Supporting Information for

Mixed Phosphine/N-Heterocyclic Carbene Palladium Complexes: Synthesis, Characterization and Catalytic use in Aqueous Suzuki-Miyaura Reactions

Thibault E. Schmid, Dale C. Jones, Olivier Songis, Olivier Diebolt, Marc R. L. Furst, Alexandra M. Z. Slawin and Catherine S. J. Cazin*

EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. Fax: +44 1334 463 808 Email: <u>cc111@st-andrews.ac.uk</u>.

Table of contents

General Procedures	S4
NMR spectra of the complexes	S5
¹ H, ³¹ P-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra of [PdCl ₂ (IPr){PPh ₃ }] (2a) ¹ H, ³¹ P-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra of [PdCl ₂ (IPr){PCy) ₃ }] (2b) ¹ H, ³¹ P-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra of [PdCl ₂ (IPr){P(<i>o</i> -tolyl) ₃ }] (2c) ¹ H, ³¹ P-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra of [PdCl ₂ (IPr){P(<i>i</i> -Ad) ₂ ("Bu)}] (2d) ¹ H, ³¹ P-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra of [PdCl ₂ (IPr){PCy ₂ (<i>o</i> -biphenyl)}] (2e) ¹ H, ³¹ P-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra of [PdCl ₂ (IPr)(XPhos)] (2f) ¹ H, ³¹ P-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra of [PdCl ₂ (IPr)(SPhos)] (2g) ¹ H, ³¹ P-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra of [Pd(I ₂ (IPr)(SPhos)] (2g) ¹ H, ³¹ P-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra of [Pd(IPr)(SPhos)] (5) ¹ H, ³¹ P-{ ¹ H} and ¹³ C-{ ¹ H} NMR spectra of [Pd(IPr)(SPhos] (6) ¹ H NMR spectra of [PdCl ₂ (IPr){P(<i>o</i> -tolyl) ₃ }] (2c) at various temperatures (in C ₂ D ₂ Cl ₄) ¹ H NMR spectra of [PdCl ₂ (IPr){PCy ₂ (<i>o</i> -biphenyl)}] (2e) at various temperatures (in C ₂ D ₂ Cl ₄) ¹ H NMR spectra of [PdCl ₂ (IPr)(XPhos] (2f) at increasing temperatures (C ₂ D ₂ Cl ₄)	\$5 \$7 \$9 \$10 \$12 \$13 \$15 \$16 \$18 \$20 \$21 \$22
Kinetic profiling for the Suzuki-Miyaura reaction mediated by 2g and 6	S23
General procedure for the Suzuki-Miyaura reaction	S23
Cross-coupling products (Scheme 3 entries)	824
 4-Methylbiphenyl 3-Phenylanisole 2-Phenylanisole 4-Phenylanisole 2-Methylbiphenyl 2,6-Dimethylbiphenyl 9-Phenylanthracene 2,2'-Dimethylbiphenyl 2,2',6-Trimethylbiphenyl 2,2',4,6-Tetramethylbiphenyl 2,4,6-Trimethyl-2'-methoxybiphenyl 2-o-Tolylbiphenyl 2-Phenyl, 2'-methoxybiphenyl 2-Phenyl, 2'-methoxybiphenyl 9-(2-Methoxybiphenyl) 9-(2-Methoxyphenyl)-anthracene 9-(o-Biphenyl)anthracene 2-Phenylpyridine 3-Phenylpyridine 3-Phenylpyridine 4-Formyl-1,1'-biphenyl 4-Phenyl-7-(trifluoromethyl)quinoline 	S24 S24 S25 S25 S26 S26 S26 S27 S27 S28 S28 S28 S28 S29 S29 S30 S30 S31 S31 S31 S31 S32 S32
NMR spectra of products	S34
 ¹H and ¹³C-{¹H} NMR spectra of 4-methylbiphenyl ¹H and ¹³C-{¹H} NMR spectra of 3-phenylanisole ¹H and ¹³C-{¹H} NMR spectra of 2-phenylanisole ¹H and ¹³C-{¹H} NMR spectra of 2-methylbiphenyl ¹H and ¹³C-{¹H} NMR spectra of 2-methylbiphenyl ¹H and ¹³C-{¹H} NMR spectra of 2,6-dimethylbiphenyl ¹H and ¹³C-{¹H} NMR spectra of 2,2.'-dimethylbiphenyl ¹H and ¹³C-{¹H} NMR spectra of 2,2.',6-trimethylbiphenyl ¹H and ¹³C-{¹H} NMR spectra of 2,2.',6-trimethylbiphenyl ¹H and ¹³C-{¹H} NMR spectra of 2,2.',6-trimethylbiphenyl ¹H and ¹³C-{¹H} NMR spectra of 2,2.',4,6-tetramethylbiphenyl ¹H and ¹³C-{¹H} NMR spectra of 2phenyl-2'-methoxybiphenyl ¹H and ¹³C-{¹H} NMR spectra of 2-phenyl-2'-methoxybiphenyl ¹H and ¹³C-{¹H} NMR spectra of 2-phenyl,4'-methylbiphenyl ¹H and ¹³C-{¹H} NMR spectra of 9-(2-methoxybiphenyl ¹H and ¹³C-{¹H} NMR spectra of 9-(2-methoxybiphenyl ¹H and ¹³C-{¹H} NMR spectra of 9-(2-methoxybiphenyl ¹H and ¹³C-{¹H} NMR spectra of 9-(<i>a</i>-biphenyl)anthracene ¹H and ¹³C-{¹H} NMR spectra of 9-(<i>a</i>-biphenyl)anthracene ¹H and ¹³C-{¹H} NMR spectra of 2-phenylpyridine ¹H and ¹³C-{¹H} NMR spectra of 2-phenylpyridine ¹H and ¹³C-{¹H} NMR spectra of 3-phenylpyridine ¹H and ¹³C-{¹H} NMR spectra of 4-phenylpyridine ¹H and ¹³C-{¹H} NMR spectra of 4-phenylpyridine ¹H and ¹³C-{¹H} NMR spectra of 4-formyl-1,1'-biphenyl 	\$34 \$35 \$36 \$37 \$38 \$39 \$40 \$41 \$42 \$43 \$44 \$45 \$44 \$45 \$46 \$47 \$48 \$49 \$50 \$51 \$52 \$53

Crystal data and structure refinement	S55
$[PdCl_{2}(IPr){PPh_{3}}]$ (2a)	S55
$\left[\operatorname{PdCl}_{2}(\operatorname{IPr})\left\{\operatorname{PCy}_{3}^{\mathcal{I}}\right\}\right](\mathbf{2b})$	S56
$[PdCl_2(IPr){P(o-tolyl)_3}] (2c)$	S57
$[PdCl_2(IPr){P(^{n}Bu)(1-Ad)_2}] \cdot 0.5CH_2Cl_2 (2d)$	S58
$[PdCl_2(IPr){PCy_2(o-biphenyl)}]$ (2e)	S59
$[PdCl_2(IPr)(XPhos)]$ 1.5CH ₂ Cl ₂ (2f)	S60
$[PdCl_2(IPr)(SPhos)]$ (2g)	S61
$\left[Pd(\mu-CI)(CI)(SPhos) \right]_{2} (5)$	S62
[Pd(IPr)(SPhos)] (6)	\$63
%V _{Bur} and topographical steric maps calculated using SambVca	S64
General considerations	S64
$%V_{Bur}$ of IPr in the complex [PdCl ₂ (IPr){PPh ₃ }] (2a)	S64
Steric map of IPr in the complex [PdCl ₂ (IPr){PPh ₃ }] (2a)	S65
$%V_{Bur}$ of PPh ₃ in the complex [PdCl ₃ (IPr){PPh ₃ }] (2a)	S65
Steric map of PPh ₃ in the complex $[PdCL_2(Pr){PPh_3}]$ (2a)	S66
$\sqrt[6]{V_{Bur}}$ of IPT in the complex [PdCl ₂ (IPT){PCy ₃ }(2b)	S6/
Stene map of iFT in the complex $[PdCl_2(IFT)](PCY_3)]$ (20)	508
$\sqrt{v} V_{Bur}$ of ΓCy_3 in the complex $[\Gamma dC_2(\Pi T) (\Gamma Cy_3)] (2b)$ Staric map of PC_4 in the complex $[PdC] (IP_1) PC_2 V J (2b)$	500
$%V_{\rm o}$ of $Prin the complex [PdC] (IP1) P(a-tolv) \frac{1}{2} (20)$	S70
Steric map of IPr in the complex [PdCl_(IPr){ $P(a-tolv)_3$] (2c)	S70
$\% V_{P_{uv}}$ of P(o-tolvl) ₂ in the complex [PdCl ₃ (IPr){P(o-tolvl) ₂ }] (2 c)	S71
Steric map of $P(o-tolyl)_3$ in the complex $[PdCl_2(IPr) \{P(o-tolyl)_3\}]$ (2c)	S72
$%V_{Bur}$ of IPr in the complex [PdCl ₂ (IPr){P(1-Ad) ₂ (ⁿ Bu)}] (2d)	S73
Steric map of IPr in the complex $[PdCl_2(IPr){P(1-Ad)_2(^nBu)}]$ (2d)	S74
$%V_{Bur}$ of P(1-Ad) ₂ ("Bu) in the complex [PdCl ₂ (IPr){P(1-Ad) ₂ ("Bu)}] (2d)	S74
Steric map of $P(1-Ad)_2(^nBu)$ in the complex $[PdCl_2(IPr){P(1-Ad)_2(^nBu)}]$ (2d)	S75
$%V_{Bur}$ of IPr in the complex [PdCl ₂ (IPr){PCy ₂ (<i>o</i> -biphenyl)}] (2e)	S76
Steric map of IPr in the complex $[PdCl_2(IPr){PCy_2(o-biphenyl)}]$ (2e)	S77
$%V_{Bur}$ of P(Cy) ₂ (0-biphenyl) in the complex [PdCl ₂ (IPT){PCy ₂ (0-biphenyl)}] (2e)	5//
Stenc map of PCy2(∂ -bipnenyi) in the complex $[PdCl_2(IPT){PCy_2(\partial-bipnenyi)}]$ (2e)	5/8
$\% v_{Bur}$ of iri in the complex $[rdC_{12}(iri)(Arnos)](2i)$	579
$V_{\rm V}$ of XPhos in the complex [PdC1 (IPr)(XPhos)] (2f)	580
Steric man of XPhos in the complex [PdC]. (IPr)(XPhos)] (2f)	S81
$%V_{\rm Par}$ of IPr in the complex [PdCl ₂ (IPr)(SPhos)] (2 g)	S82
Steric map of IPr in the complex $[PdCl_2(IPr)(SPhos)]$ (2g)	S83
$%V_{\rm Bur}$ of SPhos in the complex [PdCl ₂ (IPr)(SPhos)] (2g)	S83
Steric map of SPhos in the complex $[PdCl_2(IPr)(SPhos)]$ (2g)	S84
$%V_{\text{Bur}}$ of IPr [Pd(IPr)(SPhos)] (6)	S85
Steric map of IPr [Pd(IPr)(SPhos)] (6)	S86
$\% V_{Bur}$ of SPhos of [Pd(IPr)(SPhos)] (6)	S86
Steric map of SPhos of [Pd(IPr)(SPhos)] (6)	S87
References	S88

References

General Procedures

All reactions were performed under an inert atmosphere of argon or nitrogen using standard Schlenk line and glovebox techniques. Solvents were purchased and used as received. Flash column chromatography was performed on silica gel 60 (230-400 mesh). ¹H, ¹³C-{¹H} and ³¹P-{¹H} Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker AC300 or on a Bruker Advance 400 Ultrashield spectrometer between 298 K and 373 K, Gas chromatography (GC) analyses were performed on an Agilent 7890A apparatus equipped with a flame ionization detector and a (5%-phenyl)-methylpolysiloxane column (30 m, 320 um, film: 0.25 µm). All Reagents were purchased and used as received. HRMS samples were submitted to **EPSRC** National Mass Spectrometry Service Centre (http://www.swan.ac.uk/nmssc/index.html). Elemental analyses were performed by the London Metropolitan University Service.

NMR spectra of the complexes

¹H, ³¹P-{¹H} and ¹³C-{¹H} NMR spectra of [PdCl₂(IPr){PPh₃}] (2a)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2013

¹H, ³¹P-{¹H} and ¹³C-{¹H} NMR spectra of [PdCl₂(IPr){P(1-Ad)₂("Bu)}] (2d)

¹H, ³¹P-{¹H} and ¹³C-{¹H} NMR spectra of [PdCl₂(IPr)(XPhos)] (2f)

¹H, ³¹P-{¹H} and ¹³C-{¹H} NMR spectra of [Pd(µ-Cl)(Cl)(SPhos)]₂ (5)

1H NMR spectra of $[PdCl_2(IPr)\{P(\textit{o-tolyl})_3\}]$ (2c) at various temperatures (in $C_2D_2Cl_4)$

¹H NMR spectra of [PdCl₂(IPr){PCy₂(*o*-biphenyl)}] (2e) at various temperatures (in C₂D₂Cl₄)

1H NMR spectra stacking of $[PdCl_2(IPr)(XPhos]$ (2f) at increasing temperatures $(C_2D_2Cl_4)$

Kinetic profiling for the Suzuki-Miyaura reaction mediated by 2g and 6

In a glovebox, a Radley tube was charged with phenylboronic acid (640 mg, 5.25 mmol), sodium hydroxide (300 mg, 7.25 mmol), Pd catalyst (Pd(II) complex: 4.9 mg, $5 \cdot 10^{-3}$ mmol; Pd(0) complex: 4.5 mg, $5 \cdot 10^{-3}$ mmol), and isopropanol (5 ml). Outside the glovebox, the tube was placed on a Radley carousel under argon atmosphere and 4-chlorotoluene (591.5µL, 5 mmol) was added. A sample was taken every 5 minutes during 1 hour, then every 10 minutes during 30 minutes, finally every 30 minutes during 2 hours and 30 minutes. Evolution of the reaction was followed by gas chromatography and conversion was determined ratio of integrals.

