Electronic supporting information for

Alkali aminoether-phenolate complexes: Synthesis, structural characterization and evidences for an activated monomer ROP mechanism[†]

Sorin C. Roșca,^a Dragoș A. Roșca,^{a,b} Vincent Dorcet,^a Christopher M. Kozak,^c

Francesca M. Kerton,^c Jean-François Carpentier^{*a} and Yann Sarazin^{*a}

Contents

- S1 ¹H NMR spectrum (0-12 ppm) of BnOH in CD_2Cl_2 (500.13 MHz, 298 K)
- S2 ¹H NMR spectrum (0-12 ppm) of L-LA in CD_2Cl_2 (500.13 MHz, 298 K)
- S3 1 H NMR spectrum (0-12 ppm) of {LO}{}^{3}H in CD₂Cl₂ (500.13 MHz, 298 K)
- S4 ¹H NMR spectrum (0-12 ppm) of BnOLi in CD_2Cl_2 (500.13 MHz, 298 K)
- S5 ¹H NMR spectrum (0-12 ppm) of $\{LO^3\}Li$ (**3**) in CD₂Cl₂ (500.13 MHz, 298 K)
- S6 ¹H NMR spectrum (0-12 ppm) of a 1:1 mixture of BnOH and **3** in CD_2Cl_2 (500.13 MHz, 298 K)
- S7 ¹H NMR spectrum (0-12 ppm) of a 5:1 mixture of BnOH and **3** in CD_2Cl_2 (500.13 MHz, 298 K)
- S8 ¹H NMR spectrum (0-12 ppm) of a 1:1:1 mixture of BnOH, L-LA and **3** in CD_2Cl_2 (500.13 MHz, 298 K) leading to the formation of **P**₁
- S9 ¹H NMR spectrum (0-12 ppm) of a 5:5:1 mixture of BnOH, L-LA and **3** in CD_2Cl_2 (500.13 MHz, 298 K) leading to the formation of **P**₁
- S10 ¹H NMR spectrum (0-12 ppm) of a 1:2:1 mixture of BnOH, L-LA and **3** in CD₂Cl₂ (500.13 MHz, 298 K) leading to the formation of **P**₂
- S11 ¹H NMR spectrum (CDCl₃, 500.13 MHz, 298 K) of a PLLA sample prepared with **3**/BnOH (from Table 2, entry 8)
- S12 VT ⁷Li NMR for $\{LO^3\}Li \cdot LiN(SiMe_2H)_2$ (5) in toluene- d_8 (258–353 K)

S1. ¹H NMR spectrum (0-12 ppm) of BnOH in CD₂Cl₂ (500.13 MHz, 298 K)

S2. ¹H NMR spectrum (0-12 ppm) of L-LA in CD₂Cl₂ (500.13 MHz, 298 K)

S3. ¹H NMR spectrum (0-12 ppm) of {LO³}H in CD₂Cl₂ (500.13 MHz, 298 K)

S4. ¹H NMR spectrum (0-12 ppm) of BnOLi in CD₂Cl₂ (500.13 MHz, 298 K)

S5. ¹H NMR spectrum (0-12 ppm) of {LO³}Li (**3**) in CD₂Cl₂ (500.13 MHz, 298 K)

S6. ¹H NMR spectrum (0-12 ppm) of a 1:1 mixture of BnOH and **3** in CD₂Cl₂ (500.13 MHz, 298 K)

S8. ¹H NMR spectrum (0-12 ppm) of a 1:1:1 mixture of BnOH, L-LA and **3** in CD_2Cl_2 (500.13 MHz, 298 K) leading to the formation of **P**₁

S9. ¹H NMR spectrum (0-12 ppm) of a 5:5:1 mixture of BnOH, L-LA and **3** in CD_2Cl_2 (500.13 MHz, 298 K) leading to the formation of **P**₁

S10. ¹H NMR spectrum (0-12 ppm) of a 1:2:1 mixture of BnOH, L-LA and **3** in CD_2Cl_2 (500.13 MHz, 298 K) leading to the formation of P_2

S11. ¹H NMR spectrum (CDCl₃, 500.13 MHz, 298 K) of a PLLA sample prepared with **3**/BnOH (from Table 2, entry 8)

S12 VT ⁷Li NMR for $\{LO^3\}Li \cdot LiN(SiMe_2H)_2$ (5) in toluene- d_8 (258–353 K)

