)-Tm(1)-O(2)	55.26(19)	O(3)#1-Tm(1)-O(6)	149.5(2)
O(4)#2-Tm(1)-O(6)	92.4(2)	O(1)-Tm(1)-O(6)	109.3(3)	O(2)-Tm(1)-O(6)	123.5(2)
O(3)#1-Tm(1)-O(5)	158.5(2)	O(4)#2-Tm(1)-O(5)	88.5(3)	O(1)-Tm(1)-O(5)	77.8(3)
O(2)-Tm(1)-O(5)	72.5(2)	O(6)-Tm(1)-O(5)	51.2(2)	O(3)#1-Tm(1)-N(1)	81.6(2)
O(4)#2-Tm(1)-N(1)	147.0(2)	O(1)-Tm(1)-N(1)	76.4(2)	O(2)-Tm(1)-N(1)	131.0(2)
O(6)-Tm(1)-N(1)	76.4(2)	O(5)-Tm(1)-N(1)	106.9(3)	O(3)#1-Tm(1)-N(2)	81.2(2)
O(4)#2-Tm(1)-N(2)	80.3(2)	O(1)-Tm(1)-N(2)	142.1(2)	O(2)-Tm(1)-N(2)	157.0(2)
O(6)-Tm(1)-N(2)	70.9(2)	O(5)-Tm(1)-N(2)	120.3(2)	N(1)-Tm(1)-N(2)	66.7(2)
12					
Lu(1)-O(1)	2.329(3)	Lu(1)-O(2)	2.296(4)	Lu(1)-O(3)#1	2.185(3)
Lu(1)-O(4)#2	2.214(3)	Lu(1)-O(5)	2.399(5)	Lu(1)-O(6)	2.380(4)
Lu(1)-N(1)	2.462(4)	Lu(1)-N(2)	2.470(4)	O(3)#1-Lu(1)-O(4)#2	94.55(12)
O(3)#1-Lu(1)-O(2)	86.33(15)	O(4)#2-Lu(1)-O(2)	136.29(12)	O(3)#1-Lu(1)-O(1)	86.82(14)
O(4)#2-Lu(1)-O(1)	80.87(12)	O(2)-Lu(1)-O(1)	55.50(12)	O(3)#1-Lu(1)-O(6)	149.69(14)
O(4)#2-Lu(1)-O(6)	91.88(16)	O(2)-Lu(1)-O(6)	108.88(17)	O(1)-Lu(1)-O(6)	123.46(15)
O(3)#1-Lu(1)-O(5)	158.93(14)	O(4)#2-Lu(1)-O(5)	87.71(17)	O(2)-Lu(1)-O(5)	77.75(17)
O(1)-Lu(1)-O(5)	72.83(15)	O(6)-Lu(1)-O(5)	50.79(15)	O(3)#1-Lu(1)-N(1)	81.95(13)
O(4)#2-Lu(1)-N(1)	147.00(13)	O(2)-Lu(1)-N(1)	76.48(13)	O(1)-Lu(1)-N(1)	131.27(12)
O(6)-Lu(1)-N(1)	76.68(16)	O(5)-Lu(1)-N(1)	107.18(17)	O(3)#1-Lu(1)-N(2)	80.83(13)
O(4)#2-Lu(1)-N(2)	80.16(12)	O(2)-Lu(1)-N(2)	142.43(13)	O(1)-Lu(1)-N(2)	156.40(13)
O(6)-Lu(1)-N(2)	71.14(14)	O(5)-Lu(1)-N(2)	120.14(14)	N(1)-Lu(1)-N(2)	66.87(13)

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 -*x*+4/3, -*y*+5/3, -*z*+2/3; #2 *x*-*y*+1, *x*, -*z*+1; #3 -*x*+*y*+1/3, -*x*+5/3, *z*-1/3 for **1**; #1 -*x*+2/3, -*y*+1/3, -*z*+4/3; #2 *x*-*y*, *x*, -*z*+1; #3 -*x*+*y*+2/3, -*x*+1/3, *z*+1/3 for **2**; #1 *x*-*y*+1/3, *z*-1/3, -*z*+2/3; #2 -*x*+1, -*y*+1, -*z*+1; #3 -*x*+*y*+2/3, -*x*+4/3, *z*+1/3 for **3**; #1 -*x*+2, -*y*+1, -*z*; #2 -*x*+1, -*y*+1, -*z*; #3 *x*-1, *y*, *z*; #4 *x*+1, *y*, *z* for **4**; #1 -*x*+2, -*y*, -*z*+1; #2 -*x*+2, -*y*+1, -*z*+1; #3 *x*+1, *y*, *z*; #4 -*x*+1, -*y*+1, -*z*+1; #5 -*x*+2,