Figure S1. Comparison of $[PdCl_2(IPr)(SPhos)](2g)$ with [Pd(IPr)(SPhos)] (6). Reaction conditions: 4-Me-C₆H₄ (5 mmol), PhB(OH)₂ (5.25 mmol), NaOH (7.5 mmol), 2g or 6 0.1 mol% Pd, ^{*i*}PrOH (5 mL), 80°C.

General procedure for the Suzuki-Miyaura reaction

In a glovebox, a 5 mL screwcap-vial fitted with a septum equipped with a magnetic stirring bar was charged with the boronic acid (1.05 mmol), the aryl chloride (if solid, 1.0 mmol) and sodium hydroxide (1.5 mmol). A 0.01 M stock solution of the pre-catalyst was prepared (0.01 mmol in 1 mL THF) and the required volume was injected in the reaction vial. Unless

indicated otherwise, the volume injected was of 30 μ L, which corresponds to a catalyst loading of 0.03 mol%. Outside the glovebox, the aryl chloride (if liquid, 1 mmol) was introduced in the vial, followed by a degassed solution of H₂O:^{*i*}PrOH (9:1) (0.5 mL). The mixture was heated up to 100°C and stirred during 14 hours. CH₂Cl₂ (10 mL) and water (10 mL) were then added to the reaction mixture, the phases were separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 10 mL). The organic phases were then combined, dried over MgSO₄ and the crude product obtained after removing solvent under reduced pressure. The resulting product was purified by flash chromatography.

Cross-coupling products (Scheme 3 entries)

4-Methylbiphenyl¹

The procedure afforded, after flash chromatography on silica gel (pentane), 154 mg (91%) of the product as a colourless solid.

¹H NMR (CDCl₃, 400 MHz): δ 2.41 (s, 3H, CH₃, 3H), 7.22-7.26 (m, 1H, Ph), 7.24-7.29 (m, 2H, Ph), 7.41-7.47 (t, ³*J*_{H-H} = 8.5 Hz, 2H, Ph), 7.48-7.53 (d, ³*J*_{H-H} = 8.5 Hz, 2H, Ph), 7.57-7.62 (m, 2H, Ph), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 21.2 (CH₃), 127.1 (Ar-CH), 127.1 (Ar-CH), 128.8 (Ar-CH), 129.6 (Ar-CH), 137.2 (Ar-C), 138.5 (Ar-C), 141.3 (Ar-C).

3-Phenylanisole² MeO

The procedure afforded, after flash chromatography on silica gel (pentane/EtOAc (95/5)), 181 mg (98%) of the product as a colourless solid.

¹H NMR (CDCl₃, 400 MHz) δ 3.92 (s, 3H, O-CH₃), 6.96-7.02 (m, 1H, Ph), 7.22-7.30 (m, 2H, Ph), 7.40-7.47 (m, 2H, Ph), 7.49-7.55 (m, 2H, Ph), 7.66-7.71 (m, 2H, Ph), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 55.3 (OCH₃), 112.7 (Ar-CH), 113.0 (Ar-CH), 119.8 (Ar-CH), 127.3 (Ar-CH), 127.5 (Ar-CH), 128.8 (Ar-CH), 129.8 (Ar-CH), 141.2 (Ar-C), 142.8 (Ar-C), 160.0 (Ar-C).

2-Phenylanisole²

The procedure afforded, after flash chromatography on silica gel (pentane/EtOAc (95/5)), 175.8 mg (95%) of the product as a colourless oil.

¹H NMR (CDCl₃, 400 MHz) δ 3.88 (s, 3H, O-CH₃), 7.04-7.08 (d, ³*J*_{H-H} = 7.9 Hz, 1H, Ph), 7.09-7.15 (td, ³*J*_{H-H} = 7.9 Hz, ⁴*J*_{H-H} = 1.3 Hz, 1H, Ph), 7.38-7.44 (m, 3H, Ph), 7.47-7.53 (m, 2H, Ph), 7.61-7.65 (m, 2H, Ph), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 55.6 (OCH₃), 111.3 (Ar-CH), 120.9 (Ar-CH), 127.0 (Ar-CH), 128.1 (Ar-CH), 128.7 (Ar-CH), 129.6 (Ar-CH), 130.8 (Ar-C), 131.0 (Ar-CH), 138.6 (Ar-C), 156.5 (Ar-C).

4-Phenylanisole³

The procedure afforded, after a flash chromatography on silica gel (pentane/EtOAc: 95/5) 138 mg (76%) of the title compound as a white powder.

¹H NMR (CDCl₃, 300 MHz) δ 3.89 (s, 3H, O-CH₃), 7.02-7.05 (m, 2H, Ph), 7.33-7.39 (m, 1H, Ph), 7.45-7.50 (m, 2H, Ph), 7.58-7.63 (m, 4H, Ph), ¹³C-{¹H} NMR (CDCl₃ 75.5 MHz) δ 55.4 (OCH₃), 114.3 (Ar-CH), 126.8 (Ar-CH), 126.8 (Ar-CH), 128.3 (Ar-CH), 128.8 (Ar-CH), 133.9 (Ar-C), 140.9 (Ar-C), 159.3 (Ar-C).

2-Methylbiphenyl²

The procedure afforded, after flash chromatography on silica gel (pentane), 155.5mg (92%) of the product as a colourless oil.

¹H NMR (CDCl₃, 400 MHz) δ 2.36 (s, 3H, CH₃), 7.30-7.37 (m, 4H, Ph), 7.38-7.44 (m, 3H, Ph), 7.45-7.52 (m, 2H, Ph), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 20.6 (CH₃), 125.9 (Ar-CH), 126.9 (Ar-CH), 127.4 (Ar-CH), 128.2 (Ar-CH), 129.3 (Ar-CH), 129.9 (Ar-CH), 130.4 (Ar-CH), 135.4 (Ar-C), 142.1 (Ar-C), 142.2 (Ar-C).

2,6-Dimethylbiphenyl⁴

The procedure afforded, after flash chromatography on silica gel (pentane), 159 mg (87%) of the product as a colourless oil.

¹H NMR (CDCl₃, 300 MHz) δ 2.11 (s, 6H, CH₃), 7.13-7.28 (m, 5H Ph), 7.36-7.43 (m, 1H, Ph), 7.45-7.52 (m, 2H, Ph), ¹³C-{¹H} NMR (CDCl₃ 75.5 MHz) δ 21.0 (CH₃), 126.7 (Ar-CH), 127.2 (Ar-CH), 127.4 (Ar-CH), 128.5 (Ar-CH), 129.1 (Ar-CH), 136.2 (Ar-C), 141.2 (Ar-C), 142.0 (Ar-C).

9-Phenylanthracene⁵

The procedure afforded, after a flash chromatography on silicagel (pentane/EtOAc : 95/5) 238 mg (94%) of the title compound as a yellow solid.

¹H NMR (CDCl₃, 400 MHz): δ 7.36-7.38 (m, 2H, Ar-H), 7.44-7.49 (m, 4H, Ar-H), 7.54-7.62 (m, 3H, Ar-H), 7.69 (d, ³*J*_{H-H} = 8.7 Hz, 2H, Ar-H), 8.06 (d, ³*J*_{H-H} = 8.7 Hz, 2H, Ar-H), 8.51 (s, 1H, C¹⁰-H), ¹³C-{¹H} NMR (CDCl₃, 100.6 MHz): δ = 125.4 (Ar-CH), 125.6 (Ar-CH), 126.8 (Ar-CH), 127.1 (Ar-CH), 127.8 (Ar-CH), 128.6 (Ar-CH), 130.5 (Ar-C), 131.5 (Ar-CH), 131.7 (Ar-C), 137.3 (Ar-C), 139.1 (Ar-C).

2,2'-Dimethylbiphenyl⁶

The procedure afforded, after flash chromatography on silica gel (pentane), 160.4 mg (88%) of the product as a colourless oil.

¹H NMR (CDCl₃, 400 MHz) δ 2.11 (s, 6H, CH₃), 7.14-7.18 (m, 2H, Ph), 7.24-7.33 (m, 6H, Ph), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 20.0 (CH₃), 125.7 (Ar-CH), 127.3 (Ar-CH), 129.4 (Ar-CH), 129.9 (Ar-CH), 135.9 (Ar-C), 141.7 (Ar-C).

2,2',6-Trimethylbiphenyl²

The procedure afforded, after flash chromatography on silica gel (pentane), 152 mg (76%) of the product as a colourless oil.

¹H NMR (CDCl₃, 400 MHz) δ 2.07 (s, 6H, CH₃), 2.09 (s, 3H, CH₃), 7.00-7.15 (m, 1H, Ph), 7.20-7.24 (d, ${}^{3}J_{H-H}$ = 8 Hz, 2H, Ph), 7.25-7.30 (m, 1H, Ph), 7.31-7.41 (m, 3H, Ph), 13 C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 19.5 (CH₃), 20.5 (CH₃), 126.2 (Ar-CH), 127.1 (Ar-CH), 127.1 (Ar-CH), 127.4 (Ar-CH), 128.9 (Ar-CH), 130.1 (Ar-CH), 135.7 (Ar-C), 135.9 (Ar-C), 140.7 (Ar-C), 141.2. (Ar-C)

2,2',4,6-Tetramethylbiphenyl⁷

The procedure afforded, after flash chromatography on silica gel (pentane), 157 mg (74%) of the product as a colourless oil.

¹H NMR (CDCl₃, 400 MHz) δ 1.98 (s, 6H, CH₃), 2.04 (s, 3H, CH₃), 2.39 (s, 3H, CH₃), 7.00 (s, 2H, Ph), 7.04-7.13 (d, ³*J*_{H-H}= 0.8 Hz, 1H, Ph), 7.24-7.38 (m, 3H, Ph), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 19.6 (CH₃), 20.3 (CH₃), 21.2 (CH₃), 126.1 (Ar-CH), 127.0 (Ar-CH), 128.1 (Ar-CH), 129.3 (Ar-CH), 130.0 (Ar-CH), 135.8 (Ar-C), 135.9 (Ar-C), 136.4 (Ar-C), 138.3 (Ar-C), 140.7 (Ar-C).

2,4,6-Trimethyl-2'-methoxybiphenyl⁸

The procedure afforded, after flash chromatography on silica gel (pentane/EtOAc (95/5)), 202 mg (89%) of the product as a colourless oil.

¹H NMR (CDCl₃, 400 MHz) δ 2.13 (s, 6H, CH₃), 2.46 (s, 3H, CH₃), 3.85 (s, 3H, O-CH₃), 7.05-7.18 (m, 5H, Ph), 7.41-7.49 (m, 1H, Ph), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 20.5 (CH₃), 21.3 (CH₃), 55.4 (OCH₃), 110.9 (Ar-CH), 120.7 (Ar-CH), 128.1 (Ar-CH), 128.4 (Ar-CH), 129.6 (Ar-CH), 131.1 (Ar-C), 135.4 (Ar-CH), 136.6 (Ar-C), 136.6 (Ar-C), 156.8 (Ar-C).

2-o-Tolylbiphenyl⁹

The procedure afforded, after flash chromatography on silica gel (pentane), 230 mg (94%) of the product as a colourless solid.

¹H NMR (CDCl3, 400 MHz) δ 2.01 (s, 3H, CH₃), 7.12-7.28 (m, 9H, Ph), 7.37-7.41 (d, ${}^{3}J_{H-H}$ = 7.1 Hz, 1H, Ph), 7.44-7.58 (m, 3H, Ph), 13 C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 20.2 (CH₃), 125.4 (Ar-CH), 126.5 (Ar-CH), 127.1 (Ar-CH), 127.2 (Ar-CH), 127.6 (Ar-CH), 127.8 (Ar-CH), 129.5 (Ar-CH), 129.8 (Ar-CH), 130.1 (Ar-CH), 130.7 (Ar-CH), 130.8 (Ar-CH), 135.9 (Ar-CH), 140.4 (Ar-C), 141.1 (Ar-C), 141.4 (Ar-C), 141.5 (Ar-C).

2-Phenyl, 2'-methoxybiphenyl¹⁰

The procedure afforded, after flash chromatography on silica gel (pentane/EtOAc (95/5)), 247 mg (95%) of the product as a colourless solid.

¹H NMR (CDCl₃, 400 MHz) δ 3.39 (s, 3H, O-CH₃), 6.71-6.77 (d, ³*J*_{H-H}=8.5 Hz, 1H, Ph), 6.93-6.99 (t, ³*J*_{H-H}=7.5 Hz, 1H, Ph), 7.15-7.30 (m, 7H, Ph), 7.41-7.52 (m, 4H, Ph), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 55.0 (OCH₃), 110.8 (Ar-CH), 120.5 (Ar-CH), 126.3 (Ar-CH), 127.3 (Ar-CH), 127.5 (Ar-CH), 127.7 (Ar-CH), 128.6 (Ar-CH), 129.1 (Ar-CH), 129.8 (Ar-CH), 130.8 (Ar-C), 131.0 (Ar-CH), 131.7 (Ar-CH), 137.4 (Ar-C), 141.8 (Ar-C), 142.3 (Ar-C), 156.4 (Ar-C).

2-Phenyl, 4'-methylbiphenyl¹¹

The procedure afforded, after flash chromatography on silica gel (pentane), 218 mg (89%) of the product as a colourless solid.

¹H NMR (CDCl₃, 400 MHz) δ 2.35 (s, 3H, CH₃), 7.04-7.11 (m, 4H, Ph), 7.18-7.29 (m, 5H, Ph), 7.41-7.50 (m, 4H, Ph), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 21.2 (CH₃), 126.3 (Ar-CH), 127.4 (Ar-CH), 127.6 (Ar-CH), 128.0 (Ar-CH), 128.7 (Ar-CH), 129.9 (Ar-CH), 130.0 (Ar-CH), 130.7 (Ar-CH), 136.2 (Ar-C), 138.7 (Ar-C), 140.6 (Ar-C), 141.8 (Ar-C).

9-(2-Methoxyphenyl)-anthracene⁸

The procedure afforded, after flash chromatography on silica gel (pentane/EtOAc (95/5)), 196 mg (69%) of the product as a yellow solid.

