Aluminium salalen complexes based on 1,2diaminocyclohexane and their exploitation for the polymerisation of rac-lactide

Stuart L. Hancock, Mary F. Mahon and Matthew D. Jones

Ligand Preparation:

tert-Butyl (2-aminocyclohexyl)carbamate: A solution of di-tert-butyl dicarbonate ($9.61 \mathrm{~g}, 44.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was added dropwise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of trans-1,2-diaminocyclohexane ($15.08 \mathrm{~g}, 70.47 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ over a period of 30 mins while stirring. The solution was allowed to warm to room temperature and stirred overnight. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and water $(50 \mathrm{ml})$ were added to the resulting suspension to dissolve the precipitate and the organic phase was separated then the solvent was removed in-vacuo. The residue was dissolved in ethyl ether $(50 \mathrm{ml})$ and water $(50 \mathrm{ml})$ and the solution was acidified to pH 5 with 4 M HCl , the mixture was separated and the aqueous layer was washed with ethyl ether $(3 \times 50$ $\mathrm{ml}) .2 \mathrm{M} \mathrm{NaOH}$ was added to the aqueous layer until pH 10.5 was reached, at which point the product was extracted with AcOEt ($3 \times 50 \mathrm{ml}$). The organic phase was washed with saturated brine (20 ml) and dried with anhydrous MgSO_{4}. After filtration the solvent was removed in-vacuo to yield a pale beige solid ($7.17 \mathrm{~g}, 33.46$ $\mathrm{mmol}, 47 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00-1.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 1.41$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.29(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{~J}=4.0$ $\mathrm{Hz}, \mathrm{CH}), 3.08(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}), 4.52(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$.
A. tert-Butyl (2-aminocyclohexyl)carbamate ($2.00 \mathrm{~g}, 9.33 \mathrm{mmol}$) was added to a solution of 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($2.18 \mathrm{~g}, 9.30 \mathrm{mmol}$) in MeOH $(30 \mathrm{ml}) /$ THF $(30 \mathrm{ml})$ and stirred for $1 \mathrm{~h} . \mathrm{NaBH}_{4}(2.12 \mathrm{~g}, 56.03 \mathrm{mmol})$ was added slowly to the yellow solution and then stirred for 5 h until the solution became colourless. The reaction was quenched with water (10 ml) and the solvent partially removed in-vacuo. Water (50 ml) was then used to precipitate a white solid, which was then filtered and washed with water ($3 \times 50 \mathrm{ml}$). The resulting solid was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and formaldehyde solution (37% in $\mathrm{H}_{2} \mathrm{O}, 2.12 \mathrm{ml}, 26.74$ mmol) was slowly added and allowed to stir for 1 h . The solvent was removed invacuo and the residue was dissolved in $\mathrm{MeOH}(30 \mathrm{ml}) / \mathrm{THF}(30 \mathrm{ml})$ and cooled $\left(0{ }^{\circ} \mathrm{C}\right)$, then $\mathrm{NaBH}_{4}(2.12 \mathrm{~g}, 56.03 \mathrm{mmol})$ was slowly added and the solution was stirred for 2 h . The reaction was quenched with water (10 ml) and the solvent partially removed in-vacuo. Water (50 ml) was then used to precipitate a white solid, which was then filtered and washed with water ($3 \times 50 \mathrm{ml}$) and dried to yield a white solid ($3.40 \mathrm{~g}, 7.61 \mathrm{mmol}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00-1.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.28$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.43\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.48\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.60-2.10\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.29(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 2.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.62(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 3.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.4.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.21$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 11.10(1 \mathrm{H}, \mathrm{br}, \mathrm{ArOH})$. Deprotection of BOC. $(2.40 \mathrm{~g}, 5.37$ mmol) was dissolved in methanol (30 ml) and $3 \mathrm{M} \mathrm{HCl}(30 \mathrm{ml})$ then heated to $60^{\circ} \mathrm{C}$ and allowed to stir (16 h). The mixture was neutralised with 3 M NaOH and the white precipitate was extracted with $\operatorname{AcOEt}(4 \times 20 \mathrm{ml})$. The organic phase was washed with saturated brine (20 ml) then dried with MgSO_{4}, the solid was removed by filtration and the solvent removed in-vacuo to yield an oily residue which was used
without further purification $(1.80 \mathrm{~g}, 5.19 \mathrm{mmol}, 97 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.10-$ $1.3\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.28(9 \mathrm{H}, \mathrm{s}, \underline{\mathrm{tBu}}), 1.41(9 \mathrm{H}, \mathrm{s}, \underline{\mathrm{tBu}}), 1.65-2.05\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.79(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.86\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.12(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{NH}) 3.50-4.00(3 \mathrm{H}$, br, $\left.\mathrm{NH}_{2}, \mathrm{ArOH}\right), 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH})$.

B tert-Butyl (2-aminocyclohexyl)carbamate ($2.43 \mathrm{~g}, 11.34 \mathrm{mmol}$) was added to a solution of 2-hydroxybenzaldehyde ($1.39 \mathrm{~g}, 11.38 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{ml}) / \mathrm{THF}$ (30 ml) and stirred for $1 \mathrm{~h} . \mathrm{NaBH}_{4}(1.29 \mathrm{~g}, 34.10 \mathrm{mmol})$ was added slowly to the yellow solution and then stirred for 5 h until the solution became colourless. The reaction was quenched with water (10 ml) and the solvent partially removed invacuo. Water (50 ml) was then used to precipitate a white solid, which was then filtered and washed with water ($3 \times 50 \mathrm{ml}$). The resulting solid was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and formaldehyde solution (37% in $\mathrm{H}_{2} \mathrm{O}, 2.58 \mathrm{ml}, 31.79 \mathrm{mmol}$) was slowly added and allowed to stir for 1 h . The solvent was removed in-vacuo and the residue was dissolved in $\mathrm{MeOH}(30 \mathrm{ml}) / \mathrm{THF}(30 \mathrm{ml})$ and cooled $\left(0^{\circ} \mathrm{C}\right)$, then $\mathrm{NaBH}_{4}(2.00 \mathrm{~g}, 52.87 \mathrm{mmol})$ was slowly added and the solution was stirred for 2 h . The reaction was quenched with water (10 ml) and the solvent partially removed invacuo. Water (50 ml) was then used to precipitate a white solid, which was then filtered and washed with water ($3 \times 50 \mathrm{ml}$) and dried to yield a white solid (3.33 g , $9.96 \mathrm{mmol}, 81 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00-1.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.41\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $1.60-2.05\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.34(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{~J}=3.5 \mathrm{~Hz}$, $\mathrm{CH}), 3.60(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.75\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=14.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.40(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 6.71(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 6.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{ArH}), 7.08(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=1.5$ $\mathrm{Hz}, \mathrm{ArH}), 10.88(1 \mathrm{H}, \mathrm{br}, \mathrm{ArOH})$. Deprotection of BOC ($3.25 \mathrm{~g}, 9.72 \mathrm{mmol}$) was dissolved in methanol (30 ml) and $3 \mathrm{M} \mathrm{HCl}(30 \mathrm{ml})$ then heated to $60^{\circ} \mathrm{C}$ and allowed to stir (16 h). The mixture was neutralised with 3 M NaOH and the white precipitate was extracted with AcOEt $(4 \times 30 \mathrm{ml})$. The organic phase was washed with saturated brine (20 ml) then dried with MgSO_{4}, the solid was removed by filtration and the solvent removed in-vacuo to yield a white solid ($1.85,7.89 \mathrm{mmol}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.10-1.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.65-2.05\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.34(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{~J}=3.5 \mathrm{~Hz}, \mathrm{CH}), 2.78(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{~J}=4.5 \mathrm{~Hz}$, $\mathrm{CH}), 3.61\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.89\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.39(3 \mathrm{H}, \mathrm{br}$, $\left.\mathrm{NH}_{2}, \mathrm{ArOH}\right), 6.76(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}, \mathrm{ArH}), 6.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=$ $1.0 \mathrm{~Hz}, \mathrm{ArH}), 6.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{ArH}), 7.15(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}$ $=1.5 \mathrm{~Hz}, \mathrm{ArH}$).

