Electronic Supporting Information

Selenium Containing Imidazolium Salt In Designing Single Source Precursors for Silver Bromide and Selenide Nano-Particles

Hemant Joshi, Kamal Nayan Sharma, Ved Vati Singh, Pradhumn Singh and Ajai K. Singh*

Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India

1. Experimental Section

Genral

¹H, ¹³C{¹H} and ⁷⁷Se{¹H} NMR spectra were recorded on a Bruker Spectrospin DPX 300 NMR spectrometer at 300.13, 75.47 and 57.24 MHz respectively. The chemical shifts are reported in ppm relative to the residual deuterated solvent or the internal standard (tetramethylsilane in case of ¹H, ¹³C{¹H} NMR and Me₂Se for ⁷⁷Se{¹H} NMR). All reactions were carried out in glassware dried in an oven and under N₂ atmosphere at room temperature.

X-ray diffraction data for crystals of **1** was collected on a BRUKER AXS SMART–APEX CCD diffractometer using Mo-K α = 0.71073 Å; radiations monochromator, graphite). Frames were collected at *T* = 298 K by ω , φ , and 2 θ -rotations with full quadrant data collection strategy (four domains each with 600 frames) at 10s per frame with SMART. The measured intensities were reduced to *F*² and corrected for absorption with SADABS.¹ Structure solution, refinement, and data output were carried out with the SHELXTL package by direct methods.² Non-hydrogen atoms were refined anisotropically.

Elemental composition of these phases has been obtained by a Carl ZEISS EVO50 scanning electron microscope (SEM). Sample was mounted on a circular metallic sample holder with a sticky carbon tape, associated EDX system Model QuanTax 200, which is based on the SDD technology and provides an energy resolution of 127 eV at Mn K alpha.

Powder X-ray diffraction (PXRD) studies were carried out on a Bruker D8 Advance diffractometer using Ni-filtered Cu*K* α radiation, scan speed of 1 s and scan step of 0.05°. Transmission electron microscopic (TEM) studies were carried out using a JEOL JEM 200CX TEM instrument operated at 200 kV. The specimens for these studies were prepared by dispersing the powdered sample in ethanol by ultrasonic treatment. Few drops of resulting solution were put on a porous carbon film supported on a copper grid and dried in air. High Resolution Mass Spectral (HR-MS) measurements were performed with electron spray ionization (10 *eV*, 180 °C source temperature) and using sodium formate as calibrant on a Bruker MIcroTOF-Q II, taking sample in CH₃CN.

Chemicals

Oleic acid (OA), octadecylamine (ODA), oleylamine (OM), 1-octadecene (ODE), trioctylphosphine (TOP), Ag₂O, AgBF₄, benzyl bromide procured from Sigma-Aldrich (USA) were used as received. All the solvents of AR grade i.e. 1,2-dichloroethane, dichloromethane,

acetonitrile and ethanol were dried and distilled before use by known standard procedures.³ The 1-(2-chloroethyl)-1H-imidazole was synthesized by reported procedure.⁴

1-(2-(Phenylseleno)ethyl)-1*H*-imidazole (A)

Diphenyldiselenide (0.624 g, 2.0 mmol) dissolved in 30 mL of EtOH was stirred under N₂ atmosphere at room temperature. Sodium borohydride (0.151 g, 4.0 mmol) was added to it as solid and the mixture further stirred for 15 min. When it became colorless due to the formation of PhSeNa, 1-(2-chloroethyl)-1H-imidazole (0.522g, 4.0 mmol) dissolved in 10 cm³ of ethanol was added with constant stirring and the mixture stirred further for 3h. It was extracted with chloroform (4 × 25 mL). The extract was washed with water (3 × 40 mL) and dried over anhydrous sodium sulphate. The solvent was evaporated off under reduced pressure on a rotary evaporator to get 1-(2-(phenylseleno)ethyl)-1H-imidazole (**A**) as yellow oil.

