

Figure S1 TG curves of (a) Pluronic P123 and (b) sulfonated HmSEBmS under air (ramp ratio: 1 °C·min⁻¹), respectively.

Figure S2 XPS spectrum of mesoporous SnO₂ thin film calcined at 400 °C for 4h.

Figure S3 SEM images of Zn-doped SnO₂ monoliths after calcination at 600 °C for 4h. Elemental compositions ($\kappa = \text{Zn}/(\text{Zn}+\text{Sn})$) are (a) 0.08, (b) 0.12, (c) 0.17, and (d) 0.21, respectively.

Figure S4 (a) Transmission small-angle X-ray scattering (SAXS) and (b) wide-angle XRD profiles of Zn-doped SnO₂ monoliths with various elemental compositions ($\kappa = \text{Zn}/(\text{Zn}+\text{Sn})$) calcined at 600 °C for 4h.

Figure S5 N₂ adsorption-desorption isotherms of Zn-doped SnO₂ monoliths with various elemental compositions ($\kappa = \text{Zn}/(\text{Zn}+\text{Sn})$), which were calcined at 600 °C for 4 h. Inset shows the pore-size distribution calculated by the BJH method from the adsorption brunch of isotherms. The fitted normal distribution functions are also noted.

Figure S6 (a) SEM image of Pluronic P123-based mesoporous SnO₂ thin film calcined at 600 °C for 4h. (b) Steady state photoluminescence spectra of P3HT spin coated on the Pluronic P123-based mesoporous SnO₂ thin film.