C tert-Butyl (2-aminocyclohexyl)carbamate ($3.00 \mathrm{~g}, 14.00 \mathrm{mmol}$) was added to a solution of 3,5-dichloro-2-hydroxybenzaldehyde ($2.67 \mathrm{~g}, 13.98 \mathrm{mmol}$) in MeOH (30 $\mathrm{ml})$ / THF (30 ml) and stirred for $1 \mathrm{~h} . \mathrm{NaBH}_{4}(1.60 \mathrm{~g}, 42.29 \mathrm{mmol})$ was added slowly to the yellow solution and then stirred for 16 h until the solution became colourless. The reaction was quenched with water (10 ml) and the solvent partially removed invacuo. Water (50 ml) was then used to precipitate a white solid, which was then filtered and washed with water ($3 \times 50 \mathrm{ml}$). The resulting solid was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and formaldehyde solution (37% in $\mathrm{H}_{2} \mathrm{O}, 3.18 \mathrm{ml}, 39.18 \mathrm{mmol}$) was slowly added and allowed to stir for 1 h . The solvent was removed in-vacuo and the residue was dissolved in $\mathrm{MeOH}(30 \mathrm{ml}) / \mathrm{THF}(30 \mathrm{ml})$ and cooled $\left(0^{\circ} \mathrm{C}\right)$, then $\mathrm{NaBH}_{4}(2.50 \mathrm{~g}, 66.09 \mathrm{mmol})$ was slowly added and the solution was stirred for 2 h . The reaction was quenched with water (10 ml) and the solvent partially removed invacuo. Water (50 ml) was then used to precipitate a white solid, which was then
filtered and washed with water ($3 \times 50 \mathrm{ml}$) and dried to yield a white solid (4.30 g , $10.66 \mathrm{mmol}, 76 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.10-1.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.48\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $1.70-2.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.40(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{~J}=3.5 \mathrm{~Hz}$, CH), $3.69(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 4.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{NH}), 6.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $2.5 \mathrm{~Hz}, \mathrm{ArH}$), 9.87 ($1 \mathrm{H}, \mathrm{br}, \mathrm{ArOH}$). Deprotection: ($4.20 \mathrm{~g}, 10.41 \mathrm{mmol}$) was dissolved in methanol (30 ml) and $3 \mathrm{M} \mathrm{HCl}(30 \mathrm{ml})$ then heated to $60^{\circ} \mathrm{C}$ and allowed to stir (16 h). The mixture was neutralised with 3 M NaOH and the white precipitate was extracted with $\mathrm{AcOEt}(4 \times 30 \mathrm{ml})$. The organic phase was washed with saturated brine (20 ml) then dried with MgSO_{4}, the solid was removed by filtration and the solvent removed in-vacuo to yield a white solid ($2.66,8.77 \mathrm{mmol}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00-1.25\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.61\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 1.71\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 1.85$ $\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.25(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}), 2.84(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}), 3.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.79\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.92\left(3 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}, \mathrm{ArOH}\right), 6.80$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH})$.
