Electronic Supplementary Information (ESI)

Cyclopalladated complex of corannulene with a pyridine pendant and its columnar self-assembly

Mihoko Yamada,^a Shohei Tashiro,^a Ryosuke Miyake^b and Mitsuhiko Shionoya^{*a}

^a Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan E-mail: shionoya@chem.s.u-tokyo.ac.jp

^b Department of Chemistry and Biochemistry, Graduate School of Humanities and Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.

Materials and methods	page S2
• Synthesis of 2-pyridylcorannulene (1)	page S3
Synthesis of cyclopalladated complex 2a	page S6
• Formation of 2a and 2b	page S10
 Concentration-dependent aggregation of 2a and 2b 	page S11
• Reaction of a mixture of 2a and 2b with 1 <i>R</i> ,2 <i>R</i> -(–)-diaminocyclohexane	page S12
• Preliminary single-crystal X-ray analysis of 2a (needle)	page S13
• References	page S13

Materials and methods

All solvents, organic and inorganic reagents are commercially available, and were used without further purification. Corannulene¹ and lithium triisopropyl 2-pyridylborate² were synthesised according to the literature. Silica gel column chromatography was performed using Merck Silica Gel 60 (230-400 mesh).

NMR spectroscopic measurements were performed using AVANCE 500 spectrometers. NMR spectra are calibrated as below; CDCl₃: tetramethylsilane (Si(CH₃)₄) = 0 ppm for ¹H, CDCl₃ = 77.16 ppm for ¹³C; CD₃CN: CD₂HCN = 1.94 ppm for ¹H, CD₃CN = 118.26 ppm for ¹³C. Direct Analysis in Real Time (DART) mass spectra were recorded on a JMS-T100LP AccuTOF LC-plus. Electrospray ionization-time-of-flight (ESI-TOF) mass spectra were recorded on a Micromass LCT spectrometer. UV-vis spectroscopy was performed using a HITACHI U-3500 spectrophotometer. Melting points were measured using a Yanaco MP-500D apparatus. Single-crystal X-ray crystallographic analyses were performed using a Rigaku RAXIS-RAPID imaging plate diffractometer with MoK α radiation and a Bruker APEXII CCD detector with MoK α radiation, and obtained data were calculated using the CrystalStructure crystallographic software package except for refinement, which was performed using SHELXL-97 or the SHELXL program suite.³ X-ray structures were displayed using ORTEP-3. Molecular modeling was performed by a Spartan '08 and was displayed using a Mercury program.

Synthesis of 2-pyridylcorannulene (1)

Scheme S1. Synthetic procedure of 1.

Monobromocorannulene: Monobromocorannulene was synthesised according to the literature.^{1g} Br₂ (10 mL, 200 μ mol, 1.0 equiv.) was added dropwise to a solution of corannulene (49.9 mg, 199 μ mol, 1.0 equiv.) and FeBr₃ (6.4 mg, 22 μ mol, 0.1 equiv.) in dry CH₂Cl₂ (5.0 mL) under N₂ atmosphere at – 80 °C. The solution was allowed to warm to ambient temperature over several hours and quenched with a saturated aqueous solution of Na₂SO₃. The solution was diluted with CH₂Cl₂ (15 mL), washed with H₂O (15 mL × 3), dried with MgSO₄, filtered and evaporated to obtain a crude material as a pale yellow solid (61.7 mg). The obtained crude was used for the next reaction without further purification.

2-Pyridylcorannulene (1): Monobromocorannulene (60.7 mg, 184 µmol, 1.0 equiv.), lithium triisopropyl 2-pyridylborate (0.249 g, 0.911 mmol, 5.0 equiv.), $[Pd_2(dba)_3]$ ·CHCl₃ (6.6 mg, 6.4 µmol, 3.5%), diphenylphosphine oxide (8.0 mg, 40 µmol, 22%, Pd/ligand = 1:3) and KF (0.107 g, 1.84 mmol, 10 equiv.) were dissolved in dry 1,4-dioxane (2.0 mL, degassed by bubbling N₂ for 30 min) under N₂ atmosphere. The reaction mixture was stirred at 110 °C for 42 h, and $[Pd_2(dba)_3]$ ·CHCl₃ (6.7 mg, 6.5 µmol, 3.5%) and diphenylphosphine oxide (7.7 mg, 38 µmol, 21%, Pd/ligand = 1:3) were further added to the solution. After additional stirring for 10 h, the suspension was diluted with CH₂Cl₂, filtered under reduced pressure with a plug of silica and evaporated to obtain a crude material (0.125 g) as an orange-brown oil, which was purified by silica gel column chromatography with CH₂Cl₂:*n*-hexane = 1:10 –1:0 to obtain **1** as an orange oil (21.6 mg, 66.0 µmol, 35% in two steps).