1H NMR (CDCl₃, 400 MHz) δ 3.62 (s, 3H, O-CH₃), 7.14-7.21 (m, 2H, Ar), 7.24-7.30 (m, 1H, Ar), 7.30-7.38 (m, 2H, Ar), 7.41-7.49 (t, ${}^{3}J_{\text{H-H}}$ = 8 Hz, 2H, Ar), 7.55 (t, ${}^{3}J_{\text{H-H}}$ = 8 Hz, 1H, Ar), 7.64 (d, ${}^{3}J_{\text{H-H}}$ = 8 Hz, 2H, Ar), 8.05 (d, ${}^{3}J_{\text{H-H}}$ = 8 Hz, 2H, Ar), 8.50 (s, 1H, Ar), ${}^{13}\text{C-}\{{}^{1}\text{H}\}$ NMR (CDCl₃ 100.6 MHz) δ 55.7 (OCH₃), 111.4 (Ar-CH), 120.8 (Ar-CH), 125.1 (Ar-CH), 125.3 (Ar-CH), 126.7 (Ar-CH), 126.9 (Ar-CH), 127.4 (Ar-C), 128.5 (Ar-CH), 129.4 (Ar-CH), 130.5 (Ar-C), 131.6 (Ar-C), 133.0 (Ar-CH), 133.9 (Ar-C), 158.1 (Ar-C).

9-(o-Biphenyl)anthracene¹²

The procedure, using 0.06 mol% of catalyst, after flash chromatography on silica gel (pentane/EtOAc (95/5)), afforded 193 mg (58%) of the product as a yellow solid.

¹H NMR (CDCl₃, 400 MHz) δ 6.80-6.88 (m, 3H, Ar), 6.95-7.00 (m, 2H, Ar), 7.29-7.35 (m, 2H, Ar), 7.36-7.44 (m, 3H, Ar), 7.51-7.58 (m, 1H, Ar), 7.60-7.69 (m, 4H, Ar), 7.95 (d, ³J_{H-H} =

8.8 Hz, 2H, Ar), 8.38 (s, 1H, Ar), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 125.0 (Ar-CH), 125.4 (Ar-CH), 126.5 (Ar-CH), 126.6 (Ar-CH), 127.0 (Ar-CH), 127.3 (Ar-CH), 127.5 (Ar-CH), 128.3 (Ar-CH), 128.5 (Ar-CH), 128.5 (Ar-CH), 130.4 (Ar-CH), 130.5 (Ar-C), 131.2 (Ar-C), 132.5 (Ar-CH), 136.3 (Ar-C), 137.1 (Ar-C), 141.3 (Ar-C), 143.3 (Ar-C).

2-Phenylpyridine¹³

The procedure afforded, after flash chromatography on silica gel (CH_2Cl_2), 75 mg (48%) of the product as colourless oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.20-7.27 (m, 1H, Ar), 7.40-7.54 (m, 3H, Ar), 7.72-7.79 (m, 2H, Ar), 7.98-8.06 (m, 2H, Ar), 8.69-8.76 (dt, ${}^{3}J_{\text{H-H}}$ = 6 Hz, ${}^{4}J_{\text{H-H}}$ = 2.0 Hz, 1H, Ar), 13 C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 120.7 (Ar-CH), 122.2 (Ar-CH), 127.0 (Ar-CH), 128.9 (Ar-CH), 129.0 (Ar-CH), 136.9 (Ar-CH), 139.5 (Ar-C), 149.8 (Ar-CH), 157.6 (Ar-C).

3-Phenylpyridine¹⁴

The procedure afforded, after flash chromatography on silica gel (pentane/EtOAc (85/15)), 152mg (98%) of the product as colourless oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.36-7.43 (m, 2H, Ar), 7.47-7.51 (m, 2H, Ar), 7.58-7.60 (m, 2H, Ar), 7.87-7.90 (m, 1H, Ar), 8.61 (d, $J_{\text{H-H}}$ = 3.7 Hz, 1H, Ar), 8.87 (d, $J_{\text{H-H}}$ = 1.5 Hz, 1H, Ar), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 123.7 (Ar-CH), 127.3 (Ar-CH), 128.3 (Ar-CH), 129.2 (Ar-CH), 134.6 (Ar-CH), 136.9 (Ar-CH), 137.9 (Ar-C), 148.3 (Ar-C), 148.4 (Ar-CH).

Diphenylmethane¹⁵

The procedure afforded, after flash chromatography on silica gel (pentane), 90 mg (53%) of the product as colourless oil.

¹H NMR (CDCl₃, 400 MHz) δ 3.94 (s, Ph-CH₂-Ph, 2H), 7.12-7.18 (m, 6H, Ph), 7.21-7.27 (m, 4H, Ph), ¹³C-{¹H} NMR (CDCl₃, 100.6 MHz) δ 42.0 (CH₂), 126.2 (Ar-CH), 128.6 (Ar-CH), 129.0 (Ar-CH), 141.2 (Ar-C).

4-Formyl-1,1'-biphenyl¹⁶

The procedure, using 0.06 mol% of catalyst, after flash chromatography on silica gel (pentane/EtOAc (95/5)), afforded 153 mg (84%) of the product as a crystalline solid.

¹H NMR (CDCl₃, 400 MHz) δ 7.39-7.51 (m, 3H, Ph), 7.61-7.66 (m, 2H, Ph), 7.72-7.76 (dt, ³*J*_{H-H} = 8.3 Hz, *J*_{H-H}=1.3 Hz, 2H, Ph), 7.92-7.97 (dt, ³*J*_{H-H} = 8.3 Hz, ⁴*J*_{H-H} = 1.8 Hz, 2H, Ph), 10.05 (s, 1H, H-C=O), ¹³C-{¹H} NMR (CDCl₃ 100.6 MHz) δ 127.4 (Ar-CH), 127.7 (Ar-CH), 128.5 (Ar-CH), 129.1 (Ar-CH), 130.3 (Ar-CH), 135.2 (Ar-C), 139.7 (Ar-C), 147.2 (Ar-C), 191.9 (C=O).

4-Phenyl-7-(trifluoromethyl)quinoline

The procedure, using 0.06 mol% of catalyst, after a flash chromatography on silica gel (pentane/EtOAc: 1/0 to 95/5) afforded 200 mg (73%) of the title compound as a white solid. ¹H NMR (CDCl₃, 300 MHz): δ 7.42-7.58 (m, 6H, Ar), 7.64-7.67 (m, 1H, Ar), 8.05 (d, ³*J*_{H-H} = 8.8 Hz, 1H, Ar), 8.49 (s, 1H, Ar), 9.02 (d, ³*J*_{H-H} = 4.3 Hz, 1H, Ar), ¹³C NMR (CDCl₃, 75.5 MHz): δ 122.2 (q, ⁴*J*_{C-F} = 3.1 Hz, Ar-CH), 123.0 (s, Ar-CH), 125.8 (s, Ar-C), 127.4 (s, Ar-CH), 123.0 (s, Ar-CH), 125.8 (s, Ar-C), 127.4 (s, Ar-CH), 123.0 (s, Ar-CH), 125.8 (s, Ar-C), 127.4 (s, Ar-CH), 123.0 (s, Ar-CH), 125.8 (s, Ar-C), 127.4 (s, Ar-CH), 125.8 (s, Ar-C), 127.4 (s, Ar-CH), 125.8 (s, Ar-C), 127.4 (s, Ar-CH), 123.0 (s, Ar-CH), 125.8 (s, Ar-C), 127.4 (s, ArCH), 127.8 (q, ${}^{3}J_{C-F} = 4.1$ Hz, Ar-CH), 128.4 (s, Ar-C), 128.9 (s, Ar-CH), 128.9 (s, Ar-CH), 129.5 (s, Ar-CH), 131.2 (q, ${}^{1}J_{C-F} = 32.8$ Hz, Ar-C-*C*F₃), 137.2 (s, Ar-C), 147.8 (s, Ar-C), 148.6 (s, Ar-C), 151.4 (s, Ar-CH). HRMS (CI) calcd. C₁₆H₁₀F₃N: (M + H)⁺, 274.0844; found: (M + H)⁺, 274.0835.

NMR spectra of products

¹H and ¹³C-{¹H} NMR spectra of 4-methylbiphenyl

¹H and ¹³C-{¹H} NMR spectra of 2,4,6-trimethyl-2'-methoxybiphenyl

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

¹H and ¹³C-{¹H} NMR spectra of diphenylmethane

Crystal data and structure refinement

[PdCl₂(IPr){PPh₃}] (2a)

Empirical formula	$C_{45}H_{51}Cl_2N_2PPd$	
Formula weight	828.15	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 12.7651(7) Å	α= 90°
	b = 13.7447(9) Å	β= 90°
	c = 47.075(3) Å	$\gamma = 90^{\circ}$
Volume	8259.4(8) Å ³	
Z	8	
Density (calculated)	1.332 Mg/m ³	
Absorption coefficient	0.650 mm ⁻¹	
F(000)	3440	
Crystal size	0.100 x 0.100 x 0.100 mm	n ³
Theta range for data collection	2.62 to 27.75°.	
Index ranges	$-16 \le h \le 16, -17 \le k \le 17$	$l', -52 \le l \le 60$
Reflections collected	81368	
Independent reflections	17555 [R(int) = 0.0772]	
Completeness to theta = 25.00°	99.4 %	
Absorption correction	Multiscan	
Max. and min. transmission	1.0000 and 0.8295	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	17555 / 0 / 919	
Goodness-of-fit on F ²	1.046	
Final R indices [I>2sigma(I)]	R1 = 0.0546, wR2 = 0.11	94
R indices (all data)	R1 = 0.0587, wR2 = 0.12	21
Absolute structure parameter	0.04(2)	
Largest diff. peak and hole	0.431 and -0.771 e.Å ⁻³	

[PdCl₂(IPr){PCy₃}] (2b)

Empirical formula	$C_{45}H_{69}Cl_2N_2PPd$	
Formula weight	846.29	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)	
Unit cell dimensions	a = 10.687(2) Å	α= 90°
	b = 14.147(3) Å	β= 95.572(6)°
	c = 15.029(3) Å	$\gamma = 90^{\circ}$
Volume	2261.5(7) Å ³	
Ζ	2	
Density (calculated)	1.243 Mg/m ³	
Absorption coefficient	0.595 mm ⁻¹	
F(000)	896	
Crystal size	0.1200 x 0.1200 x 0.100	00 mm ³
Theta range for data collection	2.24 to 25.33°.	
Index ranges	$-8 \le h \le 12, -16 \le k \le 17$	7, $-18 \le l \le 17$
Reflections collected	14317	
Independent reflections	7509 [R(int) = 0.0399]	
Completeness to theta = 25.00°	99.7 %	
Absorption correction	Multiscan	
Max. and min. transmission	1.0000 and 0.7527	
Refinement method	Full-matrix least-square	s on F ²
Data / restraints / parameters	7509 / 1 / 460	
Goodness-of-fit on F ²	0.826	
Final R indices [I>2sigma(I)]	R1 = 0.0419, wR2 = 0.0	953
R indices (all data)	R1 = 0.0498, wR2 = 0.1	116
Absolute structure parameter	-0.02(3)	
Largest diff. peak and hole	1.130 and -0.732 e.Å ⁻³	

[PdCl₂(IPr){P(o-tolyl)₃}] (2c)

Empirical formula	$C_{48}H_{57}Cl_2N_2PPd$		
Formula weight	870.23		
Temperature	93(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	I-4		
Unit cell dimensions	a = 24.122(4) Å	α= 90°	
	b = 24.122(4) Å	β= 90°	
	c = 18.253(3) Å	$\gamma = 90^{\circ}$	
Volume	10620(3) Å ³		
Z	8		
Density (calculated)	1.089 Mg/m ³		
Absorption coefficient	0.509 mm ⁻¹		
F(000)	3632		
Crystal size	0.2000 x 0.2000 x 0.2000 mm ³		
Theta range for data collection	1.19 to 25.32°.		
Index ranges	$\text{-}23 \le h \le 29, \text{-}26 \le k \le 29, \text{-}17$	$\leq l \leq 21$	
Reflections collected	33423		
Independent reflections	9699 [R(int) = 0.0659]		
Completeness to theta = 25.00°	99.9 %		
Absorption correction	Multiscan		
Max. and min. transmission	1.0000 and 0.7469		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	9699 / 0 / 487		
Goodness-of-fit on F ²	1.085		
Final R indices [I>2sigma(I)]	R1 = 0.0541, wR2 = 0.1571		
R indices (all data)	R1 = 0.0652, wR2 = 0.1662		
Absolute structure parameter	-0.01(3)		
Largest diff. peak and hole	0.990 and -0.458 e.Å ⁻³		

$[PdCl_2(IPr){P(^{n}Bu)(1-Ad)_2}] \cdot 0.5CH_2Cl_2 (2d)$

Empirical formula	$C_{51.50}H_{76}Cl_3N_2PPd$	
Formula weight	966.86	
Temperature	125(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 13.854(3) Å	α= 93.602(5)°
	b = 16.741(4) Å	β= 91.002(6)°
	c = 21.852(4) Å	$\gamma = 92.724(7)^{\circ}$
Volume	5051.5(18) Å ³	
Ζ	4	
Density (calculated)	1.271 Mg/m ³	
Absorption coefficient	0.593 mm ⁻¹	
F(000)	2044	
Crystal size	0.21 x 0.18 x 0.03 mm ³	
Theta range for data collection	0.93 to 25.35°.	
$\label{eq:linear} Index \ ranges \qquad -16 \leq h \leq 15, \ -20 \leq k \leq 20, \ -26 \leq l \leq 25$		
Reflections collected	39296	
Independent reflections	18263 [R(int) = 0.1179]	
Completeness to theta = 25.00°	98.8 %	
Absorption correction	Multiscan	
Max. and min. transmission	1.000 and 0.540	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	18263 / 4 / 1059	
Goodness-of-fit on F ²	1.340	
Final R indices [I>2sigma(I)]	R1 = 0.0966, wR2 = 0.2788	
R indices (all data)	R1 = 0.1360, wR2 = 0.3680	
Largest diff. peak and hole	2.829 and -2.955 e.Å ⁻³	

[PdCl₂(IPr){PCy₂(*o*-biphenyl)}] (2e)