$\mathbf{1 H}_{2}$. A $(1.00 \mathrm{~g}, 2.24 \mathrm{mmol})$ was dissolved in methanol $(20 \mathrm{ml})$ and $3 \mathrm{M} \mathrm{HCl}(20 \mathrm{ml})$ then heated to $60^{\circ} \mathrm{C}$ and allowed to stir (16 h). The mixture was neutralised with 3 M NaOH and the white precipitate was extracted with $\mathrm{AcOEt}(15 \mathrm{ml} \times 4)$. The organic phase was washed with saturated brine (10 ml) then dried with MgSO_{4}, the solid was removed by filtration and the solvent removed in-vacuo. The oily residue was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and 3,5-di-tert-butyl-2-hydroxybenzaldehyde $(0.52 \mathrm{~g}$, 2.24 mmol) was added. The solution was stirred for 2 h then the solid was filtered and further dried in-vacuo to yield a yellow solid ($0.50 \mathrm{~g}, 0.89 \mathrm{mmol}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.15\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.28\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.32\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.35-1.45$ $\left(3 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.51\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.63-2.07\left(5 \mathrm{H}, \mathrm{m}\right.$, ring $\left.-\mathrm{CH}_{2}\right), 2.26(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.00(1 \mathrm{H}, \mathrm{m}$, ring-CH$), 3.33(1 \mathrm{H}, \mathrm{m}$, ring-CH), $3.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}$, CH_{2}), $3.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 8.40(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}), 10.61(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 13.59(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.8$ $\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{3}\right), 29.8\left(\mathrm{CH}_{3}\right), 31.7\left(\mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{3}\right), 34.2(\mathrm{C}), 34.9$ (C), $35.2\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 66.6(\mathrm{CH}), 70.3(\mathrm{CH}), 118.1(\mathrm{Ar}), 121.0(\mathrm{Ar}), 122.5$ $(\mathrm{ArH}), 123.3(\mathrm{ArH}), 125.8(\mathrm{ArH}), 126.9(\mathrm{ArH}), 135.4(\mathrm{Ar}), 136.6(\mathrm{Ar}), 139.8(\mathrm{Ar})$, 139.8 (Ar), 154.7 (Ar), 158.2 (Ar), 165.8 (CH) Calc. $m / z\left[\mathrm{C}_{37} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$ 585.4396. Found 585.4398
$\mathbf{2 H}$. A ($1.00 \mathrm{~g}, 2.89 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and 2hydroxybenzaldehyde ($0.31 \mathrm{ml}, 2.91 \mathrm{mmol}$) was added. The solution was stirred for 2 h then the solid was filtered and further dried in-vacuo to yield a yellow solid (0.98 $\mathrm{g}, 2.17 \mathrm{mmol}, 75 \%)$. ${ }^{\mathrm{l}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.11\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.25\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.31-$ $1.53\left(3 \mathrm{H}, \mathrm{m}\right.$, ring $\left.-\mathrm{CH}_{2}\right), 1.63-2.08\left(5 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.97(1 \mathrm{H}$, m , ring-CH), $3.36\left(1 \mathrm{H}, \mathrm{m}\right.$, ring-CH), $3.70\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 3.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 6.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{ArH}), 6.86(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \operatorname{ArH}), 6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.11(1 \mathrm{H}, \mathrm{br}, \mathrm{ArH}), 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{t}$ of d, J = $8.0 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{ArH}), 8.38(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 10.62(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 13.15(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 23.1\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{3}\right), 31.7$ $\left(\mathrm{CH}_{3}\right), 34.1(\mathrm{C}), 34.6(\mathrm{C}), 34.9\left(\mathrm{CH}_{2}\right), 58.5\left(\mathrm{CH}_{2}\right), 67.2(\mathrm{CH}), 70.1(\mathrm{CH}), 117.0$ (ArH), $118.4(\mathrm{ArH}), 119.1(\mathrm{Ar}), 120.7(\mathrm{Ar}), 122.5(\mathrm{ArH}), 123.1(\mathrm{ArH}), 131.3(\mathrm{AHr})$, 132.1 (ArH), 135.4 (Ar), 139.8 (Ar), 154.6 (Ar-O), 161.2 (Ar-O), 164.7 (CH). Calc. $\mathrm{m} / \mathrm{z}\left[\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+} 473.3144$. Found 473.3166
$\mathbf{3} \mathrm{H}_{2}$. A $(0.80 \mathrm{~g}, 2.31 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and 3,5 -dichloro-2hydroxybenzaldehyde ($0.44 \mathrm{~g}, 2.30 \mathrm{mmol}$) was added. The solution was stirred for 2 h then the solid was filtered and further dried in-vacuo to yield a yellow solid (0.77 $\mathrm{g}, 1.48 \mathrm{mmol}, 64 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.10\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.25\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.28-$ $1.50\left(3 \mathrm{H}, \mathrm{m}\right.$, ring $\left.-\mathrm{CH}_{2}\right), 1.64-2.08\left(5 \mathrm{H}, \mathrm{m}\right.$, ring $\left.-\mathrm{CH}_{2}\right), 2.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.94(1 \mathrm{H}$, m , ring-CH), $3.36\left(1 \mathrm{H}, \mathrm{m}\right.$, ring-CH), $3.70\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.10(1 \mathrm{H}, \mathrm{br}, \mathrm{ArH}), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0$ $\mathrm{Hz}, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 8.29(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 10.50(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 14.20$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.5\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 29.3$ $\left(\mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{3}\right), 34.2(\mathrm{C}), 34.6(\mathrm{C}), 34.7\left(\mathrm{CH}_{3}\right), 67.8(\mathrm{CH}), 69.5(\mathrm{CH}), 120.2(\mathrm{Ar})$, $120.4(\mathrm{Ar}), 122.7(\mathrm{Ar}), 122.8(\mathrm{Ar}), 122.8(\mathrm{ArH}), 123.2(\mathrm{ArH}), 129.2(\mathrm{ArH}), 132.0$ (ArH), 135.5 (Ar), 140.2 (Ar), 154.5 (Ar-O), 156.6 (Ar-O), 163.2 (CH). Calc. m/z $\left[\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 519.2545$. Found 519.2564