Yield 0.909 g, 90%. ¹H NMR (CDCl₃, 25 °C, vs Me₄Si): δ (ppm): 3.07 (t, ³*J*_{H-H} = 7.2 Hz, 2H, H-5), 4.06 (t, ³*J*_{H-H} = 7.2 Hz, 2H, H₆), 6.84 (s, 1H, H₇), 6.99 (s, 1H, H₈), 7.17–7.24 (m, 3H, H₁& H₂), 7.38 (s, 1H, H₉), 7.41–7.45 (m, 2H, H₃). ¹³C{¹H} NMR (CDCl₃, 25 °C, vs Me₄Si): δ (ppm): 27.4 (C₅), 46.2 (C₆), 127.1 (C₁) 127.1 (C₇), 128.6 (C₈), 128.8 (C₂), 130.8 (C₉), 132.6 (C₃), 136.4 (C₄); ⁷⁷Se{¹H} NMR (CDCl₃, 25 °C, vs Me₂Se); (δ , ppm): 282.60.

3-Benzyl-1-(2-phenylselanyl-ethyl)-3*H*-imidazolium bromide (L)

A (0.502 g, 2.0 mmol) was placed in a Schlenk tube equipped with a magnetic stirrer and benzyl bromide (0.342 g, 2.0 mmol) was added. The mixture was heated for 8 h at 85°C under N₂ atm and thereafter allowed to cool to room temperature. The dark red oil obtained was washed with dry CH₃CN (2 × 40 mL) and dried in vacuo.

Yield 0.802 g, 95%. ¹H NMR (CDCl₃, 25 °C, TMS); (δ , ppm): 3.40 (t, ³*J*_{H-H} = 6.3 Hz, 2H, H₅), 4.55 (t, ³*J*_{H-H} = 6.0 Hz, 2H, H₆), 5.51(s, 2H, H₁₀), 7.20 - 7.46 (m, 11H, H₁,H₂,H₃,H₇,H₁₂,H₁₃&H₁₄), 7.58 (s, 1H, H₈), 10.09 (s, 1H, H₉). ¹³C{¹H} NMR (CDCl₃, 25 °C, TMS); (δ , ppm): 26.9 (C₅), 49.6 (C₆), 52.8 (C₁₀), 121.5 (C₇), 122.6 (C₈), 127.4 (C₁), 128.7 (C₂), 128.9 (C₄), 129.0 (C₁₃&C₁₄), 129.2 (C₁₂), 131.1 (C₁₁), 132.8 (C₃), 136.1 (C₉). ⁷⁷Se {¹H} NMR (CDCl₃, 25 °C, Me₂Se); (δ , ppm): 277.83. HRMS: M-Br (m/z) 343.0723.

Complex 1

L (0.211 g, 0.5 mmol) was dissolved in dry CH_2Cl_2 (20 mL) and solid Ag_2O (0.058 g, 0.25 mmol) was added under N_2 atm. The reaction mixture was stirred overnight in the dark at room temperature. Then the suspension was filtered through a celite pad and the solvent was evaporated under reduced pressure to give a light sensitive white solid **1**.

Yield 0.026 g, 43%. ¹H NMR (DMSO, 25 °C, TMS); (δ , ppm): 3.28 (t, ³*J*_{H-H} = 6.3 Hz, 4H, H₅), 4.38 (t, ³*J*_{H-H} = 6.3 Hz, 4H, H₆), 5.24 (s, 4H, H₁₀), 7.09 (s, 2H, H₇), 7.21–7.27 (m, 12H, H₁,H₂,H₁₃&H₁₄), 7.36–7.39 (m, 10H, H₃, H₈ &H₁₁), 8.80 (s, 2H, H₉). ¹³C{¹H} NMR (CDCl₃, 25 °C, TMS); (δ , ppm): 27.5 (C₅), 51.0 (C₆), 54.1 (C₁₀), 121.9 (C₇), 122.3 (C₈), 126.7 (C₁), 127.5 (C₂), 127.9 (C₄), 128.7 (C₁₄), 129.0 (C₁₃), 129.3 (C₁₂), 131.2 (C₃), 137.1 (C₁₁), 179.2 (C₉). ⁷⁷Se{¹H} NMR (DMSO, 25 °C, Me₂Se); (δ , ppm): 264.70. HR-MS: 343.0729 [PhCH₂-Imi-2CSePh]⁺, and 451.0856 [{Ag(PhCH₂-Imi-2CSePh) }+H]⁺.