-y+1, -z; #6 x-1, y, z for 5; #1 -x, -y+2, -z+2; #2 x, y, z+1; #3 -x+1, -y+2, -z+1; #4 -x+1, -y+2, -z+2; #5 -x+1, -y+1, -z+2; for 6; #1 -x+2, -y+1, -z+1; #2 -x+1, -y+1, -z+1; #3 -x+1, -y+1, -z+2; #4 -x+1, -y+2, -z+1 for 7; #1 -x, -y+2, -z+2; #2 -x+1, -y+2, -z+1; #3 x, y, z+1; #4 -x+1, -y+2, -z+2; #5 -x+1, -y+1, -z+2 for 8; #1 -x+1, -y+1, -z+2; #2 -x+1, -y, -z+1; #3 -x+1, -y+1, -z+1; #4 -x+2, -y+1, -z+2 for 9; #1 -x, -y+2, -z+1; #2 -x-1, -y+2, -z+1; #3 x+1, y, z; #4 -x+1, -y+1, -z; #5 x-1, y, z; #6 -x, -y+1, -z for 10; #1 -x+1, -y+2, -z; #2 x, y-1, z for 11; #1 -x+1, -y+1, -z+2; #2 x, y-1, z for 12.

Table S3 Hydrogen bonds in crystal packing [Å, °] of 1-10.

Complexes	D-HA	d(D-H)	<i>d</i> (HA)	<i>d</i> (DA)	∠DHA	Symmetry code
1	O(9)-H(1W)…O(1)	0.85	2.12	2.974	179.5	
	O(3)-H(3)…N(2)	0.82	1.98	2. 711	148.0	-y + 4/3, x - y + 2/3, z - 1/3
2	O(9)-H(1W)O(5)	0.85	2.09	2.937	179.6	
	O(8)-H(8) …N(1)	0.82	1.87	2.686	174.7	-y + 2/3, x - y + 1/3, z + 1/3
3	O(9)-H(1W)…O(1)	0.85	2.12	2.972	179.3	
	O(3)-H(3)…N(2)	0.82	1.88	2.678	165.4	-y + 2/3, x - y + 1/3, z + 1/3
4	O(3)-H(5)…N(2)	0.82	1.91	2.712	164.3	- <i>x</i> +1, - <i>y</i> , - <i>z</i>
	O(9)-H(1W)…N(1)	0.85	2.00	2.846	179.3	<i>x</i> -1, <i>y</i> , <i>z</i>
	O(9)-H(2W)…O(10)	0.72	2.31	2.895	139.4	
	O(10)-H(3W)···O(1)	0.85	2.05	2.903	179.0	
5	O(13)-H(1W)····O(6)	0.85	1.87	2.723	180.0	<i>-x</i> +2, <i>-y</i> +1, <i>-z</i> +1
	O(13)-H(2W)…N(3)	0.85	1.90	2.748	179.1	
	O(14)-H(3W)····O(5)	0.85	1.96	2.806	179.6	
	O(14)-H(4W)…O(7)	0.85	2.08	2.925	179.8	
	O(15)-H(5W)····O(16)	0.85	1.86	2.713	179.2	
	O(15)-H(6W)····O(8)	0.85	1.73	2.576	179.7	- <i>x</i> +2, - <i>y</i> +1, - <i>z</i>
	O(16)-H(7W)…N(2)	0.85	1.94	2.788	179.8	x, y-1, z
	O(17)-H(9W)····O(9)	0.85	2.01	2.861	179.9	- <i>x</i> +2, - <i>y</i> , - <i>z</i> +1
	O(17)-H(10W)O(13)	0.85	2.05	2.902	180.0	
	O(18)-H(12W)…O(17)	0.85	2.22	3.07	180.0	<i>x</i> , <i>y</i> +1, <i>z</i>
	O(19)-H(13W)…O(10)	0.86	2.28	3.14	175.4	<i>x</i> , <i>y</i> , <i>z</i> +1
6	O(13)-H(1W)N(1)	0.85	1.93	2.763	165.2	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +2
	O(13)-H(2W)O(12)	0.85	1.92	2.773	179.7	<i>x</i> , <i>y</i> , <i>z</i> +1
	O(14)-H(3W)O(11)	0.85	1.95	2.796	171.3	- <i>x</i> +1, - <i>y</i> +2, - <i>z</i> +1
	O(14)-H(4W)O(10)	0.83	2.09	2.844	150.3	
	O(15)-H(5W)O(16)	0.85	1.89	2.737	175.3	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1
	O(15)-H(6W)O(9)	0.85	1.75	2.599	180.0	

Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2013

	O(16)-H(7W)N(3)	0.85	1.96	2.812	179.9	
	O(17)-H(9W)O(4)	0.85	2.00	2.853	179.6	x, y, z–1
	O(17)-H(10W)O(13)	0.85	2.03	2.874	179.6	x, y, z–1
	O(18)-H(11W)O(17)	0.85	2.23	3.085	180.0	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1
	O(18)-H(12W)O(2)	0.85	2.23	3.081	179.9	
	O(19)-H(13W)O(3)	0.85	2.20	3.047	178.1	x, y, z–1
7	O(13)-H(2W)N(1)	0.57	2.30	2.778	143.9	<i>-x</i> +1, <i>-y</i> +2, <i>-z</i> +1
	O(14)-H(3W)O(11)	0.85	1.96	2.808	179.8	
	O(14)-H(4W)O(9)	0.85	1.99	2.837	179.8	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +2
	O(15)-H(5W)O(10)	0.85	1.76	2.605	179.9	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +2
	O(15)-H(6W)…O(16)	0.73	2.06	2.729	153.0	
	O(16)-H(7W)N(3)	0.85	1.97	2.821	179.9	<i>x</i> , <i>y</i> +1, <i>z</i>
	O(17)-H(9W)…O(3)	0.85	2.02	2.872	179.8	
	O(17)-H(10W)…O(13)	0.83	2.25	2.876	132.0	
	O(18)-H(11W)…O(17)	0.85	2.21	3.061	179.5	- <i>x</i> +1, - <i>y</i> +2, - <i>z</i> +1
	O(19)-H(13W)…O(4)	0.85	2.21	3.060	179.8	<i>x</i> , <i>y</i> -1, <i>z</i> +1
8	O(13)-H(1W)…N(1)	0.84	1.93	2.760	165.1	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +2
	O(13)-H(2W)…O(12)	0.85	1.88	2.735	179.7	<i>x</i> , <i>y</i> , <i>z</i> +1
	O(14)-H(3W)…O(10)	0.84	2.11	2.834	143.8	
	O(14)-H(4W)…O(11)	0.85	1.95	2.801	171.7	<i>-x</i> +1, <i>-y</i> +2, <i>-z</i> +1
	O(15)-H(5W)…O(4)	0.85	1.98	2.827	179.6	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +2
	O(16)-H(7W)…N(3)	0.85	1.93	2.783	179.6	
	O(16)-H(8W)…O(15)	0.73	2.06	2.742	155.0	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +1
	O(17)-H(9W)···O(3)	0.85	2.01	2.857	179.2	x, y, z–1
	O(17)-H(10W)…O(13)	0.85	2.03	2.883	179.6	x, y, z–1
	O(18)-H(11W)…O(17)	0.85	2.19	3.036	179.9	<i>-x</i> +1, <i>-y</i> +1, <i>-z</i> +1
	O(18)-H(12W)…O(2)	0.85	2.19	3.044	179.9	
	O(19)-H(13W)O(4)	0.85	2.17	3.023	177.1	x, y, z–1
9	O(13)-H(1W)···O(4)	0.85	1.81	2.658	179.3	<i>x</i> -1, <i>y</i> , <i>z</i>
	O(13)-H(2W)…N(3)	0.85	2.35	3.195	179.5	
	O(14)-H(3W)···O(1)	0.85	1.92	2.774	179.5	
	O(14)-H(4W)…N(1)	0.85	1.87	2.717	179.4	- <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1
10	O(13)-H(1W)O(2)	0.85	1.83	2.683	180.0	<i>x</i> +1, <i>y</i> , <i>z</i>
	O(13)-H(2W)···O(6)	0.85	1.90	2.745	180.0	
	O(14)-H(3W)···O(3)	0.85	2.09	2.938	179.7	<i>x</i> +1, <i>y</i> , <i>z</i>
	O(14)-H(4W)N(4)	0.88	2.51	3.089	123.9	<i>-x</i> , <i>-y</i> +1, <i>-z</i> +1

