#### **Electronic Supplementary Information**

### Cu<sup>II</sup>-Azide polynuclear complexes of Cu<sub>4</sub> building clusters with Schiff-Base co-ligands:

#### synthesis, structures, magnetic behavior and DFT studies

Sandip Mukherjee and Partha Sarathi Mukherjee\*

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-

560012, India. Fax: 91-80-23601552; Tel: 91-80-22933352

E-mail: <u>sandipmkj@gmail.com</u>, psm@ipc.iisc.ernet.in.



**Fig. S1.** Powder XRD of the complexes carried out in D8 Advance X-ray diffractometer. The experimental patterns match very well with the simulated ones obtained from X-ray single crystal structure.



**Fig. S2.** Curie-Weiss fitting of complex 1-3. The data presented corresponds to  $Cu_{4}^{II}$  units.

The red solid lines indicate the fitting using theoretical model (see text).



**Fig. S3.** Magnetization *versus* field up to H = 50 kOe (5 T) at 2 K for **1-3.** The data presented corresponds to Cu<sup>II</sup><sub>4</sub> units. Solid lines are only guides for the eye.



Fig. S4. 2D arrangement of the H-bonded clusters of complex 2.

### Mulliken Atomic spin density plots and tables (in au) of all the model

### systems in all of their spin states (for lanl2dz basis set).

Positive and negative spin populations are represented as yellow and green surfaces. The isodensity surfaces correspond to a value of  $0.01 \text{ e/b}^3$ .



| Model IA |
|----------|
|----------|

| Atoms            | Singlet   | Triplet   |
|------------------|-----------|-----------|
| Cu1              | 0.530464  | 0.549435  |
| Cu2              | -0.474973 | 0.484776  |
| N1               | 0.060328  | 0.068834  |
| N2               | 0.076553  | 0.081838  |
| N3               | 0.085017  | 0.088143  |
| N4               | 0.118431  | 0.110404  |
| N5               | -0.053002 | -0.051549 |
| N6               | 0.174106  | 0.168383  |
| N7               | -0.016812 | 0.018535  |
| N7 <sup>i</sup>  | 0.000275  | 0.001786  |
| N8               | 0.002765  | -0.005633 |
| N9               | -0.074792 | 0.082749  |
| N10              | -0.081947 | 0.082596  |
| N10 <sup>i</sup> | -0.047410 | 0.041133  |
| N13              | -0.042005 | 0.040169  |



Model 1B

| Atoms            | Singlet   | Triplet   |
|------------------|-----------|-----------|
| Cu2              | 0.538118  | 0.522375  |
| Cu2 <sup>i</sup> | -0.537858 | 0.524325  |
| N4               | 0.003284  | 0.002169  |
| N4 <sup>i</sup>  | -0.003279 | 0.002138  |
| N7               | 0.036206  | 0.041072  |
| N7 <sup>i</sup>  | -0.036276 | 0.038086  |
| N10              | 0.002245  | 0.108286  |
| N10 <sup>i</sup> | -0.002290 | 0.102965  |
| N11              | 0.000573  | -0.025322 |
| N11 <sup>i</sup> | -0.000568 | -0.029415 |
| N12              | 0.001134  | 0.113042  |
| N12 <sup>i</sup> | -0.001181 | 0.122787  |
| N13              | 0.057720  | 0.060826  |
| N13 <sup>i</sup> | -0.057809 | 0.062558  |



# Model 2A

| Atoms           | Singlet   | Triplet   |
|-----------------|-----------|-----------|
| Cu1             | 0.491357  | 0.527375  |
| Cu2             | -0.434156 | 0.523253  |
| N1              | 0.071908  | 0.085432  |
| N2              | 0.076355  | 0.090700  |
| N3              | 0.082235  | 0.103746  |
| N4              | -0.016130 | -0.044393 |
| N5              | 0.096305  | 0.147569  |
| N6              | -0.082172 | 0.102519  |
| N6 <sup>i</sup> | -0.064614 | 0.069370  |
| N9              | -0.098168 | 0.128459  |
| 01              | 0.047679  | 0.108362  |
| O2              | -0.000242 | 0.000314  |
| O1W             | 0.000468  | 0.000890  |