Complex 2

Solid AgBF₄ (0.097 g, 0.5 mmol) was added to L (0.211 g, 0.5 mmol, dissolved in 20 mL of CH₂Cl₂). The reaction mixture was stirred for 4h at room temperature. In the resulting mixture, AgBr appeared as white precipitate was filtered off through celite. Solid Ag₂O (0.116 g, 0.5 mmol) was added to colorless filtrate under N₂ atm. in the dark. The reaction mixture was further stirred overnight at room temperature. It was filtered through a celite pad and solvent from filtrate was evaporated under reduced pressure to give a light sensitive white solid **2**.

Yield 0.33 g, 75%. ¹H NMR (DMSO, 25 °C, TMS); (δ , ppm): 3.36 (t, ³*J*_{H-H} = 6.0 Hz, 4H, H₅), 4.35 (t, ³*J*_{H-H} = 6.0 Hz, 4H, H₆), 5.24(s, 4H, H₁₀), 7.19–7.35 (m, 20H, H₁,H₂,H₃,H₁₂,H₁₃&H₁₄), 7.49 (d, 4H, H₇&H₈)., ¹³C{¹H} NMR (DMSO, 25 °C, TMS); (δ , ppm): 28.0 (C₅), 51.9 (C₆), 54.9 (C₁₀), 122.4 (C₇), 122.8 (C₈), 128.7 (C₁), 128.8 (C₂), 129.0 (C₄), 129.4 (C₁₄), 131.3(C₁₃), 131.9 (C₁₂), 134.7 (C₁₁), 137.1 (C₃) 179.6 (C₉). ⁷⁷Se{¹H} NMR (DMSO, 25 °C, Me₂Se); (δ , ppm): 262.07. HRMS: M-BF₄⁻ (m/z) 791.0313.

Synthesis of Silver Bromide Nano-Particles

A slurry containing 0.1 mmol of complex **1**, 10 mmol of octadecylamine (ODA), 10 mmol of 1octadecane (ODE) and 20 mmol of oleic acid (OA), prepared in a three necked flask (100 mL) was heated to 100 °C to remove water and oxygen, The resulting homogeneous brown solution was heated to 200 °C under N₂ and kept at the same temperature for 30 min, affording a dark colloidal solution. The solution was air-cooled and NPs of AgBr were precipitated with excess ethanol. They were washed with ethanol and dried in air at 60 °C.

Synthesis of Silver Selenide Nano-Particles

A slurry containing 0.1 mmol of complex 2, 10 mmol of trioctyphosphine (TOP) and 20 mmol of oleic acid (OA) was prepared and treated by a procedure described above to get the NPs of Ag_2Se .

Figure S1. Synthesis of L, complexes 1 and 2

2. NMR Spectra

Figure S5. ¹H NMR of (L).

Figure S6. ${}^{13}C{}^{1}H{}$ NMR of (L).

Figure S7. HMQC NMR of (L).

Figure S10. $^{13}C{^{1}H}$ NMR of 1.

Figure S11. 77 Se{ 1 H} NMR of 1.

Figure S13. ${}^{13}C{}^{1}H$ NMR of 2

Figure S14. ⁷⁷Se $\{^{1}H\}$ NMR of 2

3. Mass Spectra

In mass spectrum of ligand **L** the peak appearing at 343.0723 corresponds to $[L-Br]^+$ cation. The mass spectrum of complex **1** shows two characteristic peaks at 343.0729 and 451.0856 which correspond to $[L-Br]^+$ and $[Ag\{L-Br\}+H]^+$ cationic fragments respectively. In mass spectrum of complex **2**, peak of $[2-BF_4]^+$ cation appears at 791.0313.

	Mass	Spectrum Sr	nartForm	nula Report			
Analysis Info				Acquisition Date	1/5/2012 12:07:08 PM		
Analysis Name Method Sample Name Comment	D:\Data\JAN_2012\L.d tune_low.m	D:\Data\JAN_2012\L.d une_low.m			Sharma/Singh micrOTOF-Q II 10262		
Acquisition Par	rameter						
Source Type	ESI Not active	ion Polarity Set Capillary	Positive 4500 V	Set Nebulizer Set Dry Heate	0.3 Bar •r 180 °C		
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min		
Scan End	1500 m/z	Set Collision Cell RF	100.0 Vpp	Set Divert Val	ve Source		
	343.0723						

Figure S15. Mass spectra of (L)

Figure S16. Mass spectra of 1.