¹H NMR (500 MHz, CDCl₃, 300 K): δ 8.86 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H, Ar H_m), 8.28 (s, 1H, Ar H_i), 8.07 (d, J = 8.9 Hz, 1H, Ar H_a), 7.95 (dt, J = 7.8, 1.1 Hz, 1H, Ar H_j), 7.88 (td, J = 7.8, 1.7 Hz, 1H, Ar H_k), 7.88 (d, J = 9.0 Hz, 1H, Ar H_h), 7.82 (d, J = 7.8 Hz, 1H, Ar H_g), 7.84-7.80 (m, 4H, Ar H_{c-f}), 7.80 (d, J = 9.0 Hz, 1H, Ar H_b), 7.36 (ddd, 7.5, 4.8, 1.2 Hz, 1H, Ar H_l).

¹³C NMR (125 MHz, CDCl₃, 300 K): δ 157.8 (C_y), 150.2 (C_m), 140.0 (C_n), 136.8 (C_k), 136.56, 136.51, 136.2, 135.9, 135.5, 131.23, 131.08, 131.05, 130.6, 129.2, 127.7, 127.49, 127.39, 127.38, 127.35, 127.27, 127.09, 124.7 (C_j), 122.4 (C_l) (Several signals are overlapped).
M.p.: 185-186 °C

UV-vis (CH₃CN, 293 K, 10 μ M): $\lambda_{max} = 255 \text{ nm} (\varepsilon = 3.5 \times 10^4 \text{ M}^{-1} \text{cm}^{-1})$ and 293 nm ($\varepsilon = 2.8 \times 10^4 \text{ M}^{-1} \text{cm}^{-1}$).

DART mass m/z: 328.1 $[H \cdot 1]^+$, 655.2 $[H \cdot 1_2]^+$.

Elemental analysis: Anal. Calcd for C₂₅H_{15.8}NO_{1.4} {**1**·1.4H₂O}: C 85.16; H 4.52; N 3.97. Found: C 85.14; H 4.59; N 3.86.

Figure S3. Fluorescence spectrum of **1** (CH₃CN, [**1**] = 10 μ M, 293 K, λ_{ex} = 294 nm).

Figure S4. X-ray crystal structure of **1**.

Synthesis of cyclopalladated complex 2a

Scheme S2. Synthetic procedure of 2a.

2-Pyridylcorannulenato-*N*,*C*²'-**bis(acetonitrile)palladium(II) tetrafluoroborate (2a)**: Ligand **1** (10.0 mg, 30.5 μ mol, 1.0 equiv.) and [Pd(CH₃CN)₄](BF₄)₂ (13.5 mg, 30.5 μ mol, 1.0 equiv.) were dissolved in CH₃CN (30 mL, degassed by bubbling N₂ for 1 h) under N₂ atmosphere. The solution was stirred at 90 °C under N₂ atmosphere for 37 h and evaporated to reduce the volume to 5~6 mL. After filtration, slow evaporation in a test tube produced yellow fine crystals (plate and needle) mainly on the wall. The solution and powder around the bottom of the tube were removed, and the remaining crystals on the wall were washed (CHCl₃ × 2) to obtain **2a** as a yellow crystal (5.71 mg, 9.49 µmol, 31%).

¹H NMR (500 MHz, CD₃CN): δ 8.68 (d, J = 8.3 Hz, 1H, Ar $H_{j'}$), 8.60-8.59 (m, 1H, Ar $H_{m'}$), 8.33 (d, J = 9.0 Hz, 1H, Ar $H_{a'}$), 8.22 (td, J = 7.9, 1.3 Hz, 1H, Ar $H_{k'}$), 8.11 (d, J = 8.9 Hz, 1H), 7.99-7.91 (m, 6H), 7.40 (td, J = 6.6, 1.3 Hz, 1H, Ar $H_{l'}$).

¹³C NMR (125 MHz, CD₃CN): δ 165.78, 159.41, 152.04 ($C_{m'}$), 141.87, 141.56, 137.07, 135.48, 135.31, 135.19, 134.61, 134.18, 132.79, 132.13, 131.11, 129.94, 129.77, 129.08, 128.48, 128.29, 128.27, 128.02, 126.98, 125.36 ($C_{a'}$), 123.90 ($C_{j'}$), 123.49 ($C_{l'}$).

M.p.: > 360 °C (dec)

UV-vis (CH₃CN, 293 K, 9.9 μ M): $\lambda_{max} = 271 \text{ nm} (\varepsilon = 2.0 \times 10^4 \text{ M}^{-1} \text{cm}^{-1})$ and 306 mn ($\varepsilon = 1.8 \times 10^4 \text{ M}^{-1} \text{cm}^{-1}$).

HRMS (ESI) m/z: calcd for C₂₉H₁₈N₃Pd {[Pd(H₋₁**1**)(CH₃CN)₂]⁺}: 514.0547; found: 514.0540.