# Model 2B

| Atoms            | Singlet   | Triplet   |
|------------------|-----------|-----------|
| Cu2              | -0.599619 | 0.589511  |
| Cu2 <sup>i</sup> | 0.599619  | 0.596978  |
| N3               | -0.004009 | 0.011441  |
| N3 <sup>i</sup>  | 0.004009  | 0.003465  |
| N6               | 0.002221  | 0.106320  |
| N6 <sup>i</sup>  | -0.002221 | 0.105227  |
| N7               | 0.003695  | -0.027694 |
| N7 <sup>i</sup>  | -0.003695 | -0.027343 |
| N8               | -0.011387 | 0.114984  |
| N8 <sup>i</sup>  | 0.011387  | 0.113964  |
| N9               | -0.050560 | 0.052039  |
| N9 <sup>i</sup>  | 0.050560  | 0.050481  |
| 01               | -0.086125 | 0.091716  |
| Oli              | 0.086125  | 0.090886  |
| O2               | -0.000112 | 0.000099  |
| O2 <sup>i</sup>  | 0.000112  | 0.000054  |



## Model 3A

| Atoms | Singlet   | Triplet  |
|-------|-----------|----------|
| Cu1   | -0.501257 | 0.524104 |
| Cu2   | 0.546198  | 0.526433 |
| N1    | -0.039778 | 0.078267 |
| N2    | -0.040231 | 0.075153 |
| N3    | -0.081615 | 0.126114 |

| N4  | 0.007669  | -0.049564 |
|-----|-----------|-----------|
| N5  | -0.076619 | 0.150868  |
| N6  | 0.053654  | 0.060023  |
| N9  | 0.049686  | 0.052552  |
| N12 | 0.066529  | 0.081769  |
| N20 | -0.021886 | 0.021815  |
| 01  | -0.014914 | 0.094726  |
| O2  | 0.000172  | 0.000168  |
|     |           |           |



# Model 3B

| Atoms | Singlet   | Triplet   |
|-------|-----------|-----------|
| Cu2   | -0.513226 | 0.580812  |
| Cu3   | 0.509989  | 0.585710  |
| N3    | -0.004907 | 0.012835  |
| N6    | -0.050926 | 0.044506  |
| N9    | -0.009072 | 0.094423  |
| N10   | 0.005527  | -0.023555 |
| N11   | -0.018086 | 0.120093  |
| N12   | 0.002954  | 0.110786  |
| N13   | -0.005315 | -0.026327 |
| N14   | 0.010296  | 0.119512  |
| N15   | 0.054629  | 0.046144  |
| N18   | 0.007614  | 0.010439  |
| 01    | -0.066506 | 0.086041  |
| O2    | -0.000204 | 0.000315  |
| 03    | 0.081589  | 0.095636  |
| 04    | 0.000214  | 0.000212  |



## Model 3C

| Atoms | Singlet   | Triplet   |
|-------|-----------|-----------|
| Cu3   | 0.572122  | 0.521234  |
| Cu4   | -0.507112 | 0.527711  |
| N5    | -0.021554 | 0.022434  |
| N9    | 0.067634  | 0.081123  |
| N12   | 0.052643  | 0.060432  |
| N15   | 0.047671  | 0.052675  |
| N18   | -0.083654 | 0.126555  |
| N19   | 0.007334  | -0.049876 |
| N20   | -0.071122 | 0.150111  |
| N21   | -0.039322 | 0.078534  |
| N22   | -0.040998 | 0.075768  |
| 03    | -0.014665 | 0.094635  |
| O4    | 0.000154  | 0.000155  |