$4 \mathrm{H}_{2}$. $\mathbf{B}(0.60 \mathrm{~g}, 2.56 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and 3,5-di-tert-butyl-2hydroxybenzaldehyde ($0.60 \mathrm{~g}, 2.56 \mathrm{mmol}$) was added. The solution was stirred for 2 h then the solid was filtered and further dried in-vacuo to yield a yellow solid (0.92 $\mathrm{g}, 2.04 \mathrm{mmol}, 80 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.20-1.44\left(3 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), \delta 1.33$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.49\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.60-2.06\left(5 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.03$ $(1 \mathrm{H}, \mathrm{m}$, ring-CH), $3.36(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{~J}=4.5, \mathrm{~Hz}$, ring-CH$), 3.92(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 6.69-6.77(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.94(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH})$, $7.13(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 8.42(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 9.6-11.8(1 \mathrm{H}$, br, OH), $12.1-14.2(1 \mathrm{H}$, br, OH$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.7\left(\mathrm{CH}_{2}\right), 25.3$ $\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{3}\right), 31.7\left(\mathrm{CH}_{3}\right), 34.3(\mathrm{C}), 35.2(\mathrm{C}), 35.6\left(\mathrm{CH}_{3}\right), 35.7$ $\left(\mathrm{CH}_{2}\right), 58.7\left(\mathrm{CH}_{2}\right), 66.1(\mathrm{CH}), 70.1(\mathrm{CH}), 116.5(\mathrm{ArH}), 118.0(\mathrm{Ar}), 119.7(\mathrm{ArH})$, 121.9 (Ar), 126.1 (ArH), 127.3 (ArH), 128.8 (ArH), 128.8 (ArH), 136.7 (Ar), 140.1 (Ar), 158.2 (Ar-O), 158.4 (Ar-O), 165.8 (CH). Calc. $\mathrm{m} / \mathrm{z}\left[\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$ 473.3144. Found 473.3154
$\mathbf{5 H}$. B $(0.60 \mathrm{~g}, 2.56 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and 2hydroxybenzaldehyde ($0.31 \mathrm{~g}, 2.54 \mathrm{mmol}$) was added. The solution was stirred for 2 h then the solid was filtered and further dried in-vacuo to yield a yellow solid (0.70 $\mathrm{g}, 2.07 \mathrm{mmol}, 81 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.19-1.43\left(3 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.48-1.63$ $\left(1 \mathrm{H}, \mathrm{m}\right.$, ring $\left.-\mathrm{CH}_{2}\right), 1.68\left(1 \mathrm{H}\right.$, br, ring $\left.-\mathrm{CH}_{2}\right), 1.72\left(1 \mathrm{H}\right.$, br, ring $\left.-\mathrm{CH}_{2}\right), 1.80(1 \mathrm{H}, \mathrm{m}$, ring- $\left.\mathrm{CH}_{2}\right), 1.92\left(1 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 2.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.88(1 \mathrm{H}, \mathrm{m}$, ring- CH$), 3.25$ $(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{~J}=4.5, \mathrm{~Hz}$, ring -CH$), 3.61\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.70(1 \mathrm{H}$, d, J = $13.5 \mathrm{~Hz}, \mathrm{CH}_{2}$), $6.60-6.68(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.78-6.88(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.94(1 \mathrm{H}$, d, J = $8.0 \mathrm{~Hz}, \mathrm{ArH}$), $7.02(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz} \mathrm{ArH}), 7.18(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.31(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 9.5-14.0(2 \mathrm{H}, \mathrm{br}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 23.8\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{3}\right), 58.1\left(\mathrm{CH}_{2}\right)$, $66.5(\mathrm{CH}), 70.0(\mathrm{CH}), 116.3(\mathrm{ArH}), 117.2(\mathrm{ArH}), 118.7(\mathrm{ArH}), 118.8(\mathrm{ArH}), 119.0$ (Ar), $121.8(\mathrm{Ar}), 128.5(\mathrm{ArH}), 128.6(\mathrm{ArH}), 131.5(\mathrm{ArH}), 132.4(\mathrm{ArH}), 158.3(\mathrm{Ar}-\mathrm{O})$, 161.2 (Ar-O), $164.7(\mathrm{CH})$. Calc. $\mathrm{m} / \mathrm{z}\left[\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$361.1892. Found 361.1895
$6 \mathrm{H}_{2}$. B ($0.60 \mathrm{~g}, 2.56 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and 3,5-dichloro-2hydroxybenzaldehyde ($0.49 \mathrm{~g}, 2.57 \mathrm{mmol}$) was added. The solution was stirred for 2 h then the solid was filtered and further dried in-vacuo to yield a yellow solid (0.79 $\mathrm{g}, 1.91 \mathrm{mmol}, 75 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.25-1.50\left(3 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.62(1 \mathrm{H}$, m , ring- $\left.\mathrm{CH}_{2}\right), 1.70\left(2 \mathrm{H}\right.$, br, ring- $\left.\mathrm{CH}_{2}\right), 1.90\left(1 \mathrm{H}\right.$, br, ring- $\left.\mathrm{CH}_{2}\right), 2.02(1 \mathrm{H}, \mathrm{m}$, ring-
$\left.\mathrm{CH}_{2}\right), 2.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.92(1 \mathrm{H}, \mathrm{m}$, ring -CH$), 3.38(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{~J}=4.5$, Hz , ring-CH), $3.72\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.87\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.63-$ $6.77(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{ArH}), 7.1(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}$, ArH), $7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 8.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, $9.0-11.5(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 12.5-15.0(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 23.0$ $\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 35.2\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{3}\right), 57.4\left(\mathrm{CH}_{2}\right), 66.7(\mathrm{CH}), 69.2$ $(\mathrm{CH}), 116.4(\mathrm{ArH}), 118.9(\mathrm{ArH}), 119.9(\mathrm{Ar}), 121.5(\mathrm{Ar}), 122.7(\mathrm{Ar}), 122.8(\mathrm{Ar})$, $128.6(\mathrm{ArH}), 128.8(\mathrm{ArH}), 129.3(\mathrm{ArH}), 132.3(\mathrm{ArH}), 156.6(\mathrm{Ar}-\mathrm{O}), 158.0(\mathrm{Ar}-\mathrm{O})$, $163.3(\mathrm{CH})$. Calc. $\mathrm{m} / \mathrm{z}\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+} 429.1113$. Found 429.1119