Figure S5. ¹H NMR spectrum (500 MHz, CD₃CN, 300 K) of **2a**.

Figure S6. ¹³C NMR spectrum (125 MHz, CD₃CN, 300 K) of **2a**.

Figure S7. ¹H-¹H TOCSY (500 MHz, CD₃CN, 300 K) of a mixture of **2a** and **2b**.

Figure S8. ¹H-¹H NOESY (500 MHz, CD₃CN, 300 K) of a mixture of **2a** and **2b**.

Figure S9. HMQC (¹H: 500 MHz, ¹³C:126 MHz, CD₃CN, 300 K) of a mixture of **2a** and **2b**.

Figure S10. ESI-TOF mass spectrum (positive, CH₃CN) of a mixture of 2a and 2b.

Formation of 2a and 2b

A 1.0 mM solution (A) of ligand **1** (1.02 mg, 3.12 μ mol) in CD₃CN (3.05 mL) and a 20 mM solution (B) of [Pd(CH₃CN)₄](BF₄)₂ (4.49 mg, 10.1 μ mol) in CD₃CN (0.5 mL) were prepared. To a solution (A) (0.4 mL) was added a solution (B) (20 μ L, 1.0 equiv.) and heated at 60 °C for ¹H NMR measurement.

Figure S11. ¹H NMR spectrum (500 MHz, CD₃CN, 300 K) for the formation of **2a** and **2b**.

Concentration-depedent aggregation of 2a and 2b

The reaction mixture prepared according to the above-mentioned method was heated at 60 °C for 10 days. The resulting 1.0 mM solution in CD₃CN was found to include cyclopalladated complexes, **2a** and **2b**, by ¹H NMR spectroscopy. The solution was diluted with CD₃CN to prepare 0.5 and 0.1 mM solutions for ¹H NMR study.

Figure S12. ¹H NMR spectra (500 MHz, CD₃CN, 300 K) of solutions containing a mixture of **2a** and **2b** at various concentrations.

Reaction of a mixture of 2a and 2b with 1R,2R-(-)-diaminochclohexane (3)

Scheme S3. Reaction of a mixture of **2a** and **2b** with **3**.

Ligand **1** (7.5 mg, 22.9 μ mol) and [Pd(CH₃CN)₄](BF₄)₂ (10.5 mg, 23.6 μ mol, 1.0 equiv.) were dissolved in CH₃CN (20 mL) and heated at 90 °C for 4 days. The reaction mixture was evaporated and the residue was redissolved in CH₃CN (20 mL) to prepare a 1.1 mM solution of cyclopalladated complexes (**2a** and **2b**). A part of the solution (0.4 mL) was taken up and evaporated and redissolved in CD₃CN (0.4 mL) to prepare a 1.1 mM solution in CD₃CN for ¹H NMR measurement. Meanwhile, 1*R*,2*R*-(-)-diaminocyclohexane (**3**) (1.32 mg, 11.6 μ mol) was dissolved in CD₃CN (1.16 mL) to prepare a 10 mM solution. ¹H NMR spectra of cyclopalladated complex before and after addition of 10 mM ligand **3** solution (40 μ L, 1.0 equiv.) were measured.

Figure S13. ¹H NMR spectra (500 MHz, CD₃CN, 300 K) of reaction of **2a** and **2b** with **3**.

Preliminary single-crystal X-ray analysis of 2a (needle)

Figure S14. Preliminary single-crystal X-ray analysis of 2a (needle).

References

- (a) A. M. Butterfield, B. Gilomen and Jay S. Siegel, Org. Process Res. Dev., 2012, 16, 664-676; (b)
 A. Borchardt, A. Fuchicello, K. V. Kilway, K. K. Baldridge and Jay S. Siegel, J. Am. Chem. Soc., 1992, 114, 1921-1923; (c) J. Christoffers and A. Mann, Eur. J. Org. Chem., 1999, 2511-2514; (d) J. W.-Modcydlarz, P. Cannone and L. C. Leitch, Synthesis, 1974, 8, 566-568; (e) C. S. Jones, E. Elliott and J. S. Siegel, Synlett, 2004, No.1, 187-191; (f) O. Guillermet, E. Niemi, S. Nagarajan, X. Bouju, D. Martrou, A. Gourdon and S. Gauthier, Angew. Chem. Int. Ed., 2009, 48, 1970-1973; (g) T. J. Seiers, E. L. Elliott, G. H. Grube and J. S. Siegel, J. Am. Chem. Soc., 1999, 121, 7804-7813; (h) A. Sygula and P. W. Rabideau, J. Am. Chem. Soc., 2000, 122, 6323-6324.
- 2. K. L. Billingsley and S. L. Buchwald, Angew. Chem. Int. Ed., 2008, 47, 4695-4698.
- (a) G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997. (b) G. M. Sheldrick, SADABS, Program for scaling and correction of area detector data, University of Göttingen (Germany), 1996.