Electronic Supplementary Information

Ring-opening Polymerization of Cyclic Esters with Lithium Amine-bis(phenolate) Complexes

Rebecca K. Dean,^a Amy M. Reckling,^a Hua Chen,^a Louise N. Dawe,^{a,b} Celine M. Schneider^{a,c} and Christopher M. Kozak^{*,a}

^aDepartment of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X7. E-mail: <u>ckozak@mun.ca</u>; Tel: +1-709-864-8082

^bC-CART X-ray Diffraction Laboratory, Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada

^cC-CART NMR Laboratory, Memorial University of Newfoundland, St. John's, Newfoundland, Canada

Figure S1: Molecular structure (ORTEP) and partial numbering scheme for compound 5.	S2
Table S1: Selected bond lengths (Å) and angles (°) for 5.	S 2
Figure S2. ¹ H NMR spectrum of 1 in C_6D_6 at 298 K (500 MHz).	S 3
Figure S3. ¹ H NMR spectrum of 1 in d_8 -toluene at 298 K (500 MHz).	S 3
Figure S4. Portion of the VT ¹ H NMR spectrum of 1 in d_8 -toluene from 248 – 378 K, corresponding methyl and <i>tert</i> -butyl peaks (300 MHz).	g to S4
Figure S5. ¹ H NMR spectrum of 1 in d ₅ -pyridine, forming 3 , at 298 K (500 MHz).	S 4
Figure S6. MALDI-TOF mass spectrum of $\{Li_2[O_2NO]^{BuMe}\}_2$ (1).	S5
Figure S7. ¹ H NMR spectrum for an attempted ROP reaction of β –BL, where M = monomer and P polymer (in CDCl ₃).	= \$5
Figure S8. ¹ H NMR spectra of the methine region for aliquots taken from ROP of LA initiated by complex 1 at 60 °C (300 MHz, $CDCl_3$).	S 6
Figure S9. Typical ¹ H NMR spectrum of $[LA]:[Li]:[BnOH] = 1:100:1$ in CDCl ₃ , 300 MHz (Table 5 entry 9).	5, S7
Figure S10. Typical ¹³ C NMR spectrum of PLA in CDCl ₃ , 300 MHz (Table 5, entry 2).	S 8
Figure S11. Typical ¹ H NMR spectrum of [LA]:[Li]:[BnOH] = 1:50:0 in CDCl ₃ , 300 MHz (Table 5 entry 8) where $M =$ monomer.	5, S9

Figure S1: Molecular structure (ORTEP) and partial numbering scheme for compound **5.** Ellipsoids are shown at 50% probability. Hydrogen atoms and *tert*-amyl groups omitted for clarity.

Li1-N1	2.037	N1-Li1-O5	112.18	
Li1-O1	1.875	O1-Li1-O2	95.79	
Li1-O2	2.068	01-Li1-05	119.93	
Li1-05	1.927	O2-Li1-O5	126.32	
Li2-O1	1.808	O1-Li2-O2	103.34	
Li2-O2	1.924	O1-Li2-O3	138.73	
Li2-O3	1.894	O2-Li2-O3	100.66	
Li3-O2	1.917	O2-Li3-O3	100.03	
Li3-O3	1.919	O2-Li3-O4	152.40	
Li3-04	1.783	O3-Li3-O4	101.80	
Li4-N2	2.053	N2-Li4-O3	98.90	
Li4-O3	2.046	N2-Li4-O4	100.83	
Li4-04	1.878	N2-Li4-O6	107.32	
Li4-06	1.963	O3-Li4-O4	94.08	
N1-Li1-O1	102.14	O3-Li4-O6	128.88	
N1-Li1-O2	95.66	O4-Li4-O6	121.84	

Table S2:	Selected	bond	lengths	(Å)	and	angles	(°)	for	5
				· /			· ·		

Figure S3. ¹H NMR spectrum of **1** in d_8 -toluene at 298 K (500 MHz).

Figure S4. Portion of the VT ¹H NMR spectrum of **1** in d₈-toluene from 248 – 378 K, corresponding to methyl and *tert*-butyl peaks (300 MHz).

Figure S5. ¹H NMR spectrum of 1 in d₅-pyridine, forming 3, at 298 K (500 MHz).

Figure S7. ¹H NMR spectrum for an attempted ROP reaction of β –BL, where M = monomer and P = polymer (in CDCl₃).

Figure S8. ¹H NMR spectra of the methine region for aliquots taken from ROP of LA initiated by complex **1** at 60 °C (300 MHz, CDCl₃).

entry 9).

Figure S10. Typical ¹³C NMR spectrum of PLA in CDCl₃, 300 MHz (Table 5, entry 2).

Figure S11. Typical ¹H NMR spectrum of [LA]:[Li]:[BnOH] = 1:50:0 in CDCl₃, 300 MHz (Table 5, entry 8) where M = monomer.