$7 \mathrm{H}_{2} \mathbf{C}(0.75 \mathrm{~g}, 2.47 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and 3,5-di-tert-butyl-2hydroxybenzaldehyde $(0.58 \mathrm{~g}, 2.48 \mathrm{mmol})$ was added. The solution was stirred for 2 h then the solid was filtered and further dried in-vacuo to yield a yellow solid (1.08 $\mathrm{g}, 2.08 \mathrm{mmol}, 84 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.24-1.44\left(3 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), \delta 1.32$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.48\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.60-2.00\left(5 \mathrm{H}, \mathrm{m}\right.$, ring $\left.-\mathrm{CH}_{2}\right), 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.01$ $(1 \mathrm{H}, \mathrm{m}$, ring- CH$), 3.36(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{~J}=4.5, \mathrm{~Hz}$, ring-CH$), 3.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.14.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.95\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.09$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}$, $\mathrm{ArH}), 8.43(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 11.4-14.7(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 24.7$ $\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{3}\right), 31.6\left(\mathrm{CH}_{3}\right), 34.3(\mathrm{C}), 35.2(\mathrm{C}), 35.3\left(\mathrm{CH}_{3}\right), 35.7$ $\left(\mathrm{CH}_{2}\right), 59.5\left(\mathrm{CH}_{2}\right), 66.5(\mathrm{CH}), 70.1(\mathrm{CH}), 117.9(\mathrm{Ar}), 121.5(\mathrm{Ar}), 123.1(\mathrm{Ar}), 124.0$ (Ar), 126.1 (ArH), $126.8(\mathrm{ArH}), 127.5(\mathrm{ArH}), 128.6(\mathrm{ArH}), 137.1(\mathrm{Ar}), 140.3$ (Ar), 153.3 (Ar-O), 158.1 (Ar-O), $166.1(\mathrm{CH}) . C a l c . \mathrm{m} / \mathrm{z}\left[\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+} 541.2365$. Found 541.2393
$\mathbf{8} \mathrm{H}_{2}$. C (0.75 g, 2.47 mmol$)$ was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and 2hydroxybenzaldehyde $(0.30 \mathrm{~g}, 2.46 \mathrm{mmol})$ was added. The solution was stirred for 2 h then the solid was filtered and further dried in-vacuo to yield a yellow solid (0.63 $\mathrm{g}, 1.55 \mathrm{mmol}, 63 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.23-2.05\left(8 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 2.27(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 2.97(1 \mathrm{H}, \mathrm{m}$, ring-CH$), 3.35(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{~J}=4.5, \mathrm{~Hz}$, ring-CH), $3.79\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5$ $\mathrm{Hz}, \mathrm{ArH}), 6.91(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}, \mathrm{ArH}), 7.01(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.18(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{ArH}), 7.35(1 \mathrm{H}$, ddd, $\mathrm{J}=8.5$ $\mathrm{Hz}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{ArH}), 8.41(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 10.5-14.0(2 \mathrm{H}, \mathrm{br}, \mathrm{OH})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.5\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 35.7$ $\left(\mathrm{CH}_{3}\right), 58.6\left(\mathrm{CH}_{2}\right), 66.9(\mathrm{CH}), 70.0(\mathrm{CH}), 117.2(\mathrm{ArH}), 118.8(\mathrm{ArH}), 118.8(\mathrm{Ar})$, 121.6 (Ar), 123.1 (Ar), $123.9(\mathrm{Ar}), 126.7(\mathrm{ArH}), 128.6(\mathrm{ArH}), 131.6(\mathrm{ArH}), 132.7$ (ArH), 153.1 (Ar-O), 161.2 (Ar-O), $165.0(\mathrm{CH})$. Calc. $\mathrm{m} / \mathrm{z}\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$ 429.1113. Found 429.1102
$\mathbf{9 H} \mathbf{H}_{2}$. $\mathbf{C}(0.75 \mathrm{~g}, 2.47 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and 3,5-dichloro-2hydroxybenzaldehyde ($0.46 \mathrm{~g}, 2.46 \mathrm{mmol}$) was added. The solution was stirred for 2 h then the solid was filtered and further dried in-vacuo to yield a yellow solid (0.94 $\mathrm{g}, 1.97 \mathrm{mmol}, 80 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.23-2.06\left(8 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 2.25(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 2.91(1 \mathrm{H}, \mathrm{m}$, ring- CH$), 3.37(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.5 \mathrm{~Hz}, 4.5 \mathrm{~Hz}$, ring CH$), 3.73$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.86\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}$, ArH), $7.18(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 8.30(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 11.0-$ $14.5(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.0\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right)$, $35.1\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{3}\right), 57.8\left(\mathrm{CH}_{2}\right), 67.0(\mathrm{CH}), 69.4(\mathrm{CH}), 119.8(\mathrm{Ar}), 121.8(\mathrm{Ar})$, 122.8 (Ar), $123.0(\mathrm{Ar}), 123.3$ (Ar), 123.6 (Ar), 126.6 (ArH), 128.8 (ArH), 129.3
(ArH), 132.4 (ArH), 152.9 (Ar-O), 156.3 (Ar-O), 163.5 (CH). Calc. m/z $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$497.0333. Found 497.0350

Chiral version $R, R-\mathbf{1 H}_{2}$

tert-butyl (1R,2R)-2-aminocyclohexyl)carbamate ($0.375 \mathrm{~g}, 1.75 \mathrm{mmol}$) was added to a solution of 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($0.41 \mathrm{~g}, 1.75 \mathrm{mmol}$) in MeOH $(15 \mathrm{ml})$ / THF $(15 \mathrm{ml})$ and stirred for $1 \mathrm{~h} . \mathrm{NaBH}_{4}(0.30 \mathrm{~g}, 9.99 \mathrm{mmol})$ was added slowly to the yellow solution and then stirred for 5 h until the solution became colourless. The reaction was quenched with water (10 ml) and the solvent partially removed in-vacuo. Water (30 ml) was then used to precipitate a white solid, which was then filtered and washed with water ($3 \times 30 \mathrm{ml}$). The resulting solid was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and formaldehyde solution (37% in $\mathrm{H}_{2} \mathrm{O}, 0.40 \mathrm{ml}, 4.93$ mmol) was slowly added and allowed to stir for 1 h . The solvent was removed invacuo and the residue was dissolved in $\mathrm{MeOH}(15 \mathrm{ml}) / \mathrm{THF}(15 \mathrm{ml})$ and cooled $\left(0{ }^{\circ} \mathrm{C}\right)$, then $\mathrm{NaBH}_{4}(0.30 \mathrm{~g}, 9.99 \mathrm{mmol})$ was slowly added and the solution was stirred for 16 h . The reaction was quenched with water (10 ml) and the solvent partially removed in-vacuo. Water (30 ml) was then used to precipitate a white solid, which was then filtered and washed with water $(3 \times 30 \mathrm{ml})$ and dried to yield a white solid. The white solid was dissolved in methanol (20 ml) and $3 \mathrm{M} \mathrm{HCl}(20 \mathrm{ml})$ then heated to $60{ }^{\circ} \mathrm{C}$ and allowed to stir (16 h). The mixture was neutralised with 3M NaOH and the white precipitate was extracted with $\mathrm{AcOEt}(10 \mathrm{ml} \times 4)$. The organic phase was washed with saturated brine $(10 \mathrm{ml})$ then dried with MgSO_{4}, the solid was removed by filtration and the solvent removed in-vacuo. The residue was dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$ and 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($0.41 \mathrm{~g}, 1.75 \mathrm{mmol}$) was added. The solution was stirred for 16 h then the solid was filtered and further dried in-vacuo to yield a pale yellow solid ($0.49 \mathrm{~g}, 0.87 \mathrm{mmol}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.12\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.25\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.29\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.35-1.45(3 \mathrm{H}, \mathrm{m}$, ring- CH_{2}), $1.48\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{C}} \mathrm{Bu}\right), 1.63-2.07\left(5 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.98$ $\left(1 \mathrm{H}, \mathrm{m}\right.