Empirical formula	$C_{51}H_{67}Cl_2N_2PPd$	
Formula weight	916.38	
Temperature	93(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 11.928(2) Å	α= 90°
	b = 13.362(3) Å	β= 92.804(5)°
	c = 30.789(5) Å	$\gamma = 90^{\circ}$
Volume	4901(2) Å ³	
Ζ	4	
Density (calculated)	1.242 Mg/m ³	
Absorption coefficient	0.5545 mm ⁻¹	
F(000)	1928.00	
Crystal size	0.10 x 0.10 x 0.10 mm ³	
Theta range for data collection	1.0 to 50.7°.	
Index ranges	$-14 \le h \le 14, -15 \le k \le 1$	6, $-36 \le l \le 36$
Reflections collected	29822	
Independent reflections	8941 [R(int) = 0.0546]	
Completeness to theta = 25.00°	99.9 %	
Absorption correction	Multiscan	
Max. and min. transmission	0.946 and 0.8386	
Refinement method	Full-matrix least-squares	s on F ²
Data / restraints / parameters	8941 / 0 / 514	
Goodness-of-fit on F ²	0.964	
Final R indices [I>2sigma(I)]	R1 = 0.0425, wR2 = 0.0	904
R indices (all data)	R1 = 0.0681, WR2 = 0.0	904
Largest diff. peak and hole	0.44 and -0.51 e.Å ⁻³	

[PdCl₂(IPr)(XPhos)]⁻1.5CH₂Cl₂ (2f)

Empirical formula	$C_{61.50}H_{88}Cl_5N_2PPd$		
Formula weight	1169.96		
Temperature	93(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 12.320(3) Å	α= 103.505(8)°	
	b = 12.759(2) Å	β=104.578(7)°	
	c = 21.547(5) Å	$\gamma = 93.875(9)^{\circ}$	
Volume	3158.4(11) Å ³		
Z	2		
Density (calculated)	1.230 Mg/m ³		
Absorption coefficient	0.567 mm ⁻¹		
F(000)	1234		
Crystal size	0.12 x 0.12 x 0.03 mm ³		
Theta range for data collection	2.02 to 25.39°.		
$\label{eq:linear} Index \ ranges \qquad -14 \leq h \leq 14, \ -12 \leq k \leq 15, \ -25 \leq l \leq 25$			
Reflections collected	32216		
Independent reflections	11488 [R(int) = 0.0479]		
Completeness to theta = 25.00°	99.4 %		
Absorption correction	Multiscan		
Max. and min. transmission	1.000 and 0.849		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	11488 / 2 / 639		
Goodness-of-fit on F ²	1.045		
Final R indices [I>2sigma(I)]	R1 = 0.0808, wR2 = 0.2344		
R indices (all data)	R1 = 0.0913, wR2 = 0.2451		
Largest diff. peak and hole	3.902 and -1.177 e.Å ⁻³		

[PdCl₂(IPr)(SPhos)] (2g)

Empirical formula	$C_{53}H_{71}Cl_2N_2O_2PPd$	
Formula weight	976.39	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 18.580(3) Å	<i>α</i> = 90°
	b = 14.0874(19) Å	β=90.472(3)°
	c = 19.401(3) Å	$\gamma = 90^{\circ}$
Volume	5077.7(12) Å ³	
Ζ	4	
Density (calculated)	1.277 Mg/m ³	
Absorption coefficient	0.542 mm ⁻¹	
F(000)	2056	
Crystal size	0.10 x 0.10 x 0.03 mm ³	
Theta range for data collection	2.10 to 25.36°.	
Index ranges	$-21 \le h \le 22, -16 \le k \le 1$	6, $-23 \le l \le 23$
Reflections collected	50611	
Independent reflections	9288 [R(int) = 0.0564]	
Completeness to theta = 25.00°	99.9 %	
Absorption correction	Multiscan	
Max. and min. transmission	1.000 and 0.893	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	9288 / 0 / 550	
Goodness-of-fit on F ²	1.109	
Final R indices [I>2sigma(I)]	R1 = 0.0504, wR2 = 0.12	297
R indices (all data)	R1 = 0.0596, wR2 = 0.14	409
Largest diff. peak and hole	1.044 and -0.800 e.Å ⁻³	

[Pd(µ-Cl)(Cl)(SPhos)]₂ (5)

Empirical Formula	$C_{52}H_{70}C$	$l_4O_4P_2Pd_2$		
Formula Weight	1175.68			
Crystal Color, Habit	orange,	prism		
Crystal Dimensions	0.120 X	0.120 X 0.050 m	ım	
Crystal System	triclinic			
Lattice Type	Primitiv	e		
Lattice Parameters	a = 9.3	90(10) Å	$\alpha = 103.70(2)^{\circ}$	
	b = 10.4	444(11) Å	$\beta = 103.29(2)^{\circ}$	
	c = 13.8	30(2) Å	$\gamma = 96.525(10)^{\circ}$	
	V = 125	9(3) Å3		
Space Group	P-1 (#2)			
Z value	1			
Dcalc	1.551 g/	cm3		
F000	604.00			
μ(ΜοΚα)	10.347 c	em-1		
Diffractometer	Saturn7)		
Radiation	ΜοΚα ($\lambda = 0.71075 \text{ Å}$)		
Voltage, Current	50kV, 1	6mA		
Temperature	-180.0°C	2		
Detector Aperture	70 x 70	mm		
Pixel Size	0.034 m	m		
20max	50.6°			
No. of Reflections Measu	red	Total: 11553	Unique: 4471 (Rint = 0.1775)	
Corrections	Lorentz	-polarization		
	Absorpt	ion		
	(trans. fa	actors: 0.387 - 0.9	950)	
Structure Solution	Direct N	lethods		
Refinement	Full-ma	trix least-squares	on F2	
Function Minimized	Σw (Fo	2 - Fc2)2		
Least Squares Weights	w = 1/[$\sigma 2(Fo2) + (0.200)$	$00 \cdot P)2 + 0.0000 \cdot P$ where $P = (Max(Fo2,0) + 2Fc2)/3$	
2θmax cutoff	50.6°			
Anomalous Dispersion	All non-	hydrogen atoms		
No. Observations (All ref	lections)	4471		
No. Variables 289				
Reflection/Parameter Rati	o	15.47		
Residuals: R1 (I>2.00o(I))	0.1309		
Residuals: R (All reflection	ons)	0.1367		
Residuals: wR2 (All refle	ctions)	us) 0.3519		
Goodness of Fit Indicator		1.404		
Max Shift/Error in Final G	Cycle	0.003		
Maximum peak in Final I	Diff. Map	$3.78 \text{ e}-/\text{\AA}^3$		
Minimum peak in Final D	oiff. Map	-4.06 e-/Å ³		

[Pd(IPr)(SPhos)] (6)

Empirical formula	$C_{53}H_{71}N_2O_2PPd$	
Formula weight	905.49	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 17.831(2) Å	$\alpha = 90^{\circ}$
	b = 14.5302(19) Å	β=99.784(5)°
	c = 18.802(3) Å	$\gamma = 90^{\circ}$
Volume	4800.7(11) Å ³	
Z	4	
Density (calculated)	1.253 Mg/m ³	
Absorption coefficient	0.461 mm ⁻¹	
F(000)	1920	
Crystal size	0.150 x 0.150 x 0.150 m	m ³
Theta range for data collection	2.02 to 25.35°.	
Index ranges	$-21 \le h \le 18, -17 \le k \le 12$	2, $-21 \le l \le 22$
Reflections collected	25152	
Independent reflections	8670 [R(int) = 0.2327]	
Completeness to theta = 25.00°	99.2 %	
Absorption correction	Multiscan	
Max. and min. transmission	1.0000 and 0.5095	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	8670 / 0 / 532	
Goodness-of-fit on F ²	1.035	
Final R indices [I>2sigma(I)]	R1 = 0.0875, wR2 = 0.21	141
R indices (all data)	R1 = 0.1272, wR2 = 0.25	548
Largest diff. peak and hole	2.118 and -4.074 e.Å ⁻³	

$%V_{Bur}$ and topographical steric maps calculated using SambVca

General considerations

The buried volumes and the steric maps have been calculated on the NHC ligand as in the X-ray structure of the Pd complexes. The points in space defining the steric map were located with the SambVca package developed by Cavallo.¹⁷

To build the steric maps, the optimised geometry of the complexes under analysis has been placed with the Pd center at the origin, with the Pd-NHC or phosphine bonds aligned along the z-axis at positive z values, at a Pd-NHC/P distance of 2.1 Å. The radius *R* of the sphere around the metal centre was set to 3.5 Å, while for the atoms we adopted the Bondi radii¹⁸ scaled by 1.17, and a mesh of 0.1 Å was used to scan the sphere for buried voxels.

https://www.molnac.unisa.it/OMtools/sambvca.php

V_{Bur} of IPr in the complex [PdCl₂(IPr){PPh₃}] (2a)

	Number of atoms : 29				
	Atom that is coordinated : 1				
	Atoms that define the axis · 2				
	ID of these atoms : 28 29				
	Radius of sphere (Angs) : 3.500				
	Distance from sphere (Angs) ~ 210)()			
	Much stop (Angs) \therefore 0.050	10			
	Mesh step (Angs) . 0.050				
	H atoms omitted in the V_bur calcul	atio	n		
C -	utanian ann diantan fanns innat a				
Ca	riesian coordinates from input :	~		~	
С	-135.12400 -46.33000 -7.96600	С	-132.29200 -47.95600 -10.96400	С	-136.64200 -48.76000 -6.45200
С	-132.90800 -46.68800 -7.76900	С	-134.24100 -47.55700 -12.48700	С	-135.04200 -46.05700 -4.21600
С	-133.51900 -47.35200 -6.78500	С	-133.62300 -43.23700 -7.98700	С	-133.87500 -46.60400 -3.37200
С	-133.64900 -45.21600 -9.61500	С	-132.22700 -42.87900 -7.46000	С	-135.82600 -45.04400 -3.40200
С	-133.49900 -43.83700 -9.35800	С	-134.53400 -42.02400 -7.96100	С	-136.54400 -49.27800 -7.87200
С	-133.16800 -43.03500 -10.43600	С	-135.84000 -47.69900 -6.00900	С	-135.27000 -50.09400 -8.08500
С	-132.97700 -43.56000 -11.69300	С	-135.91800 -47.19200 -4.70900	С	-137.77100 -50.07000 -8.29600
С	-133.12000 -44.91100 -11.89100	С	-136.81200 -47.80200 -3.83900	Ν	-133.91500 -46.06800 -8.48900
Ċ	-133 48700 -45 78300 -10 86800	Ċ	-137.59300 -48.86100 -4.24800	N	-134.87600 -47.13500 -6.91500
Ĉ	-133.63600 -47.26200 -11.11600	Č	-137.52700 -49.32000 -5.54100		
	en en la stille in de en en en el el Cle				
At	oms and radius in the parameter file	_			
Н	1.29	С	1.99	Ν	1.81
C2	1.99	N2	1.81	0	1.78
C3	1.99	N3	1.81	F	1.72

Si P	2.45 2.11	S Cl	2.10 2.05	Br	2.16	
Co C C C C C C C C C C C C C C C C C C	ordinates scaled to put the metal at th 1.86329 -0.69442 0.67523 4.07929 -1.05242 0.87223 3.46829 -1.71642 1.85623 3.33829 0.41958 -0.97377 3.48829 1.79858 -0.71677 3.81929 2.60058 -1.79477 4.01029 2.07558 -3.05177 3.86729 0.72458 -3.24977 3.50029 -0.14742 -2.22677	ne or C C C C C C C C C C	rigin 4.69529 -2.32042 -2.32277 2.74629 -1.92142 -3.84577 3.36429 2.39858 0.65423 4.76029 2.75658 1.18123 2.45329 3.61158 0.68023 1.14729 -2.06342 2.63223 1.06929 -1.55642 3.93223 0.17529 -2.16642 4.80223 -0.60571 -3.22542 4.39333	C C C C C C N N	0.34529 -3.12442 2.18923 1.94529 -0.42142 4.42523 3.11229 -0.96842 5.26923 1.16129 0.59158 5.23923 0.44329 -3.64242 0.76923 1.71729 -4.45842 0.55623 -0.78371 -4.43442 0.34523 3.07229 -0.43242 0.15223 2.11129 -1.49942 1.72623	
C	3.35129 -1.62642 -2.47477	C	-0.53971 -3.68442 3.10023	XX	0.00000 0.00000 0.00000	
Results : Volumes in Angs^3 N of voxels examined : 1436277 Volume of voxel : 0.125E-03						

V Free V Buried V Total V Exact 117.976 61.559 179.535 179.594

%V_Free %V_Bur % Tot/Ex 65.712 34.288 99.967

The %V_{Bur} of *IPr* is: **34.3**

Steric map of IPr in the complex [PdCl₂(IPr){PPh₃}] (2a)

% V_{Bur} of PPh₃ in the complex [PdCl₂(IPr){PPh₃}] (2a)

Number of atoms: 19Atom that is coordinated: 19Atoms that define the axis: 3ID of these atoms: 1 7 13

Radius of sphere (Angs): 3.500Distance from sphere (Angs): 2.100Mesh step (Angs): 0.050

H atoms omitted in the V_bur calculation

Cartesian coordinates from input :

С	-133.20000 -40.70700 42.97400	С	-135.00600 -41.65700 40.58900) C	-133.95300 -44.58700	46.04700
С	-133.58400 -40.15600 44.16900	С	-135.99800 -41.88200 39.63600) C	-135.30400 -44.39000	46.25900
С	-133.41300 -38.79700 44.41700	С	-136.49300 -43.14300 39.44500) C	-136.03200 -43.62000	45.39000
С	-132.84100 -38.00900 43.46700	С	-136.01800 -44.19900 40.18100) C	-135.42900 -43.04300	44.30900
С	-132.45000 -38.52700 42.27000	С	-135.01100 -43.97400 41.13300) P	-133.26000 -42.48000	42.63000
С	-132.62500 -39.88300 42.00500	С	-134.06400 -43.22100 44.06800)		
С	-134.53100 -42.69600 41.33700	С	-133.34900 -44.00700 44.95200)		
• •						
Ato	oms and radius in the parameter file					
Н	1.29	N3	1.81	Р	2.11	
C2	1.99	Ν	1.81	S	2.10	
C3	1.99	0	1.78	Cl	2.05	
С	1.99	F	1.72	Br	2.16	
N2	1.81	Si	2.45			
Co	pordinates scaled to put the metal at the	he c	rigin			
С	-1.83900 2.54203 0.80485	С	-3.64500 1.59203 -1.58015	С	-2.59200 -1.33797	3.87785
С	-2.22300 3.09303 1.99985	С	-4.63700 1.36703 -2.53315	С	-3.94300 -1.14097	4.08985
С	-2.05200 4.45203 2.24785	С	-5.13200 0.10603 -2.72415	С	-4.67100 -0.37097	3.22085
С	-1.48000 5.24003 1.29785	С	-4.65700 -0.94997 -1.98815	С	-4.06800 0.20603 2	2.13985
С	-1.08900 4.72203 0.10085	С	-3.65000 -0.72497 -1.03615	Р	-1.89900 0.76903 0	0.46085
С	-1.26400 3.36603 -0.16415	С	-2.70300 0.02803 1.89885	XX	0.00000 0.00000	0.00000