Figure S17. Mass spectra of 1.

Analysis Name Method Sample Name Comment	D:\Data\APRIL_2012\h1.d tune_wide.m							Operator Sh Instrument / Ser# mi			narma/Singh icrOTOF-Q II 10262				
Acquisition Par Source Type Focus Scan Begin Scan End	ameti	er ESI Active 50 m/z 3000 m/z	lon F Set I Set I	Polarity Capillary End Plate (Collision Co	Offset ell RF	Posi 4500 -500 600	tive) V V 0 Vpp		9999	iet Nebul iet Dry He iet Dry G iet Divert	izer eater as Valve		0.3 Bi 180 °(4.0 l/r Sourc	ar C nin xe	
x100 6- 4- 3 2- 0	15.043	791.	0313		_,,	1500			200)		2500)	,	
Meas m/z	. # :	Formula		m/z	err (pp m]	Me an err [pp m]	rdb	N- R ul e	e [–] Conf	mSi gma	Std I	Std Me an m/ z	Std Va rN or	Std m/ z Diff	Std Com b Dev
791.0313	3 1	C 36 H 36 Ag N 4	Se 2	791.0326	1.6	4.7	20.5	ok	even	38.6	36.8	4.3	5.4	2.7	842.7

Mass Spectrum SmartFormula Report

Bruker Compass DataAnalysis 4.0

printed: 4/16/2012 11:54:28 AM

Page 1 of 1

Figure S18. Mass spectra of 2.

4. Crystal data

Table T1. Structural refinement parameters of 1.

Compounds	1
Empirical formula	$C_{36}H_{38}Ag_2Br_4N_4Se_2$
Formula wt.	1219.96
Crystal size [mm]	0.29×0.25×0.21
Crystal system	Monoclinic
Space group	P 21/c
Unit Cell	a = 11.534(2)Å
dimension	b = 13.521(2)Å
	c = 12.778(2)Å
	$\alpha = 90.00^{\circ}$
	$\beta = 97.081(3)^{\circ}$
	$\gamma = 90.00^{\circ}$
Volume [Å ³]	1977.6(5)
Ζ	2
Density (Calc.) [Mg [·] m ⁻³]	2.049
Absorption coeff. [mm ⁻¹]	6.903
<i>F</i> (000)	1168.0
θ range [°]	2.20–26.97

Index ranges	$-13 \le h \le 13$
	$-16 \le k \le 16$
	$-15 \le l \le 15$
Reflections collected	18117
Independent reflections $(R_{int.})$	3476 (0.0430)
Max./min. Transmission	0.025/0.004
Data/restraints/parameters	3476/0/217
Goodness-of-fit on F^2	1.052
Final R indices	$R_1 = 0.0271,$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.0652$
R indices (all data)	$R_1 = 0.0354,$
	$wR_2 = 0.0683$
Largest diff. peak/hole [e.Å ⁻³]	0.526/-0.625

Bond length [Å]	Bond angle [^o]
Se(1)—C(6) 1.925(4)	Br(1)–Ag(1)–Se(1) 124.65(18)
Se(1)—C(7) 1.952(4)	Br(1)–Ag(1)–Br(2) 111.91(2)
N(1)—C(8) 1.464(4)	Se(1)–Ag(1)–Br(2) 104.86(17)
N(1)—C(9) 1.325(5)	C(8)–N(1)–C(9) 124.3(3)
N(1)—C(10) 1.371(5)	C(9)–N(1)–C(10) 108.8(3)
N(2)—C(9) 1.323(5)	C(8)–N(1)–C(10) 126.9(3)
N(2)—C(11) 1.364(5)	C(9)–N(2)–C(11) 108.3(3)
N(2)—C(12) 1.480(5)	C(9)–N(2)–C(12) 122.8(4)
Se(1)—Ag(1) 2.6633(6)	C(11)–N(2)–C(12) 128.7(4)
Br(1)—Ag(1) 2.6618(6)	C(6)–Se(1)–C(7) 100.17(15)
Br(2)—Ag(1) 2.6501(6)	C(6)–Se(1)–Ag(1) 111.36(11)
Ag(1)—Ag(1) 3.1172(8)	C(7)–Se(1)–Ag(1) 109.69(12)