$, ring-CH), $3.31\left(1 \mathrm{H}, \mathrm{m}\right.$, ring-CH), $3.72\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.88(1 \mathrm{H}$, d, J = $12.0 \mathrm{~Hz}, \mathrm{CH}_{2}$), $6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH})$, $7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 8.38(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 10.61$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 13.58(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.8\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right)$, $29.5\left(\mathrm{CH}_{3}\right), 29.7\left(\mathrm{CH}_{3}\right), 31.6\left(\mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{3}\right), 34.2(\mathrm{C}), 34.8(\mathrm{C}), 35.2\left(\mathrm{CH}_{2}\right), 35.5$ $\left(\mathrm{CH}_{2}\right), 66.7(\mathrm{CH}), 70.4(\mathrm{CH}), 118.2(\mathrm{Ar}), 121.0(\mathrm{Ar}), 122.6(\mathrm{ArH}), 123.4(\mathrm{ArH})$, $125.9(\mathrm{ArH}), 126.9(\mathrm{ArH}), 135.5(\mathrm{Ar}), 136.6(\mathrm{Ar}), 139.9(\mathrm{Ar}), 154.8(\mathrm{Ar}), 158.2(\mathrm{Ar})$, $165.8(\mathrm{CH})$. Calc. $\mathrm{m} / \mathrm{z}\left[\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{-} 561.4410$. Found 561.4415
$\mathrm{Al}(\mathbf{1}) \mathrm{Me} . \mathbf{1 H}_{2}(0.45 \mathrm{~g}, 0.80 \mathrm{mmol})$ was dissolved in toluene (30 ml) then 2 M AlMe 3 in heptane ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from hexane to yield yellow crystals ($0.29 \mathrm{~g}, 0.48 \mathrm{mmol}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{d}_{8}-\mathrm{Tol}$) (233 K): $\delta-0.35(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Al}-\mathrm{Me}), 0.50\left(2 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 0.63\left(2 \mathrm{H}\right.$, br, ring- $\left.\mathrm{CH}_{2}\right), 1.05-1.30(4 \mathrm{H}, \mathrm{m}$, ring$\left.\mathrm{CH}_{2}\right), 1.40\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.49\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.82\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.86$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.35(2 \mathrm{H}, \mathrm{m}$, ring-CH$), 2.78\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.84(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.52(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.58(1 \mathrm{H}, \mathrm{s}$, ArH), $7.76(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d d_{8}-Tol): δ-9.7 $\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{2}\right), 24.1$ $\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 30.1\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{3}\right), 32.1\left(\mathrm{CH}_{3}\right), 33.1\left(\mathrm{CH}_{2}\right), 34.1$ (C), 34.3 (C), $35.6(\mathrm{C}), 35.7(\mathrm{C}), 36.3\left(\mathrm{CH}_{3}\right), 58.5\left(\mathrm{CH}_{2}\right), 60.2(\mathrm{CH}), 60.3(\mathrm{CH})$, 118.1 (Ar), 120.9 (Ar), 123.6 (ArH), 123.7 (ArH), 127.5 (ArH), 131.7 (ArH), 136.7
(Ar), 138.1 (Ar), 138.4 (Ar), 141.7 (Ar), 157.1 (Ar-O), 166.0 (Ar-O), 171.4 (N=CH). Calc.(\%) for $\mathrm{C}_{38} \mathrm{H}_{59} \mathrm{AlN}_{2} \mathrm{O}_{2}$; C 75.71, H 9.86, N 4.65. Found (\%); C 68.27, H 9.15, N 4.71. Despite significant efforts and elemental analysis of the single crystals satisfactory elemental analysis could not be obtained for complexes containing ligand $\mathbf{1 H}_{2}$, the NMRs are clean and the single crystal data supports the complex.
$\mathrm{Al}(R, R-\mathbf{1}) \mathrm{Me} . R, R-1 \mathrm{H}_{2}(0.225 \mathrm{~g}, 0.80 \mathrm{mmol})$ was dissolved in toluene (30 ml) then 2 M AlMe 3 in heptane ($0.20 \mathrm{ml}, 0.40 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from hexane to yield yellow crystals ($0.08 \mathrm{~g}, 0.13 \mathrm{mmol}, 33 \%$). The following analysis shows a diastereomeric compound in an approximate $1: 1$ ratio. ${ }^{1} \mathrm{H}$ NMR (d_{8}-Tol): $\delta-0.48$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Al}-\mathrm{Me}$), -0.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Al}-\mathrm{Me}$), $0.50-0.85$ ($8 \mathrm{H}, \mathrm{m}$, ring- CH_{2}), $1.15-1.35(8 \mathrm{H}$, m , ring- $\left.\mathrm{CH}_{2}\right), 1.35\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.37\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.41\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.45\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $1.69\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.74\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.77\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.78(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35-2.50(2 \mathrm{H}, \mathrm{m}$, ring- CH$), 2.59(1 \mathrm{H}, \mathrm{m}$, ring- CH$), 2.80$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.83(1 \mathrm{H}, \mathrm{m}$, ring-CH$), 2.94\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $2.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.08\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5$ $\mathrm{Hz}, \mathrm{ArH}), 6.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 6.96(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=2.5 \mathrm{~Hz}, \operatorname{ArH}), 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{ArH}), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.73$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{ArH}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}, \mathrm{ArH}), 7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}$, ArH). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d d_{8}-Tol): $\delta 21.2\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right)$, $24.8\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 30.2\left(\mathrm{CH}_{3}\right), 30.4\left(\mathrm{CH}_{3}\right), 30.5\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{3}\right)$, $31.6\left(\mathrm{CH}_{3}\right), 32.0\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{3}\right), 32.2\left(\mathrm{CH}_{3}\right), 32.6\left(\mathrm{CH}_{2}\right), 33.1(\mathrm{C}), 34.1(\mathrm{C}), 34.3$ $(\mathrm{C}), 34.3(\mathrm{C}), 35.6(\mathrm{C}), 35.7(\mathrm{C}), 35.8(\mathrm{C}), 35.8(\mathrm{C}), 36.3\left(\mathrm{CH}_{3}\right), 41.1\left(\mathrm{CH}_{3}\right), 52.3$ $\left(\mathrm{CH}_{2}\right), 58.6\left(\mathrm{CH}_{2}\right), 60.3(\mathrm{CH}), 61.2(\mathrm{CH}), 66.4(\mathrm{CH}), 118.1(\mathrm{Ar}), 120.9(\mathrm{Ar}), 122.2$ (Ar), $123.7(\mathrm{ArH}), 123.7(\mathrm{ArH}), 123.8(\mathrm{ArH}), 123.9(\mathrm{ArH}), 127.5(\mathrm{ArH}), 127.8$ (ArH), 131.7 (ArH), $132.0(\mathrm{ArH}), 136.7$ (Ar), 136.8 (Ar), 138.0 (Ar), 138.2 (Ar), 138.4 (Ar), 141.4 (Ar), 141.8 (Ar), 157.1 (Ar-O), 157.4 (Ar-O), 166.1 (Ar-O), 166.5 (Ar-O), $171.4(\mathrm{~N}=\mathrm{CH}), 171.7(\mathrm{~N}=\mathrm{CH})$. Calc.(\%) for $\mathrm{C}_{38} \mathrm{H}_{59} \mathrm{AlN}_{2} \mathrm{O}_{2}$; C 75.71, H 9.86, N 4.65. Found (\%); C 65.18, H 9.46, N 4.35. see comment for $\mathrm{Al}(\mathbf{1}) \mathrm{Me}$