C -1.98800 -0.75797 2.78285

Results : Volumes in Angs^3

C -3.17000 0.55303 -0.83215

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 122.485 57.050 179.535 179.594

%V_Free %V_Bur % Tot/Ex 68.223 31.777 99.967

The $%V_{Bur}$ of *PPh*₃ is: **31.8**

Steric map of PPh₃ in the complex [PdCl₂(IPr){PPh₃}] (2a)

S66

% V_{Bur} of IPr in the complex [PdCl₂(IPr){PCy₃}] (2b)

Number of atoms:29Atom that is coordinated:1Atoms that define the axis:2ID of these atoms:2829

Radius of sphere (Angs): 3.500Distance from sphere (Angs): 2.100Mesh step (Angs): 0.050H atoms omitted in the V_bur calculation

Cartesian coordinates from input :

С	28.96000 -17.49800 46.4	3000	С	31.00100 - 15.87400	43.05600	С	26.20500 -17.00300	48.22900
С	29.85100 -15.42500 46.4	5400	С	30.95100 - 18.29800	42.40700	С	26.06900 -16.39700	44.41400
С	28.53700 -15.28000 46.6	5300	С	31.99900 - 17.08600	48.52200	С	25.91100 -14.91700	44.10000
С	31.41100 -17.31300 46.0	4000	С	32.55400 - 15.71500	48.86600	С	25.25700 -17.23800	43.40900
С	31.75900 -17.58900 44.7	1300	С	32.54900 - 18.11900	49.51900	С	27.20400 -17.00400	49.37800
С	33.05400 - 18.05400 44.4	5800	С	26.57600 - 16.79200	46.89400	С	27.08400 -15.67100	50.12900
С	33.96100 - 18.22500 45.4	7800	С	25.67400 - 16.70000	45.85000	С	26.92000 -18.16200	50.34200
С	33.60700 -17.93400 46.7	6500	С	24.31700 - 16.82600	46.17100	Ν	30.11000 - 16.77800	46.30500
С	32.34400 -17.46300 47.0	8700	С	23.91300 - 17.04400	47.47500	Ν	27.99400 -16.55700	46.63100
С	30.79100 -17.29600 43.5	6100	С	24.85400 -17.12000	48.49100			

P 2.11 S 2.10 Cl 2.05 Br 2.16

Atoms and radius in the parameter file

Н	1.29	N3	1.81
C2	1.99	Ν	1.81
C3	1.99	0	1.78
С	1.99	F	1.72
N2	1.81	Si	2.45

Coordinates scaled to put the metal at the origin

С	2.06198	2.28708	-2.77360	С	-3.87502	2.46308	2.15640	XX	0.00000	0.00000	0.00000
С	3.61498	2.12008	0.75240	С	-4.81602	2.53908	1.14040	Ν	-0.73502	3.02608	0.29640
С	4.87798	1.64908	0.43040	С	-4.41202	2.75708	-0.16360	Ν	1.38098	2.80508	-0.02960
С	5.23198	1.35808	-0.85660	С	-3.05502	2.88308	-0.48460	С	-1.80902	1.42108	4.00740
С	4.32498	1.52908	-1.87660	С	-2.15302	2.79108	0.55940	С	-1.64502	3.91208	3.79440
С	3.02998	1.99408	-1.62160	С	3.81998	1.46408	3.18440	С	-1.52502	2.57908	3.04340
С	2.68198	2.27008	-0.29460	С	3.82498	3.86808	2.53140	С	-3.47202	2.34508	-2.92560
С	-0.19202	4.30308	0.31840	С	3.26998	2.49708	2.18740	С	-2.81802	4.66608	-2.23460
С	1.12198	4.15808	0.11940	С	2.22198	1.28508	-3.92760	С	-2.66002	3.18608	-1.92060
С	0.23098	2.08508	0.09540	С	2.27198	3.70908	-3.27860	С	-2.52402	2.58008	1.89440
					-						

Results : Volumes in Angs^3

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 121.820 57.715 179.535 179.594

%V_Free %V_Bur % Tot/Ex 67.853 32.147 99.967

The $%V_{Bur}$ of *IPr* is: **32.1**

Steric map of IPr in the complex [PdCl₂(IPr){PCy₃}] (2b)

% V_{Bur} of PCy₃ in the complex [PdCl₂(IPr){PCy₃}] (2b)

Number of atoms :	1	9	
Atom that is coordinated	:	19	
Atoms that define the axis	:	3	
ID of these atoms :	1	7	13

Radius of sphere (Angs) : 3.500 Distance from sphere (Angs): 2.100 Mesh step (Angs) : 0.050 H atoms omitted in the V_bur calculation

Cartesian coordinates from input :

	1					
С	28.99900 -22.82600 47.52400	С	28.10200 - 23.96200 4	4.33900	С	24.00000 -21.59700 45.81000
С	28.44700 -24.23500 47.77100	С	28.11500 -24.29000 4	2.84000	С	23.66900 - 20.88400 47.12600
С	29.14800 -24.89500 48.97300	С	29.46500 -23.93700 4	2.19900	С	24.53400 -21.40300 48.23600
С	30.64400 -24.92300 48.78800	С	29.86200 - 22.50000 4	2.48500	С	26.01100 -21.28200 47.89500
С	31.21100 -23.52200 48.53800	С	29.84600 - 22.19100 4	3.97600	Р	28.17700 - 21.78800 46.23800
С	30.52300 - 22.87900 47.33100	С	26.35800 -21.98600 4	6.57600		
С	28.43600 - 22.47400 44.55400	С	25.46800 -21.45700 4	5.44800		

Atoms and radius in the parameter file

Н	1.29	N3	1.81	Р	2.11
C2	1.99	Ν	1.81	S	2.10
C3	1.99	0	1.78	Cl	2.05
С	1.99	F	1.72	Br	2.16
N2	1.81	Si	2.45		

Coordinates scaled to put the metal at the origin

		1		0		
С	0.06956 -2.99761	1.22483	С	-0.82744 -4.13361 -1.96017	C C	-4.92944 -1.76861 -0.48917
С	-0.48244 -4.40661	1.47183	С	-0.81444 -4.46161 -3.45917	C C	-5.26044 -1.05561 0.82683
С	0.21856 -5.06661	2.67383	С	0.53556 -4.10861 -4.10017	С	-4.39544 -1.57461 1.93683
С	1.71456 -5.09461	2.48883	С	0.93256 -2.67161 -3.81417	С	-2.91844 -1.45361 1.59583
С	2.28156 -3.69361	2.23883	С	0.91656 -2.36261 -2.32317	Р	-0.75244 -1.95961 -0.06117
С	1.59356 -3.05061	1.03183	С	-2.57144 -2.15761 0.27683	XX	0.00000 0.00000 0.00000
С	-0.49344 -2.64561	-1.74517	С	-3.46144 -1.62861 -0.85117		

Results : Volumes in Angs^3								
N of voxels exami Volume of voxel	ned : 14 : 0.125	36277 5E-03						
V Free V Buried 116.367 63.168	V Total V 179.535 17	Exact 9.594						
%V_Free %V_B 64.816 35.184	ur % Tot/Ex 99.967	Ĭ						

The % V_{Bur} of *PCy*₃ is: **35.2**

Steric map of PCy₃ in the complex [PdCl₂(IPr){PCy₃}] (2b)

V_{Bur} of IPr in the complex [PdCl₂(IPr){P(*o*-tolyl)₃}] (2c)

Number of atoms:29Atom that is coordinated:1Atoms that define the axis:2ID of these atoms:2829

Radius of sphere (Angs): 3.500Distance from sphere (Angs): 2.100Mesh step (Angs): 0.050H atoms omitted in the V bur calculation

Cartesian coordinates from input :

С	4.86400 93.57400	-1.31700	С	6.23900	94.88500	2.29100	С	1.62900	93.70800	-0.37000	
С	5.35100 95.76900	-1.05600	С	6.82900	92.54300	2.62900	С	2.74200	93.76500	-4.05700	
С	4.03300 95.67800	-1.23800	С	7.86200	94.82500	-3.21100	С	2.39800	95.16900	-4.58400	
С	7.25200 94.18800	-0.81300	С	8.14900	96.36800	-3.36300	С	2.55400	92.72800	-5.16500	
С	7.59200 93.78100	0.48900	С	8.61700	94.05000	-4.25400	С	2.11300	94.18300	0.97700	
С	8.92900 93.58800	0.75100	С	2.39200	93.80600	-1.53900	С	1.52100	95.56000	1.29900	
С	9.86200 93.78100	-0.17100	С	1.91600	93.47800	-2.79400	С	1.76700	93.20200	2.14100	
С	9.54900 94.22600	-1.45000	С	0.61400	92.95700	-2.87800	Ν	5.86000	94.47800	-1.08900	
С	8.20300 94.39300	-1.79500	С	-0.13100	92.81000	-1.73500	Ν	3.73500	94.32100	-1.40400	
С	6.55200 93.59800	1.59000	С	0.32500	93.19900	-0.50500					
Ato	A toms and radius in the parameter file										

	nie and ruurus in the purameter inte				
Н	1.29	N3	1.81	Р	2.11
C2	1.99	Ν	1.81	S	2.10
C3	1.99	0	1.78	Cl	2.05
С	1.99	F	1.72	Br	2.16
N2	1.81	Si	2.45		

Coordinates scaled to put the metal at the origin

			1		•						
С	-0.16802	2.08568	0.17812	С	1.20698	3.39668	3.78612	С	-3.40302	2.21968	1.12512
С	0.31898	4.28068	0.43912	С	1.79698	1.05468	4.12412	С	-2.29002	2.27668	-2.56188
С	-0.99902	4.18968	0.25712	С	2.82998	3.33668	-1.71588	С	-2.63402	3.68068	-3.08888
С	2.21998	2.69968	0.68212	С	3.11698	4.87968	-1.86788	С	-2.47802	1.23968	-3.66988
С	2.55998	2.29268	1.98412	С	3.58498	2.56168	-2.75888	С	-2.91902	2.69468	2.47212
С	3.89698	2.09968	2.24612	С	-2.64002	2.31768	-0.04388	С	-3.51102	4.07168	2.79412
С	4.82998	2.29268	1.32412	С	-3.11602	1.98968	-1.29888	С	-3.26502	1.71368	3.63612
С	4.51698	2.73768	0.04512	С	-4.41802	1.46868	-1.38288	Ν	0.82798	2.98968	0.40612
С	3.17098	2.90468	-0.29988	С	-5.16302	1.32168	-0.23988	Ν	-1.29702	2.83268	0.09112
С	1.51998	2.10968	3.08512	С	-4.70702	1.71068	0.99012	XX	0.00000	0.00000	0.00000

Results : Volumes in Angs^3

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 120.563 58.972 179.535 179.594

%V_Free %V_Bur % Tot/Ex 67.153 32.847 99.967

The $%V_{Bur}$ of your *IPr* is: **32.8**

Steric map of IPr in the complex [PdCl₂(IPr){P(*o*-tolyl)₃}] (2c)

V_{Bur} of P(*o*-tolyl)₃ in the complex [PdCl₂(IPr){P(*o*-tolyl)₃}] (2c)

Number of atoms : 22 Atom that is coordinated : 22 Atoms that define the axis : 3 ID of these atoms : 1 8 15 Radius of sphere (Angs) : 3.500 Distance from sphere (Angs): 2.100 Mesh step (Angs) : 0.050 H atoms omitted in the V bur calculation Cartesian coordinates from input : 5.09900 88.10900 -0.56700 7.98400 87.70000 -2.11400 2.85800 88.51500 -4.82000 С C C С 5.72100 88.15900 0.70500 С 9.38300 87.61700 -2.14200 С 3.58700 87.92700 -5.78400 С 5.30900 87.24600 1.67300 С 10.19500 88.76100 -2.13700 С 4.93700 87.71400 -5.57800 С 4.33600 86.27400 1.39700 С 9.60600 89.98000 -2.14700 5.52600 88.13900 -4.40600 С C C C C 3.73300 86.22600 0.15400 8.21100 90.10900 -2.08900 2.52600 89.58900 -2.55100 С 4.10700 87.13300 -0.81400 7.19700 86.40200 -2.05000 р 5.59000 89.28700 -1.86700 С 6.83100 89.13400 1.04100 С 4.76900 88.71300 -3.39600 7.37900 88.96200 -2.07300 С 3.39900 88.93600 -3.58200 Atoms and radius in the parameter file Н 1.29 N3 1.81 Р 2.11 C2 1.99 Ν 1.81 2.10 S C3 1.99 0 1.78 Cl 2.05 С 1.99 F 1.72 Br 2.16 N2 1.81 Si 2.45 Coordinates scaled to put the metal at the origin -0.03045 -3.18337 0.880002.85455 -3.59237 -0.66700 С -2.27145 -2.77737 -3.37300 С С С 0.59155 -3.13337 2.15200 4.25355 -3.67537 -0.69500 -1.54245 -3.36537 -4.33700 С С Ċ 0.17955 -4.04637 3.12000 С 5.06555 -2.53137 -0.69000 С -0.19245 -3.57837 -4.13100 C -0.79345 -5.01837 2.84400С 4.47655 -1.31237 -0.70000 С 0.39655 -3.15337 -2.95900 С -1.39645 -5.06637 1.60100 С 3.08155 -1.18337 -0.64200 С -2.60345 -1.70337 -1.10400 0.46055 -2.00537 -0.42000 С -1.02245 -4.15937 0.63300 С 2.06755 -4.89037 -0.60300 Р C C C C 1.70155 -2.15837 2.48800 -0.36045 -2.57937 -1.94900 XX 0.00000 0.00000 0.00000 2.24955 -2.33037 -0.62600 -1.73045 -2.35637 -2.13500