complexes	λ_{\max}^{a} (nm)	assignment	lifetime (ms)	excited/emission (nm)	quantum yield Φ (%)
2	489	${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{6}$			
	544	$^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{5}$	1.3	331/544	58
	584	$^5\mathrm{D}_4 \to {}^7\mathrm{F}_4$			
	622	$^5\mathrm{D}_4 \rightarrow {}^7\mathrm{F}_3$			
6	488	$^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{6}$			
	542	$^5\mathrm{D}_4 \to {}^7\mathrm{F}_5$	1.0	312/542	20
	582	$^5\mathrm{D}_4 \to {}^7\mathrm{F}_4$			
	621	$^5\mathrm{D}_4 \rightarrow {}^7\mathrm{F}_3$			
6 dehydrated	488	$^5\mathrm{D}_4 \rightarrow {}^7\mathrm{F}_6$			
	542	$^5D_4 \rightarrow {}^7F_5$	1.2	312/542	37
	582	$^5\mathrm{D}_4 \rightarrow {}^7\mathrm{F}_4$			
	621	$^5D_4 \rightarrow {}^7F_3$			
6 re-hydrated	488	$^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{6}$			
	542	$^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{5}$	0.8	312/542	18
	582	$^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{4}$			
	621	${}^{5}D_{4} \rightarrow {}^{7}F_{3}$			

 Table S4 Luminescent Data for Complexes 2 and 6.

 a EX slit = 0.2 nm, and EM slit = 0.2 nm

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is o The Royal Society of Chemistry 2013

Fig. S1 Dinuclear unit in 1. The hydrogen atoms are omitted for clarity.

Fig. S2 The chair conformation resembling cyclohexane. The green balls represent the dinuclear units.

Fig. S3 A perspective of 3D framework along the *c*-axis in 1.

Fig. S4 A perspective of 3D framework along the *b*-axis in 4.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is o The Royal Society of Chemistry 2013

Fig. S5 Tetranuclear unit in 6. The hydrogen atoms are omitted for clarity.

Fig. S6 View of the 3D framework along the *b*-axis in 6. The hydrogen atoms water molecules are omitted for clarity.

Fig. S7 A perspective of 3D framework in 9 along the *bc* plane.

Fig. S8 Y1₂ dinuclear unit in 10. The hydrogen atoms are omitted for clarity. Symmetry code: i = -x,

-y + 2, -z + 1.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is o The Royal Society of Chemistry 2013

-z.

Fig. S9 Y2₂ dinuclear unit. The hydrogen atoms are omitted for clarity. Symmetry code: i = -x, -y + 1,

Fig. S10 A perspective of 2D layer along the *ac* plane. The hydrogen atoms are omitted for clarity.

Fig. S11 A perspective of 3D framework in 11 along the *ac* plane. The hydrogen atoms are omitted for clarity.

Fig. S12 Results of the temperature-dependent powder XRD study of compound 6.

Fig. S13 Drawing of the asymmetric unit of complex **2** (H atoms were omitted for clarity except those bond to O atoms.)

Fig. S14 Drawing of the asymmetric unit of complex **3** (H atoms were omitted for clarity except those bond to O atoms.)

Fig. S15 Drawing of the asymmetric unit of complex 5 (H atoms were omitted for clarity.)

Fig. S16 Drawing of the asymmetric unit of complex 7 (H atoms were omitted for clarity.)

Fig. S17 Drawing of the asymmetric unit of complex 8 (H atoms were omitted for clarity.)

Fig. S18 Drawing of the asymmetric unit of complex 12 (H atoms were omitted for clarity.)