$\mathrm{Al}(\mathbf{1}) \mathrm{OBn} . \mathbf{1 H}_{2}(0.45 \mathrm{~g}, 0.80 \mathrm{mmol})$ was dissolved in toluene $(30 \mathrm{ml})$ then 2 M AlMe 3 in heptane ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was briefly washed with hexane to remove any traces of AlMe_{3}. The residue was dissolved in toluene (30 ml) then benzyl alcohol ($0.092 \mathrm{ml}, 0.89 \mathrm{mmol}$) was slowly added and the reaction was stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from hexane to yield a yellow solid ($0.06 \mathrm{~g}, 0.09 \mathrm{mmol}, 11 \%$). The following analysis shows a diastereomeric compound in an approximate $1: 1$ ratio. ${ }^{1} \mathrm{H}$ NMR (d_{8} Tol) : $\delta 0.45-0.9\left(8 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.10-1.55\left(8 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.35(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.37\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.39\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.44\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.62\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.73$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.74\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.78\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.30(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{~J}=3.0 \mathrm{~Hz}$, ring-CH), $2.60-2.80(3 \mathrm{H}, \mathrm{m}$, ring-CH), 2.83 $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.00\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.20\left(4 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}$, ArH), $6.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{ArH}), 6.96(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}$, ArH), 7.04 ($2 \mathrm{H}, \mathrm{br}, \mathrm{ArH}$), $7.15-7.40(8 \mathrm{H}, \mathrm{br}, \mathrm{ArH}), 7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH})$, $7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.71(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH})$, $7.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.80(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{d}_{8}-\mathrm{Tol}\right): \delta 24.1$ $\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 30.4\left(\mathrm{CH}_{3}\right), 30.5\left(\mathrm{CH}_{3}\right), 30.7\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{3}\right), 31.5$
$\left(\mathrm{CH}_{3}\right), 32.0\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{3}\right), 32.2\left(\mathrm{CH}_{3}\right), 32.2\left(\mathrm{CH}_{2}\right), 34.1(\mathrm{C}), 34.2(\mathrm{C}), 34.3(\mathrm{C})$, 34.3 (C), $35.5(\mathrm{C}), 35.7(\mathrm{C}), 35.8(\mathrm{C}), 35.9(\mathrm{C}), 37.6\left(\mathrm{CH}_{3}\right), 41.7\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}_{2}\right)$, $59.2\left(\mathrm{CH}_{2}\right), 60.2(\mathrm{CH}), 60.2(\mathrm{CH}), 60.7(\mathrm{CH}), 66.2(\mathrm{CH}), 118.4(\mathrm{Ar}), 121.2(\mathrm{Ar})$, $122.1(\mathrm{Ar}), 123.6(\mathrm{ArH}), 123.7(\mathrm{ArH}), 123.8(\mathrm{ArH}), 123.9(\mathrm{ArH}), 126.8(\mathrm{ArH}), 127.8$ (ArH), $128.0(\mathrm{ArH}), 128.2(\mathrm{ArH}), 132.1(\mathrm{ArH}), 132.3(\mathrm{ArH}), 137.3(\mathrm{Ar}), 137.3(\mathrm{Ar})$, 138.5 (Ar), 141.4 (Ar), 141.5 (Ar), 156.9 (Ar-O), 157.3 (Ar-O), 166.4 (Ar-O), 171.2 $(\mathrm{N}=\mathrm{CH}), 171.5(\mathrm{~N}=\mathrm{CH})$. see comment for $\mathrm{Al}(\mathbf{1}) \mathrm{Me}$.
$\mathrm{Al}(\mathbf{2}) \mathrm{Me} .2 \mathrm{H}_{2}(0.45 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in toluene (30 ml) then 2 M AlMe 3 in heptane ($0.50 \mathrm{ml}, 1.00 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from toluene to yield yellow crystals $(0.10 \mathrm{~g}, 0.20 \mathrm{mmol}, 20 \%) .{ }^{1} \mathrm{H}$ NMR (d_{8}-Tol): $\delta-0.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Al}-\mathrm{Me})$, $0.70-1.00\left(4 \mathrm{H}\right.$, br, ring- $\left.\mathrm{CH}_{2}\right), 1.30-1.60\left(4 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.-\mathrm{CH}_{2}\right), 1.45\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.75$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.45-2.65(2 \mathrm{H}, \mathrm{m}$, ring-CH$), 2.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 3.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.53(1 \mathrm{H}, \operatorname{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=6.5 \mathrm{~Hz}, \mathrm{~J}=$ $1.5 \mathrm{~Hz}, \mathrm{ArH}), 6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \operatorname{ArH}), 6.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.14(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \operatorname{ArH}), 7.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5$ $\mathrm{Hz}, \mathrm{ArH}), 7.69(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{8}-Tol): δ-10.2 $\left(\mathrm{CH}_{3}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.8$ $\left(\mathrm{CH}_{2}\right), 34.8\left(\mathrm{CH}_{3}\right), 37.1\left(\mathrm{CH}_{3}\right), 38.0(\mathrm{C}), 39.1(\mathrm{C}), 40.3\left(\mathrm{CH}_{2}\right), 45.5\left(\mathrm{CH}_{3}\right), 57.2$ $\left(\mathrm{CH}_{2}\right), 66.7(\mathrm{CH}), 70.9(\mathrm{CH}), 120.1(\mathrm{ArH}), 123.4(\mathrm{Ar}), 126.4(\mathrm{Ar}), 127.8(\mathrm{ArH})$, $128.3(\mathrm{ArH}), 128.6(\mathrm{ArH}), 138.7(\mathrm{ArH}), 142.1(\mathrm{ArH}), 142.7$ (Ar), 143.3 (Ar), 162.1 (Ar-O), 173.9 (Ar-O), 176.3 (N=CH). Calc.(\%) for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{AlN}_{2} \mathrm{O}_{2}$; C 73.44, H 8.83, N 5.71. Found (\%); C 73.57, H 8.83, N 5.80.