Results : Volumes in Angs^3

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 109.594 69.941 179.535 179.594

%V_Free %V_Bur % Tot/Ex 61.043 38.957 99.967

The %V_Bur of $P(o-tolyl)_3$ is: **39.0**

Steric map of P(o-tolyl)₃ in the complex [PdCl₂(IPr){P(o-tolyl)₃}] (2c)

%V_{Bur} of IPr in the complex [PdCl₂(IPr){P(1-Ad)₂(ⁿBu)}] (2d)

Number of atoms:29Atom that is coordinated:1Atoms that define the axis:2ID of these atoms:2829

Radius of sphere (Angs): 3.500Distance from sphere (Angs): 2.100Mesh step (Angs): 0.050H atoms omitted in the V bur calculation

Cartesian coordinates from input :

С	33.64000 -52.00100 -22.72600	С	30.86400 - 54.34700 - 19.69200	С	36.83500 - 50.82400 - 23.05600
С	32.63400 -50.32500 -21.62800	С	30.27000 -51.90800 -19.45900	С	35.56000 - 52.83600 - 20.05400
С	33.95900 -50.14400 -21.47500	С	31.27400 -50.80300 -24.94500	С	35.90100 - 54.30800 - 19.64200
С	31.20100 -52.05200 -22.71900	С	30.83400 -49.40000 -24.52500	С	35.64200 - 51.93500 - 18.83800
С	30.57800 -52.81800 -21.76900	С	30.97500 -51.04900 -26.42600	С	36.36500 - 49.73400 - 24.01300
С	29.38700 -53.52100 -22.17400	С	35.99800 -51.45400 -22.13000	С	36.51400 - 48.35500 - 23.36600
С	28.90700 -53.40200 -23.44500	С	36.48200 -52.33900 -21.16500	С	37.05000 - 49.73200 - 25.36700
С	29.53000 -52.52600 -24.34100	С	37.83600 -52.65200 -21.17600	Ν	32.46200 - 51.46600 - 22.38600
С	30.66000 -51.84200 -24.01300	С	38.67600 -52.10600 -22.13500	Ν	34.60100 - 51.18000 - 22.17600
С	31.03500 -52.93200 -20.32800	С	38.18200 -51.16900 -23.05400		

P 2.11 S 2.10 Cl 2.05 Br 2.16

Ato	oms and radius in the parameter file		
Н	1.29	N3	1.81
C2	1.99	Ν	1.81
C3	1.99	0	1.78
С	1.99	F	1.72
N2	1.81	Si	2.45

Coordinates scaled to put the metal at the origin

			1		•							
С	-0.27847	1.74012	1.14212	С	-3.05447	-0.60588	4.17612	C	2	2.91653	2.91712	0.81212
С	-1.28447	3.41612	2.24012	С	-3.64847	1.83312	4.40912	C	2	1.64153	0.90512	3.81412
С	0.04053	3.59712	2.39312	С	-2.64447	2.93812	-1.07688	C	2	1.98253	-0.56688	4.22612
С	-2.71747	1.68912	1.14912	С	-3.08447	4.34112	-0.65688	C	2	1.72353	1.80612	5.03012
С	-3.34047	0.92312	2.09912	С	-2.94347	2.69212	-2.55788	C	2	2.44653	4.00712	-0.14488
С	-4.53147	0.22012	1.69412	С	2.07953	2.28712	1.73812	C	2	2.59553	5.38612	0.50212
С	-5.01147	0.33912	0.42312	С	2.56353	1.40212	2.70312	C	2	3.13153	4.00912	-1.49888
С	-4.38847	1.21512	-0.47288	С	3.91753	1.08912	2.69212	N	1	-1.45647	2.27512	1.48212
С	-3.25847	1.89912	-0.14488	С	4.75753	1.63512	1.73312	N	1	0.68253	2.56112	1.69212
С	-2.88347	0.80912	3.54012	С	4.26353	2.57212	0.81412	Х	XX	0.00000	0.00000	0.00000

Results : Volumes in Angs^3

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 119.878 59.657 179.535 179.594

%V_Free %V_Bur % Tot/Ex 66.771 33.229 99.967

The $%V_{Bur}$ of your *IPr* is: **33.2**

Steric map of IPr in the complex [PdCl₂(IPr){P(1-Ad)₂(ⁿBu)}] (2d)

%*V*_{Bur} of P(1-Ad)₂("Bu) in the complex [PdCl₂(IPr){P(1-Ad)₂("Bu)}] (2d)

Number of atoms : 25
Atom that is coordinated : 25
Atoms that define the axis : 3
ID of these atoms : 1 11 21
Radius of sphere (Angs) : 3.500
Distance from sphere (Angs) : 2.100
Mesh step (Angs) : 0.050
H atoms omitted in the V_bur calculation

Cartesian coordinates from input :

С	36.16200 -55.33200 -26.23800	С	39.10000 -55.72700 -26.47700	С	31.03000 - 57.92400 - 27.06900
С	35.92800 -54.59900 -27.57900	С	33.11800 - 56.01700 - 26.25200	С	31.98700 - 56.50400 - 25.29000
С	37.23500 -54.43600 -28.33700	С	33.38900 - 57.13400 - 27.25600	С	34.87300 - 57.00500 - 24.17500
С	37.86000 -55.84600 -28.63800	С	32.10200 - 57.44600 - 28.03200	С	36.03000 - 56.90900 - 23.14200
С	38.09600 -56.53700 -27.34200	С	31.58700 - 56.22400 - 28.77000	С	35.90900 - 58.02100 - 22.07600
С	36.80800 - 56.69400 - 26.56300	С	31.22800 - 55.16100 - 27.75800	С	37.03900 - 58.02800 - 21.07800
С	37.16400 -54.51300 -25.42500	С	32.52600 -54.78900 -26.97900	Р	34.59000 -55.51000 -25.21100
С	38.48800 -54.34600 -26.18800	С	30.22200 - 55.59900 - 26.80800		
С	38.23400 -53.64000 -27.48700	С	30.69900 -56.81900 -26.06600		
At	oms and radius in the parameter file				
Н	1.29	N3	1.81	Р	2.11

S 2.10 Cl 2.05 Br 2.16

Н	1.29	N3 1.81
C2	1.99	N 1.81
C3	1.99	O 1.78
С	1.99	F 1.72
N2	1.81	Si 2.45

Coc	ordinates scaled to put the metal a	t the or	igin		
С	1.94953 -1.61996 -2.04426	С	4.02153 0.07204 -3.29326	С	-3.99047 -1.88696 -2.61426
С	1.71553 -0.88696 -3.38526	С	4.88753 -2.01496 -2.28326	С	-3.51347 -3.10696 -1.87226
С	3.02253 -0.72396 -4.14326	С	-1.09447 -2.30496 -2.05826	С	-3.18247 -4.21196 -2.87526
С	3.64753 -2.13396 -4.44426	С	-0.82347 -3.42196 -3.06226	С	-2.22547 -2.79196 -1.09626
С	3.88353 -2.82496 -3.14826	С	-2.11047 -3.73396 -3.83826	С	0.66053 -3.29296 0.01874
С	2.59553 -2.98196 -2.36926	С	-2.62547 -2.51196 -4.57626	С	1.81753 -3.19696 1.05174
С	2.95153 -0.80096 -1.23126	С	-2.98447 -1.44896 -3.56426	С	1.69653 -4.30896 2.11774
С	4.27553 -0.63396 -1.99426	С	-1.68647 -1.07696 -2.78526	С	2.82653 -4.31596 3.11574

 P
 0.37753 -1.79796 -1.01726
 XX
 0.00000
 0.00000

 Results : Volumes in Angs^3

 N of voxels examined :
 1436277

 Volume of voxel
 :
 0.125E-03

 V Free
 V Buried
 V Total
 V Exact

 112.694
 66.841
 179.535
 179.594

 %V_Free
 %V_Bur
 % Tot/Ex

 62.770
 37.230
 99.967

The %V_{Bur} of $P(1-Ad)_2(^{n}Bu)$ is: **37.2**

Steric map of P(1-Ad)₂(ⁿBu) in the complex [PdCl₂(IPr){P(1-Ad)₂(ⁿBu)}] (2d)

V_{Bur} of IPr in the complex [PdCl₂(IPr){PCy₂(*o*-biphenyl)}] (2e)

Number of atoms:29Atom that is coordinated:1Atoms that define the axis:2ID of these atoms:2829

Radius of sphere (Angs): 3.500Distance from sphere (Angs): 2.100Mesh step (Angs): 0.050H atoms omitted in the V bur calculation

Cartesian coordinates from input :

С	-39.80152 -49.83545	74.11914	С	-35.99912 -47.00196	72.90656	С	-42.46197 -50.37678	72.16213
С	-39.48735 -47.60674	74.14079	С	-35.45581 -49.32563	72.15288	С	-42.77617 -49.21929	75.80434
С	-40.69742 -47.83274	73.63158	С	-39.00773 -49.28685	77.31137	С	-43.52409 -47.88385	75.81817
С	-37.67944 -49.03971	75.13805	С	-39.29553 -47.84393	77.74631	С	-43.14937 -50.02185	77.03665
С	-36.48215 -48.92130	74.43201	С	-39.01454 -50.20342	78.54939	С	-41.58137 -50.17034	70.95295
С	-35.31306 -49.16516	75.13802	С	-42.16214 -49.86871	73.41856	С	-42.16124 -49.02454	70.10977
С	-35.32333 -49.49326	76.45969	С	-43.03696 -49.93626	74.50047	С	-41.40327 -51.42461	70.12345
С	-36.51945 -49.56887	77.14661	С	-44.22182 -50.63299	74.30505	Ν	-38.93789 -48.83934	74.45015
С	-37.72186 -49.32829	76.51093	С	-44.52666 -51.19836	73.10535	Ν	-40.88726 -49.20694	73.64140
С	-36.41723 -48.48219	72.98848	С	-43.66885 -51.06478	72.03018			

P 2.11 S 2.10 Cl 2.05 Br 2.16 I 2.31

Ato			
Н	1.29	N3	1.81
C2	1.99	Ν	1.81
C3	1.99	0	1.78
С	1.99	F	1.72
N2	1.81	Si	2.45

Coordinates scaled to put the metal at the origin

~		bearea .	to par me me me ar m		8					
С	-0.28332	2.07236	-0.18717	С	3.51908	4.90585	-1.39975	С	-2.94377	1.53103 -2.14418
С	0.03085	4.30107	-0.16552	С	4.06239	2.58218	-2.15343	С	-3.25797	2.68852 1.49803
С	-1.17922	4.07507	-0.67473	С	0.51047	2.62096	3.00506	С	-4.00589	4.02396 1.51186
С	1.83876	2.86810	0.83174	С	0.22267	4.06388	3.44000	С	-3.63117	1.88596 2.73034
С	3.03605	2.98651	0.12570	С	0.50366	1.70439	4.24308	С	-2.06317	1.73747 -3.35336
С	4.20514	2.74265	0.83171	С	-2.64394	2.03910	-0.88775	С	-2.64304	2.88327 -4.19654
С	4.19487	2.41455	2.15338	С	-3.51876	1.97155	0.19416	С	-1.88507	0.48320 -4.18286
С	2.99875	2.33894	2.84030	С	-4.70362	1.27482	-0.00126	Ν	0.58031	3.06847 0.14384
С	1.79634	2.57952	2.20462	С	-5.00846	0.70945	-1.20096	Ν	-1.36906	2.70087 -0.66491
С	3.10097	3.42562	-1.31783	С	-4.15065	0.84303	-2.27613	XX	0.00000	0.00000 0.00000

Results : Volumes in Angs^3

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 119.051 60.484 179.535 179.594

%V_Free %V_Bur % Tot/Ex 66.311 33.689 99.967

The % V_{Bur} of *IPr* is: **33.7**

Steric map of IPr in the complex [PdCl₂(IPr){PCy₂(*o*-biphenyl)}] (2e)

% V_{Bur} of P(Cy)₂(*o*-biphenyl) in the complex [PdCl₂(IPr){PCy₂(*o*-biphenyl)}] (2e)