Table	T2 . Selected bond lengths $[Å]$ and bond angles $[^{\circ}]$ of complex 1

5. SEM-EDX data

Figure S20. SEM - EDX of $(Ag + AgBr + Ag_2Se)$ NPs.

Figure S21. SEM - EDX of Ag₂Se NPs.

6. Powder XRD Data

Each of the powder XRD patterns of both types of NPs was found matching with that of the corresponding known standard phase of the same composition. The powder X-ray diffraction pattern of AgBr NPs was indexes on the basis of a cubic unit cell (JCPDS #79–0149) with the d values (*hkl*): 3.33 (111), 2.88 (200), 2.04 (220), 1.74 (311), 1.66 (222), 1.44 (400), 1.32 (331), 1.29 (420), 1.17 (422), 1.11 (511)

For (Ag + AgBr + Ag₂Se) NPs a cubic unit cell (JCPDS #04–0783) with the d values (*hkl*): 2.35 (111), 2.04 (200), 1.44 (220), 1.23 (311) for Ag NPs, a cubic unit cell (JCPDS #06–0438) with the d values (*hkl*): 3.33 (111), 2.88 (200), 2.04 (220), 1.74 (311), 1.60 (222), 1.44 (400), 1.32 (331), 1.29 (420), 1.29 (420), 1.77 (422) for AgBr NPs, a orthorombic unit cell (JCPDS #24–1041) with the d values (*hkl*): 3.33 (111), 2.89 (102), 2.73 (120), 2.67 (112), 2.58 (121), 2.42 (013), 2.25 (031), 2.23 (122), 2.16 (200), 2.11 (113), 2.08 (201), 2.06 (130), 2.01 (032), 2.00 (211), 1.94 (004), 1.88 (123), 1.87 (014), 1.84 (220), 1.82 (212), 1.76 (221), 1.76 (104), 1.71 (114), 1.66 (222), 1.63 (140), 1.61 (213), 1.60 (230), 1.59 (230), 1.56 (231), 1.50 (223), 1.47 (232), 1.45 (043), 1.44 (204) for Ag₂Se NPs,

For Ag₂Se NPs orthorhombic unit cell (JCPDS # 24–1041) with d values (*hkl*): 3.88 (002), 3.77 (101), 3.69 (110), 3.52 (020), 3.33 (111), 2.89 (102), 2.73 (120), 2.67 (112), 2.58 (121), 2.42 (013), 2.25 (031), 2.23 (122), 2.16 (200), 2.11 (113), 2.08 (201), 2.06 (130), 2.01 (032), 2.00 (211), 1.94 (004), 1.88 (123), 1.87 (014), 1.84 (220), 1.82 (212), 1.79 (221), 1.76 (104), 1.71 (114), 1.66 (222), 1.61 (213), 1.56 (231), 1.50 (223), 1.44 (204), 1.42 (301), 1.41 (214).

Figure S22. PXRD of $(Ag + AgBr + Ag_2Se)$ NPs.

7. TEM images

Figure S23. TEM image of (Ag + AgBr + Ag₂Se) NPs.

References

- 1 SADABS V2.10 (Sheldrick, G. M. 2003).
- 2 (a) Sheldrick, G. M. *Acta Crystallogr., Sect. A: Found. Crystallogr.*, **1990**, 46, 467; (b) Sheldrick, G. M. *SHELXL-NT Version 6.12*, University of Gottingen, Germany, **2000**.
- 3 Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. *Vogel's Textbook of Practical Organic Chemistry*, 5th Eds. ELBS, Longman Group U K Ltd., **1989**.
- 4 Lee, H. M.; Zeng, J. Y.; Hee, C. H.; Lee, M. T. Inorg. Chem., 2004, 43, 6822–6829.