Supporting Information

Formation and down/up conversion luminescence of Ln³⁺ doped NaY(MoO₄)₂ microcrystals

Ying Li, Guofeng Wang,* Kai Pan, Yang Qu, Shuai Liu, and Li Feng

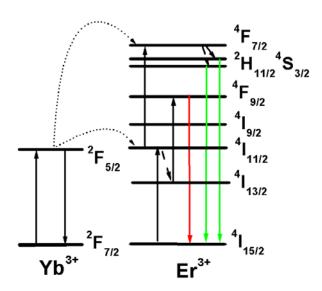

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China. E-mail: wanggf75@gmail.com

Figure S1

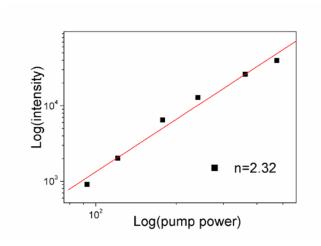

Figure S1. Plots (log-log) of emission intensity versus excitation power in NaY(MoO₄)₂:Yb³⁺/Er³⁺ (Ln(NO₃)₃:Na₂MoO₄=1:5; pH = 4).

Figure S2

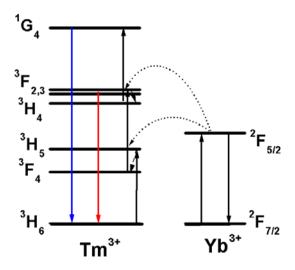

Figure S2. Energy-level and UC schemes for the Yb³⁺–Er³⁺ system.

Figure S3

 $\label{eq:figure S3.} \textbf{Figure S3.} \ \ Plots \ \ (log-log) \ \ of \ \ emission \ \ intensity \ \ versus \ \ excitation \ \ power \ \ in \\ NaY(MoO_4)_2:Yb^{3+}/Tm^{3+} \ (Ln(NO_3)_3:Na_2MoO_4=1:5; \ pH=4).$

Figure S4

Figure S4. Energy-level and UC schemes for the Yb³⁺-Tm³⁺ system.