	Number of atoms : 25				
	Atom that is coordinated : 25				
	Atoms that define the axis : 3				
	ID of these atoms \therefore 1 7 12				
	ID of these atoms . 1 / 15				
	Radius of sphere (Angs) : 3.500				
	Distance from sphere (Angs) - 2.10	00			
	Mesh sten (Angs) $: 0.050$				
	U stans switted in the V hun selevil		_		
	H atoms omitted in the v_bur calcul	atio	n		
Ca	rtesian coordinates from input :				
Ca	55 35460 22 08022 81 02606	C	50 02272 22 52624 80 60062	C	57 50245 24 59801 79 81068
C	-55 30685 -25 50879 81 17204	C	-50.65397 -22.19631 80.24024	C	-58 05544 -23 30886 79 03008
c	-56 15339 -25 96150 82 35652	c	-52 17753 -22 21217 80 41765	č	-59 18775 -23 07970 79 79003
č	-55 68915 -25 29906 83 63511	č	-55 11768 -24 39275 78 12517	C	-59 88820 -24 12384 80 33322
č	-55.67613 -23.78766 83.51414	č	-56 42953 -24 86870 77 92445	č	-59.45148 -25.40177 80.09215
Ĉ	-54.82131 -23.34039 82.32347	Č	-56.69089 -25.65612 76.80779	Č	-58.32118 -25.64517 79.34927
С	-52.77708 -23.36687 79.59216	С	-55.74184 -25.95381 75.86884	Р	-54.62379 -23.26750 79.50251
С	-52.15467 -24.70376 79.99716	С	-54.46706 -25.47236 76.04203		
С	-50.64656 -24.66553 79.82151	С	-54.15643 -24.71804 77.15119		
A +.	and radius in the norameter file				
Au		212	1.01	р	2.11
H C2	1.29	N3	1.81	P	2.11
C_2	1.99	N	1.61	S Cl	2.10
C	1.99	E	1.78	Br	2.05
N2	1.99	Si	2.45	T	2.10
112	1.01	51	2.45	1	2.51
Со	ordinates scaled to put the metal at th	ie oi	rigin		
С	-0.09372 -2.69779 1.78726	С	5.23824 -2.25381 1.35992	С	-2.33148 -3.30638 -0.43902
С	-0.04588 -4.22626 1.92234	С	4.60700 -0.91378 0.99054	С	-2.79447 -2.02633 -0.21962
С	-0.89242 -4.67897 3.10682	С	3.08344 -0.92964 1.16795	С	-3.92678 -1.79717 0.54033
С	-0.42818 -4.01653 4.38541	С	0.14329 -3.11022 -1.12453	С	-4.62723 -2.84131 1.08352
С	-0.41516 -2.50513 4.26444	С	-1.16856 -3.58617 -1.32525	С	-4.19051 -4.11924 0.84245
С	0.43966 -2.05786 3.07377	С	-1.42992 -4.37359 -2.44191	С	-3.06021 -4.36264 0.09957
С	2.48389 -2.08434 0.34246	С	-0.48087 -4.67128 -3.38086	Р	0.63718 -1.98497 0.25281
С	3.10630 -3.42123 0.74746	С	0.79391 -4.18983 -3.20767	XX	0.00000 0.00000 0.0000
С	4.61441 -3.38300 0.57181	С	1.10454 -3.43551 -2.09851		

```
      Results : Volumes in Angs^3

      N of voxels examined :
      1436277

      Volume of voxel :
      0.125E-03

      V Free V Buried V Total V Exact

      111.235
      68.300

      %V_Free %V_Bur % Tot/Ex

      61.957
      38.043

      99.967
```

The $%V_{Bur}$ of $PCy_2(o-biphenyl)$ is: **38.0**

Steric map of PCy₂(*o*-biphenyl) in the complex [PdCl₂(IPr){PCy₂(*o*-biphenyl)}] (2e)

% V_{Bur} of IPr in the complex [PdCl₂(IPr)(XPhos)] (2f)

Number of atoms: 29Atom that is coordinated: 1Atoms that define the axis: 2ID of these atoms: 2829

Radius of sphere (Angs): 3.500Distance from sphere (Angs): 2.100Mesh step (Angs): 0.050H atoms omitted in the V bur calculation

Cartesian coordinates from input :

С	-51.95100 30.63500	12.43200	С	-49.90900	32.61500	16.11700	С	-55.11800	31.16100	12.68000
С	-50.91600 32.59300	12.75600	С	-50.78400	30.41000	16.93800	С	-53.43500	32.10600	9.32500
С	-52.15400 32.87100	12.32900	С	-48.90400	30.00300	10.98500	С	-53.49300	33.61400	9.13700
С	-49.63800 30.54500	13.36500	С	-48.49500	31.37800	10.44300	С	-53.60100	31.42000	7.97100
С	-49.47700 30.55200	14.76000	С	-48.13900	28.90500	10.24400	С	-54.78700	31.13200	14.16400
С	-48.34200 29.92500	15.27200	С	-54.16700	31.47800	11.70800	С	-54.84000	32.55800	14.74000
С	-47.43800 29.30800	14.43300	С	-54.47300	31.64900	10.35800	С	-55.68100	30.21500	14.98800
С	-47.62400 29.30900	13.06800	С	-55.80800	31.43200	9.97200	Ν	-50.80000	31.22600	12.82100
С	-48.72100 29.94100	12.48400	С	-56.75000	31.08000	10.89600	N	-52.78900	31.64500	12.13000
С	-50.45000 31.25200	15.69600	С	-56.42100	30.94700	12.22200				

P 2.11 S 2.10 Cl 2.05 Br 2.16

Ato	ms and radius in the parameter file		
Н	1.29	N3	1.81
C2	1.99	Ν	1.81
C3	1.99	0	1.78
С	1.99	F	1.72
N2	1.81	Si	2.45

Coordinates scaled to put the metal at the origin

			1		0							
С	0.40236	2.05806	0.11184	С	2.44436	4.03806	3.79684	С		-2.76464	2.58406	0.35984
С	1.43736	4.01606	0.43584	С	1.56936	1.83306	4.61784	С		-1.08164	3.52906	-2.99516
С	0.19936	4.29406	0.00884	С	3.44936	1.42606	-1.33516	С		-1.13964	5.03706	-3.18316
С	2.71536	1.96806	1.04484	С	3.85836	2.80106	-1.87716	С		-1.24764	2.84306	-4.34916
С	2.87636	1.97506	2.43984	С	4.21436	0.32806	-2.07616	С		-2.43364	2.55506	1.84384
С	4.01136	1.34806	2.95184	С	-1.81364	2.90106	-0.61216	С		-2.48664	3.98106	2.41984
С	4.91536	0.73106	2.11284	С	-2.11964	3.07206	-1.96216	С		-3.32764	1.63806	2.66784
С	4.72936	0.73206	0.74784	С	-3.45464	2.85506	-2.34816	Ν		1.55336	2.64906	0.50084
С	3.63236	1.36406	0.16384	С	-4.39664	2.50306	-1.42416	Ν		-0.43564	3.06806	-0.19016
С	1.90336	2.67506	3.37584	С	-4.06764	2.37006	-0.09816	X	Х	0.00000	0.00000	0.00000

Results : Volumes in Angs^3

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 118.768 60.767 179.535 179.594

%V_Free %V_Bur % Tot/Ex 66.153 33.847 99.967

The $%V_{Bur}$ of *IPr* is: **33.8**

Steric map of IPr in the complex [PdCl₂(IPr)(XPhos)] (2f)

% V_{Bur} of XPhos in the complex [PdCl₂(IPr)(XPhos)] (2f)

Number of atoms : 3	34						
Atom that is coordinated :	3/						
Atom that is coordinated .	24						
Atoms that define the axis :	3						
ID of these atoms : 1	7 13						
Radius of sphere (Angs) :	3.500						
Distance from sphere (Angs)	· 2100						
Mash stop (Angs)	. 2.100						
Mesh step (Aligs)	1.1.0						
H atoms omitted in the V_bu	r calculation	l					
Cartesian coordinates from innu	t ·						
$C = -54.64900 \ 26.10400 \ 12.07300$	с. С	-52 16700 25 63000	10 42700	С	-54 51500	26 71400	7 94600
C -55.34900 27.33200 11.46400	Č	-52.76900 24.81000	9.43800	Č	-55.54900	27.81300	7.83100
C -56.87400 27.13300 11.42700	Č	-51.92800 24.24700	8.45300	Č	-53.92800	26.42100	6.56700
C -57.41000 26.85700 12.82100	C	-50.56600 24.46800	8.42100	Ċ	-58.44900	23.60700	8.78600
C -56.69800 25.67900 13.47200	С	-49.98700 25.32200	9.34600	С	-59.22300	24.34600	9.88400
C -55.17600 25.87400 13.50400	С	-50.78700 25.89800	10.31300	С	-59.04000	23.89600	7.41400
C -52.08400 25.33200 13.30600	С	-54.24300 24.52000	9.26900	С	-53.88500	22.21300	10.35500
C -52.27900 23.82500 13.09200	С	-55.06400 25.43100	8.56600	С	-54.55700	21.60200	11.60000
C -51.82600 23.03200 14.33500	С	-56.41100 25.09000	8.39100	С	-53.53700	21.11400	9.35000
C -50.38100 23.35400 14.68600	С	-56.95100 23.90900	8.88300	Р	-52.82700	26.37300	11.97000
C -50.17100 24.86500 14.83700	С	-56.10900 23.02100	9.50500				
C -50.61300 25.64000 13.59200	С	-54.75800 23.29000	9.69600				
Atoms and radius in the paramet	ter file						
H = 1.29	N3	1.81		р	2 11		
$C_{2}^{2} = 1.99$	N	1.81		S	2.10		
C3 1.99	0	1.78		Čl	2.05		
C 1.99	F	1.72		Br	2.16		
N2 1.81	Si	2.45					
Coordinates scaled to put the me	etal at the or	igin					
C -2.24142 -2.32405 -0.00110	С	0.32358 -3.09605	1.23190	С	0.24058	-2.79805 ·	-1.64710
C -2.94142 -1.09605 -0.61010	С	0.12858 -4.60305	1.01790	С	-0.36142	-3.61805	-2.63610
C -4.46642 -1.29505 -0.64710	С	0.58158 -5.39605	2.26090	С	0.47958	-4.18105 .	-3.62110
C -5.00242 -1.57105 0.74690	C	2.02658 -5.07405	2.61190	C	1.84158	-3.96005 ·	-3.65310
C -4.29042 -2.74905 1.39790	C	2.23658 -3.56305	2.76290	C	2.42058	-3.10605 ·	-2.72810
C -2.76842 -2.55405 1.42990	С	1.79458 -2.78805	1.51790	С	1.62058	-2.53005 ·	-1.76110

С	-1.83542 -3.90805 -2.80510	С	-2.10742 -1.71405 -4.12810	С	-1.47742 -6.21505 -1.71910
С	-2.65642 -2.99705 -3.50810	С	-3.14142 -0.61505 -4.24310	С	-2.14942 -6.82605 -0.47410
С	-4.00342 -3.33805 -3.68310	С	-1.52042 -2.00705 -5.50710	С	-1.12942 -7.31405 -2.72410
С	-4.54342 -4.51905 -3.19110	С	-6.04142 -4.82105 -3.28810	Р	-0.41942 -2.05505 -0.10410
С	-3.70142 -5.40705 -2.56910	С	-6.81542 -4.08205 -2.19010	XX	0.00000 0.00000 0.00000
С	-2.35042 -5.13805 -2.37810	С	-6.63242 -4.53205 -4.66010		

Results : Volumes in Angs^3

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 114.484 65.050 179.535 179.594

%V_Free %V_Bur % Tot/Ex 63.767 36.233 99.967

The $%V_{Bur}$ of XPhos is: **36.2**

Steric map of XPhos in the complex [PdCl₂(IPr)(XPhos)] (2f)

% V_{Bur} of IPr in the complex [PdCl₂(IPr)(SPhos)] (2g)

Number of atoms:29Atom that is coordinated:1Atoms that define the axis:2ID of these atoms:2829

Radius of sphere (Angs): 3.500Distance from sphere (Angs): 2.100Mesh step (Angs): 0.050H atoms omitted in the V_bur calculation

Cartesian coordinates from input :

С	23.18300 82.640	00 11.32200	С	21.14000	82.20000	7.27100	С	26.22200	83.80800	10.47400
С	22.11200 84.603	00 11.63000	С	20.89100	84.51300	8.25300	С	25.32000	83.06900	14.14700
С	23.41600 84.834	00 11.81700	С	20.24400	82.49700	13.51700	С	25.86200	81.82800	14.88800
С	20.71000 82.651	00 11.01000	С	19.84900	81.33300	14.42300	С	25.36500	84.28900	15.04100
С	20.35000 82.513	00 9.66800	С	19.60800	83.79100	14.05200	С	25.52800	83.99100	9.14800
С	19.11400 81.938	00 9.40100	С	25.50700	83.54000	11.65700	С	26.34400	83.49000	7.95800
С	18.26800 81.540	00 10.41600	С	26.10500	83.34500	12.89700	С	25.11500	85.45400	8.87700
С	18.64200 81.716	00 11.72900	С	27.52800	83.46300	12.91700	Ν	21.98000	83.26200	11.32800
С	19.87200 82.271	00 12.06600	С	28.21300	83.75300	11.76000	Ν	24.06400	83.62600	11.59600
С	21.22700 83.036	00 8.53900	С	27.59000	83.92800	10.57100				

P 2.11 S 2.10 Cl 2.05 Br 2.16

Atc	oms and radius in the parameter file		
Н	1.29	N3	1.81
C2	1.99	Ν	1.81
C3	1.99	0	1.78
С	1.99	F	1.72
N2	1.81	Si	2.45

Coordinates scaled to put the metal at the origin

					0							
С	-0.40645	2.02975	0.35344	С	-2.44945	1.58975	-3.69756	(2	2.63255	3.19775	-0.49456
С	-1.47745	3.99275	0.66144	С	-2.69845	3.90275	-2.71556	(2	1.73055	2.45875	3.17844
С	-0.17345	4.22375	0.84844	С	-3.34545	1.88675	2.54844	(2	2.27255	1.21775	3.91944
С	-2.87945	2.04075	0.04144	С	-3.74045	0.72275	3.45444	(2	1.77555	3.67875	4.07244
С	-3.23945	1.90275	-1.30056	С	-3.98145	3.18075	3.08344	(2	1.93855	3.38075	-1.82056
С	-4.47545	1.32775	-1.56756	С	1.91755	2.92975	0.68844	(2	2.75455	2.87975	-3.01056
С	-5.32145	0.92975	-0.55256	С	2.51555	2.73475	1.92844	(2	1.52555	4.84375	-2.09156
С	-4.94745	1.10575	0.76044	С	3.93855	2.85275	1.94844	N	N	-1.60945	2.65175	0.35944
С	-3.71745	1.66075	1.09744	С	4.62355	3.14275	0.79144	١	N	0.47455	3.01575	0.62744
С	-2.36245	2.42575	-2.42956	С	4.00055	3.31775	-0.39756	2	XX	0.00000	0.00000	0.00000

Results : Volumes in Angs^3

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 121.493 58.042 179.535 179.594

%V_Free %V_Bur % Tot/Ex 67.671 32.329 99.967

The $%V_{Bur}$ of *IPr* is: **32.3**

Steric map of IPr in the complex [PdCl₂(IPr)(SPhos)] (2g)

%*V*_{Bur} of SPhos in the complex [PdCl₂(IPr)(SPhos)] (2g)

