Electronic Supplementary Information

Solvent Dependent Competition between Fluorescence Resonance Energy Transfer and Through Bond Energy Transfer in Rhodamine Appended Hexaphenylbenzene Derivatives for Sensing of Hg²⁺ Ions

Vandana Bhalla*, Varun Vij, Ruchi Tejpal, Gopal Singh and Manoj Kumar* Department of Chemistry, UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India Email Address: <u>vanmanan@yahoo.co.in</u>; mksharmaa@yahoo.co.in

Page No.	Contents
S3-S5	¹ H NMR, ¹³ C NMR and Mass spectrum of compound 3
S6-S8	¹ H NMR, ¹³ C NMR and Mass spectrum of compound 5
S9-S11	¹ H NMR, ¹³ C NMR and Mass spectrum of compound 7
S12-S14	¹ H NMR, ¹³ C NMR and Mass spectrum of compound 10
S15-S17	¹ H NMR, ¹³ C NMR and Mass spectrum of compound 11
S18	Change in absorption spectrum of 7 with Hg^{2+} ions in THF and change in
	fluorescence of 5 on addition of Hg ²⁺ ions in THF.
S19	Change in fluorescence of 7 on addition of Hg^{2+} in THF and overlay of
	fluorescence spectrum of 3 and absorption spectrum of rhodamine B.
S20	Overlay of emission spectrum of 6 and absorption of rhodamine B and effect
	of methanol on fluorescence of solution of compound 5 in THF.
S21	Selectivity and competitive graph of compound 5 and 7 change in fluorescence
	Spectrum of 5 and 7 with Hg^{2+} in THF

- **S22** Change in fluorescence spectrum of **5** with Hg²⁺ in n-butanol and in n-propanol
- **S23** Change in fluorescence spectrum of **5** with Hg^{2+} in ethanol and **7** with Hg^{2+} in n-butanol.
- S24 Change in fluorescence spectrum of 7 with Hg^{2+} in propanol and ethanol.
- **S25** Relative change in fluorescence intensity with concentration of Hg^{2+} ions and reversibility experiment of compound **5**.
- **S26** Reversibility experiment of compound **7** and NMR titrations of **5** with Hg²⁺ ions
- **S27** Jobs plot of compound **5** and cyclic voltammograms of **5** with and without Hg²⁺ ions and fluorescence
- **S28** Spectra of compound **6** in presence and absence of rhodamine B and change in fluorescence of compound **11** on addition of Hg^{2+} ions in THF
- **S29** Formulae for quantum yield and fluorescence efficiency.

¹H NMR of compound 3 (300 MHz, CDCl₃)

¹³C NMR spectrum of compound 3 (75 MHz, CDCl₃)

Mass spectrum of compound 3

¹H NMR spectrum of compound 5 (300MHz, CDCl₃)

¹³C NMR of compound 5 (75 MHz, CDCl₃)

MALDI-TOF of compound 5

¹H NMR spectrum of compound 7 (300 MHz, CDCl₃)

¹³C NMR spectrum of compound 7 (100 MHz, CDCl₃:DMSO; 8:2)

MALDI-TOF of compound 7

¹H NMR spectrum of compound 10 (300 MHz, CDCl₃)

¹³C NMR spectrum of compound 10 (75 MHz, CDCl₃)

MALDI-TOF of compound 10

Mass (m/z)

¹H NMR spectrum of compound 11 (300 MHz, CDCl₃)

¹³C NMR spectrum of compound 11 (75 MHz, CDCl₃)

Mass spectrum of compound 11

Figure S2. Fluorescence response of receptor **5** (1 μ M) on addition of Hg²⁺ (50 eq) in THF, $\lambda_{ex} = 290$ nm. Inset shows the change in the fluorescence of compound **5** on addition of Hg²⁺ ions.

Figure S3. Fluorescence response of receptor **7** (1 μ M) on addition of Hg²⁺ (0-20 eq) in THF, $\lambda_{ex} = 290$ nm. Inset shows the change in the fluorescence of compound **7** on addition of Hg²⁺ ions.

Figure S4 Spectral overlap of the absorption spectrum of rhodamine B (2.0 μ M in THF) and emission spectrum of diamine **3** (2.0 μ M in THF)

Figure S5 The spectral overlay of the absorption spectrum of rhodamine B, $(2.0 \ \mu\text{M} \text{ in acetonitrile})$ and fluorescence spectrum of compound **6** (2.0 μM in acetonitrile).