Number of atoms : 29 Atom that is coordinated : 29 Atoms that define the axis : 3 ID of these atoms : 1 7 13 Radius of sphere (Angs) : 3.500 Distance from sphere (Angs): 2.100 Mesh step (Angs) : 0.050 H atoms omitted in the V_bur calculation Cartesian coordinates from input : 24.10300 77.38600 12.30100 19.96400 78.13100 8.83300 22.29700 74.00200 8.25500 C C C C 25.45300 77.81500 12.89000 С 21 33200 78 64400 9 27300 C 21 48000 74 52700 7 28000 С 25.68200 77.12000 14.23000 С 24.92100 77.78900 9.54100 С 21.74500 75.73700 6.67800 25.62900 75.60300 14.08000 С 24.87300 76.80100 8.54700 22.84900 76.48300 7.11600 С С С 24.31100 75.17200 13.49000 С 26.02900 76.53200 7.81200 24.11700 73.02800 10.20100 С С С 24.05200 75.86400 12.14900 27.22200 77.21100 8.02600 С 22.34400 78.30700 5.65100 С 21.96800 77.70800 10.29900 С 27.26600 78.19800 8.98000 24.35900 74.26600 9.52400 0 С С 23.21900 77.67800 6.58400 21.04200 77.57100 11.51600 26.13200 78.49100 9.72100 0 С 19.68200 77.02700 11.06700 С 23.67300 76.01000 8.13400 Р 23.65100 78.31800 10.77400 С С 19.04500 77.91700 10.01100 23.42700 74.73800 8.65100 Atoms and radius in the parameter file Н 1.29 N3 1.81 р 2.11 C2 1.99 Ν 1.81 S 2.10 1.99 Cl C3 0 1.78 2.05 1.99 Br 2.16 F 1 72 C N2 1.81 Si 2.45 Coordinates scaled to put the metal at the origin 0.49139 -3.02366 1.34419 -3.64761 -2.27866 -2.12381 -1.31461 -6.40766 -2.70181 С C С С 1.84139 -2.59466 1.93319 С -2.27961 -1.76566 -1.68381 С -2.13161 -5.88266 -3.67681 С 2.07039 -3.28966 3.27319 С 1.30939 -2.62066 -1.41581 С -1.86661 -4.67266 -4.27881 С 2.01739 -4.80666 3.12319 1.26139 -3.60866 -2.40981 С С -0.76261 -3.92666 -3.84081 C C 0.69939 -5.23766 2.53319 С 2.41739 -3.87766 -3.14481 С 0.50539 -7.38166 -0.75581 С 0.44039 -4.54566 1.19219 3.61039 -3.19866 -2.93081 С -1.26761 -2.10266 -5.30581 С -1.64361 -2.70166 -0.65781 С 3.65439 -2.21166 -1.97681 0 0.74739 -6.14366 -1.43281 C C C C C -2.56961 -2.83866 0.55919 2.52039 -1.91866 -1.23581 0 -0.39261 -2.73166 -4.37281 -3.92961 -3.38266 0.11019 0.06139 -4.39966 -2.82281 Р 0.03939 -2.09166 -0.18281 С -4.56661 -2.49266 -0.94581 -0.18461 -5.67166 -2.30581 XX 0.00000 0.00000 0.00000

Results : Volumes in Angs^3

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 115.621 63.913 179.535 179.594

%V_Free %V_Bur % Tot/Ex 64.401 35.599 99.967

The %V_{Bur} of *SPhos* is: **35.6**

Steric map of SPhos in the complex [PdCl₂(IPr)(SPhos)] (2g)

$%V_{Bur}$ of IPr [Pd(IPr)(SPhos)] (6)

Number of atoms :	29)
Atom that is coordinated	:	1
Atoms that define the axis	:	2
ID of these atoms :	28	29

Radius of sphere (Angs): 3.500Distance from sphere (Angs): 2.100Mesh step (Angs): 0.050H atoms omitted in the V_bur calculation

Cartesian coordinates from input :

С	5.15500 39.139	00 -62.43100	С	2.92800	42.41100 -65.44500	0	С	8.33100	38.78300 -63.3	36000
С	5.15100 41.366	00 -61.85800	С	3.55600	39.98200 -65.90800	0	С	7.04000	37.90000 - 59.8	33700
С	6.41600 40.948	00 -61.75300	С	2.73900	39.70600 - 59.96100	0	С	7.83800	38.24900 - 58.5	58100
С	2.96400 40.294	00 -62.43800	С	1.91300	40.29300 - 58.85400	0	С	6.36200	36.54200 - 59.6	56900
С	2.48200 40.637	00 -63.68600	С	2.96300	38.19800 - 59.76200	0	С	7.87900	39.59800 -64.5	56100
С	1.08800 40.559	00 -63.86900	С	7.58100	38.74900 -62.19300	0	С	9.04600	40.31200 -65.2	22500
С	0.26400 40.173	00 -62.83200	С	7.88900	37.94200 -61.08100	0	С	7.15000	38.67000 -65.5	54000
С	0.77900 39.915	00 -61.58800	С	9.02100	37.13400 -61.19300	0	Ν	4.40100	40.26700 - 62.2	24000
С	2.15300 39.973	00 -61.35900	С	9.80300	37.14800 -62.34700	0	Ν	6.40800	39.60500 -62.0)9000
С	3.39200 41.086	00 -64.82100	С	9.45700	37.95400 -63.4110	0				

P 2.11S 2.10C1 2.05

Br 2.16

Ato	oms and radius in the parameter file		
Н	1.29	N3	1.81
C2	1.99	Ν	1.81
C3	1.99	0	1.78
~	1.00	-	1 = 2

05	1.77	0	1.70
С	1.99	F	1.72
N2	1.81	Si	2.45

Coordinates scaled to put the metal at the origin

			1		0						
С	0.59779	1.90957	0.63732	С	-1.00121	2.75257	-2.83968	С	3.28079	1.01957	4.48732
С	0.59379	4.13657	1.21032	С	-1.81821	2.47657	3.10732	С	1.80479	-0.68743	3.39932
С	1.85879	3.71857	1.31532	С	-2.64421	3.06357	4.21432	С	3.32179	2.36857	-1.49268
С	-1.59321	3.06457	0.63032	С	-1.59421	0.96857	3.30632	С	4.48879	3.08257	-2.15668
С	-2.07521	3.40757	-0.61768	С	3.02379	1.51957	0.87532	С	2.59279	1.44057	-2.47168
С	-3.46921	3.32957	-0.80068	С	3.33179	0.71257	1.98732	Ν	-0.15621	3.03757	0.82832
С	-4.29321	2.94357	0.23632	С	4.46379	-0.09543	1.87532	Ν	1.85079	2.37557	0.97832
С	-3.77821	2.68557	1.48032	С	5.24579	-0.08143	0.72132	XX	0.00000	0.00000	0.00000
С	-2.40421	2.74357	1.70932	С	4.89979	0.72457	-0.34268				
С	-1.16521	3.85657	-1.75268	С	3.77379	1.55357	-0.29168				
С	-1.62921	5.18157	-2.37668	С	2.48279	0.67057	3.23132				

Results : Volumes in Angs^3

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 100.743 78.791 179.535 179.594

%V_Free %V_Bur % Tot/Ex 56.114 43.886 99.967

The %V_{Bur} of *IPr* is: **43.9**

Steric map of IPr [Pd(IPr)(SPhos)] (6)

%V_{Bur} of SPhos of [Pd(IPr)(SPhos)] (6)

Number of atoms : 29 Atom that is coordinated : 29 Atoms that define the axis : 3 ID of these atoms : 1 7 13 Radius of sphere (Angs) : 3.500 Distance from sphere (Angs): 2.100

Mesh step (Angs) : 0.050 H atoms omitted in the V_bur calculation

Cartesian coordinates from input :

2.96622 -4.27149 0.34349

С

С	3.23500 34.05700 -62.90000	С	7.74200 32.796	00 -62.62300	С	6.56600 31.60700 -67.01600
С	1.80300 34.28500 -63.38200	С	6.44300 33.602	00 -62.48800	С	5.98000 30.48200 -66.44300
С	0.81800 33.40200 -62.60900	С	3.77600 35.151	00 -65.51300	С	4.70600 30.52000 -65.93900
С	0.89800 33.64800 -61.12500	С	3.80700 34.174	00 -66.52600	С	3.99400 31.71400 -65.97200
С	2.31000 33.45400 -60.59500	С	3.06900 34.362	00 -67.67600	С	7.60200 33.92600 -68.22900
С	3.30500 34.30900 -61.38900	С	2.29200 35.487	00 -67.88200	С	1.96000 30.62100 -65.37200
С	6.01000 34.14900 -63.84300	С	2.25100 36.461	00 -66.91100	0	6.32100 33.95900 -67.57500
С	7.13700 35.01200 -64.43700	С	2.98900 36.311	00 -65.75200	0	2.71200 31.83900 -65.52000
С	8.46200 34.22400 -64.56100	С	4.58400 32.876	00 -66.48200	Р	4.45800 35.15900 -63.78300
С	8.86700 33.64600 -63.20500	С	5.85400 32.794	00 -67.03300		
Atc	oms and radius in the parameter file					
Н	1.29	N3	1.81		Р	2.11
C2	1.99	Ν	1.81		S	2.10
C3	1.99	0	1.78		Cl	2.05
С	1.99	F	1.72		Br	2.16
N2	1.81	Si	2.45			
Coordinates scaled to put the metal at the origin						
С	-1.54078 -3.01049 0.06649	С	1.66722 -3.465	49 0.47849	С	-0.06978 -6.54749 -2.97251
С	-2.97278 -2.78249 -0.41551	С	-0.99978 -1.916	49 -2.54651	С	-0.78178 -5.35349 -3.00551
С	-3.95778 -3.66549 0.35749	С	-0.96878 -2.893	49 -3.55951	С	2.82622 -3.14149 -5.26251
С	-3.87778 -3.41949 1.84149	С	-1.70678 -2.705	49 -4.70951	С	-2.81578 -6.44649 -2.40551
С	-2.46578 -3.61349 2.37149	С	-2.48378 -1.580	49 -4.91551	0	1.54522 -3.10849 -4.60851
С	-1.47078 -2.75849 1.57749	С	-2.52478 -0.606	49 -3.94451	0	-2.06378 -5.22849 -2.55351
С	1.23422 -2.91849 -0.87651	С	-1.78678 -0.756	49 -2.78551	Р	-0.31778 -1.90849 -0.81651
С	2.36122 -2.05549 -1.47051	С	-0.19178 -4.191	49 -3.51551	XX	0.00000 0.00000 0.00000
С	3.68622 -2.84349 -1.59451	С	1.07822 -4.273	49 -4.06651		
С	4.09122 -3.42149 -0.23851	С	1.79022 -5.460	49 -4.04951		

1.20422 -6.58549 -3.47651

С

N of voxels examined : 1436277 Volume of voxel : 0.125E-03

V Free V Buried V Total V Exact 114.350 65.184 179.535 179.594

%V_Free %V_Bur % Tot/Ex 63.693 36.307 99.967

The %V_{Bur} of *SPhos* is: **36.3**

Steric map of SPhos of [Pd(IPr)(SPhos)] (6)

References

- (1) I. J. S. Fairlamb, A. R. Kapdi, and A. F. Lee, Org. Lett., 2004, 6, 4435.
- (2) O. Diebolt, P. Braunstein, S. P. Nolan and C. S. J. Cazin, *Chem. Commun.* 2008, 3190.
- (3) B. Lü, C. Fu, and S. Ma, *Tetrahedron Lett.*, 2010, **51**, 1284.
- (4) J. P. Wolfe, R. A. Singer, B. H. Yang, L. Stephen and S. L. Buchwald, *J. Am. Chem. Soc.*1999, **121**, 9550.
- (5) G. Li, S. Zhou, G. Su, Y. Liu and P. G. Wang, J. Org. Chem., 2007, 72, 9830.
- (6) X. Bei, H. W. Turner, W. H. Weinberg and A. S. Guram, J. Org. Chem., 1999, 64, 6797.
- (7) K. W. Anderson and S. L. Buchwald, *Angew. Chem. Int. Ed.*, 2005, 44, 6173.
- (8) C. E. Hartmann, S. P. Nolan and C. S. J. Cazin, *Organometallics*, 2009, 28, 2915.
- (9) T. Kamikawa and T. Hayashi, *Synlett*, 1997, **2**, 163.
- (10) J. M. A. Miguez; L. A. Adrio; A. Sousa-Pedrares; J. M. Vila; K. K. Hii, *J. Org. Chem.*, 2007, 72, 7771.
- (11) S. Vuoti, J. Autio, M. Laitila, M. Haukka and J. Pursiainen, Eur. J. Inorg. Chem., 2008, 397.
- (12) T. Hoshi, I. Saitoh, T. Nakazawa, T. Suzuki, J.-I. Sakai and H. Hagiwara, J. Org. Chem.,
 2009, 74, 4013.
- (13) A. Nùñez, A. Sànchez, C. Burgos and J. Alvarez-Builla, *Tetrahedron*, 2004, 60, 6217.
- (14) O. Diebolt, V. Jurcik, R. Correa da Costa, P. Braunstein, L. Cavallo, S. P. Nolan, A. M. Z.,Slawin and C. S. J. Cazin, *Organometallics*, 2010, 29, 1443.
- (15) F.-Y. Tsaia, B.-N. Lina, M.-J. Chena, C.-Y. Moub and S.-Y. Liu, *Tetrahedron*, 2007, 63, 4304.
- (16) N. Kataoka, Q. Shelby, J. P. Stambuli and J. F. Hartwig, Org. Chem. 2002, 67, 5553.

(17) (a) A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano and L. Cavallo, *Eur. J. Inorg. Chem.* 2009, 1759. (b) L. Cavallo, A. Correa, C. Costabile and H. Jacobsen, *J. Organomet. Chem.*, 2005, 690, 5407. (c) A. Poater, F. Ragone, S. Giudice, C. Costabile, R. Dorta, S. P. Nolan and L. Cavallo, *Organometallics*, 2008, 27, 2679. (d) A. Poater and L. Cavallo, *Dalton Trans.*, 2009, 8878. (e) A. Poater, F. Ragone, R. Mariz, R. Dorta and L. Cavallo, *Chem.Eur. J.*, 2010, 16, 14348.

(f) F. Ragone, A. Poater and L. Cavallo, J. Am. Chem. Soc., 2010, 132, 4249.

(18) A. Bondi, J. Phys. Chem., 1964, 68, 441.