Figure S6 The fluorescence spectrum of compound 5 (1 μ M) in different ratios of THF and methanol

Figure S7. The selectivity graph of derivative **5** (1 μ M) and **7** (1 μ M) towards Hg²⁺ ions at 585 nm; A = Hg²⁺, B = Pb²⁺, C = Ba²⁺, D = Ag⁺, E = Cd²⁺, F = Zn²⁺, G = Cu²⁺, H = Ni²⁺, I = Co²⁺, J = Fe²⁺, K = Fe³⁺, L = Mn²⁺, M = Ca²⁺, N = K⁺, O = Mg²⁺, P = Na⁺, Q = Li⁺ in THF.

Figure S8. Competitive selectivity of receptor 5 (1.0 μ M) and 7 towards Hg²⁺ ions (20 eq and 60 eq , respectively) in the presence of other metal ions (100 eq) A = none, B = Pb⁺, C = Ba⁺, D = Ag⁺, E = Cd²⁺, F = Zn²⁺, G = Cu²⁺, H = Ni²⁺, I = Co²⁺, J = Fe²⁺, K = Fe³⁺, L = Mn²⁺, M = Ca²⁺, N = K⁺, O = Mg²⁺, P = Na⁺, Q = Li⁺ in methanol.

Figure S9. Fluorescence response of receptor **5** (1 μ M) on addition of Hg²⁺ (0-20 eq) in n-butanol, $\lambda_{ex} = 290$ nm.

Wavelength

Figure S10. Fluorescence response of receptor 5 (1 μ M) on addition of Hg²⁺ (0-20 eq) in n-propanol, λ_{ex} = 290 nm.

Figure S11. Fluorescence response of receptor 5 (1 μ M) on addition of Hg²⁺ (0-20 eq) in ethanol, $\lambda_{ex} = 290$ nm.

Figure S12. Fluorescence response of receptor 7 (1 μ M) on addition of Hg²⁺ (0-60 eq) in n-butanol, $\lambda_{ex} = 290$ nm.

Figure S13. Fluorescence response of receptor 7 (1 μ M) on addition of Hg²⁺ (0-60 eq) in n-propanol, $\lambda_{ex} = 290$ nm.

Figure S15. The change in relative intensity on subsequent addition of Hg^{2+} ions in compound 5 (0.5 μ M in THF) and 7 (0.5 μ M in THF).

Figure S16. Fluorescence spectra showing reversibility of Hg^{2+} coordination to receptor **5** (1 μ M in methanol) by TBAI (100 eq)

Figure S17 Fluorescence spectra showing reversibility of Hg^{2+} coordination to receptor **7** (1 µM in methanol) by TBAI (100 eq).

Figure S18. Partial ¹H NMR spectrum of receptor **5** before (a), after addition of 0.5 equiv. (b), 1.0 equiv. (c) and 2 equiv. (d) of Hg^{2+} ions in CDCl₃:CD₃CN (8:2)

Figure S19. Job's plot for determining the stoichiometry of receptor 5 and Hg^{2+} ion in THF

Figure S20 The cyclic voltammograms for derivative **5** before (A) and after (B) addition of Hg^{2+} ions in 1,2dichloromethane (10⁻³ M solution) using ferrocene as internal standard.

Figure S21. The fluorescence spectrum of compound **6** and equimolar (1 μ M) solution of compound **6** + rhodamine B in methanol at excitation wavelength of $\lambda_{eq} = 290$ nm.

Figure S22 Fluorescence response of receptor 11 (1 μ M) on addition of Hg²⁺ (0-50 eq) in THF, $\lambda_{ex} = 290$ nm.

Resonance energy transfer efficiency $E = [1 - F_D'/F_D]$

 F_D = Fluorescence intensity of free ligand;

 F_D' = Fluorescence intensity of corresponding amine

Equation 1

$$\phi_{fs} = \phi_{fr} \times \frac{1 - 10^{-\text{ArLr}}}{1 - 10^{-\text{AsLs}}} \times \frac{N_s^2}{N_r^2} \times \frac{D_s}{D_r}$$

 ϕ_{fs} = quantum yield of sample; ϕ_{fr} = quantum yield of reference; A_r = Absorbance of reference; A_s = Absorbance of sample; N_R = refractive index of reference; N_S = refractive index of sample; D_s = area under the curve of fluorescence graph of sample; D_R = area under the curve of fluorescence graph of sample; L_R = length of reference.

Equation 2