$\mathrm{Al}(\mathbf{2}) \mathrm{OBn} .2 \mathrm{H}_{2}(0.36 \mathrm{~g}, 0.80 \mathrm{mmol})$ was dissolved in toluene (30 ml) then 2 M AlMe 3 in heptane ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo, then the residue was dissolved in toluene (30 ml). Benzyl alcohol ($0.083 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added to the reaction and allowed to stir (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from hexane to yield a yellow solid ($0.06 \mathrm{~g}, 0.09 \mathrm{mmol}, 11 \%$). ${ }^{1} \mathrm{H}$ NMR (d_{8}-Tol) (233 K): $\delta 0.40-0.65\left(4 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.05-1.30\left(4 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.46(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.74\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.29(2 \mathrm{H}$, br, ring-CH$), 2.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.57$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.56(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.87(1 \mathrm{H}$, d, J = $7.5 \mathrm{~Hz}, \operatorname{ArH}), 7.04(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 7.20(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.23(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 7.29$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.41(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.56(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 7.60(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $7.62(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{8}-Tol): $\delta 25.0\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{3}\right), 32.7$ (C), $33.2\left(\mathrm{CH}_{3}\right), 36.4(\mathrm{C}), 38.6\left(\mathrm{CH}_{3}\right), 60.3\left(\mathrm{CH}_{2}\right), 60.7(\mathrm{CH}), 60.9(\mathrm{CH}), 67.5\left(\mathrm{CH}_{2}\right)$, $116.9(\mathrm{ArH}), 118.9(\mathrm{Ar}), 121.3(\mathrm{Ar}), 122.0(\mathrm{Ar}), 123.1(\mathrm{ArH}), 124.0(\mathrm{ArH}), 126.0$ (ArH), 126.2 (ArH), 127.3 (ArH), 128.4 (ArH), 129.7 (ArH), 134.2 (ArH), 137.5 (ArH), 138.7 (Ar), 138.8 (Ar), 143.3 (Ar), 157.2 (Ar-O), 168.1 (Ar-O), 170.6 $(\mathrm{N}=\mathrm{CH})$. Calc.(\%) for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{AlN}_{2} \mathrm{O}_{3} ; \mathrm{C} 74.20, \mathrm{H} 8.13, \mathrm{~N} 4.81$. Found (\%); C 72.31, H 7.86, N 4.47.
$\mathrm{Al}(\mathbf{3}) \mathrm{Me} .3 \mathrm{H}_{2}(0.41 \mathrm{~g}, 0.79 \mathrm{mmol})$ was dissolved in toluene $(30 \mathrm{ml})$ then 2 M AlMe 3 in heptane ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from a toluene / hexane mix to yield a yellow solid ($0.34 \mathrm{~g}, 0.61 \mathrm{mmol}, 77 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{8}-\mathrm{Tol}\right)(233$ $\mathrm{K}): ~ \delta-0.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Al}-\mathrm{Me}), 0.70-0.95\left(4 \mathrm{H}\right.$, br, ring $\left.-\mathrm{CH}_{2}\right), 1.30-1.50(4 \mathrm{H}, \mathrm{m}$, ring$\left.\mathrm{CH}_{2}\right), 1.43\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.73\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.50(1 \mathrm{H}, \mathrm{m}$, ring-CH$)$,
$2.70(1 \mathrm{H}$, br ring, CH$), 2.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 6.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 6.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.34(1 \mathrm{H}, \mathrm{s}$, ArH), $7.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{d}_{8}-\mathrm{Tol}\right): \delta$ $-10.3\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 32.2\left(\mathrm{CH}_{3}\right), 33.0(\mathrm{C}), 34.3(\mathrm{C}), 35.5$ $\left(\mathrm{CH}_{2}\right), 40.8\left(\mathrm{CH}_{3}\right), 52.3\left(\mathrm{CH}_{2}\right), 62.2(\mathrm{CH}), 60.9(\mathrm{CH}), 66.0\left(\mathrm{CH}_{2}\right), 116.5(\mathrm{ArH})$, 117.9 (Ar), 120.7 (ArH), 122.2 (Ar), 127.4 (ArH), 128.8 (ArH), $130.0(\mathrm{ArH}), 131.9$ (ArH), 136.8 (Ar), 141.6 (Ar), 161.5 (Ar-O), 166.4 (Ar-O), 172.1 (N=CH). Calc.(\%) for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{AlCl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$; C 64.40, H 7.39, N 5.01. Found (\%); C 64.39, H 7.46, N 5.18.
$\mathrm{Al}(\mathbf{3}) \mathrm{OBn} .2 \mathrm{H}_{2}(0.42 \mathrm{~g}, 0.81 \mathrm{mmol})$ was dissolved in toluene (30 ml) then 2 M AlMe 3 in heptane ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was briefly washed with hexane to remove any traces of AlMe_{3}. The residue was dissolved in toluene (30 ml) then benzyl alcohol ($0.091 \mathrm{ml}, 0.88 \mathrm{mmol}$) was slowly added and the reaction was stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from hexane to yield a yellow solid ($0.22 \mathrm{~g}, 0.34 \mathrm{mmol}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR (d_{8}-Tol) $(\mathrm{K}): \delta 0.65-0.85\left(4 \mathrm{H}\right.$, br, ring $\left.-\mathrm{CH}_{2}\right), 1.30-1.55\left(4 \mathrm{H}, \mathrm{m}\right.$, ring $\left.-\mathrm{CH}_{2}\right), 1.42(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.74\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.74\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 2.77(1 \mathrm{H}, \mathrm{br}, \mathrm{CH}), 3.51$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}), 5.14\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{ArH}), 6.93$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.03(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 7.12(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 7.13(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.30(1 \mathrm{H}, \mathrm{s}$, $\operatorname{ArH}), 7.33(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 7.35(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d d_{8} - Tol): $\delta 24.6\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{2}\right), 32.2(\mathrm{C}), 34.3(\mathrm{C})$, $35.5\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{3}\right), 52.3\left(\mathrm{CH}_{2}\right), 61.0(\mathrm{CH}), 65.9\left(\mathrm{CH}_{2}\right), 66.2(\mathrm{CH}), 118.8(\mathrm{Ar})$, $119.1(\mathrm{Ar}), 121.1(\mathrm{Ar}), 123.4(\mathrm{ArH}), 124.0(\mathrm{ArH}), 126.0(\mathrm{ArH}), 127.1(\mathrm{ArH}), 128.0$ $(\mathrm{ArH}), 130.9(\mathrm{ArH}), 135.8(\mathrm{ArH}), 138.7(\mathrm{Ar}), 138.9(\mathrm{Ar}), 156.8(\mathrm{Ar}-\mathrm{O}), 162.0(\mathrm{Ar}-$ O), 169.7 (N=CH). Calc.(\%) for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{AlCl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$; C 66.35, H 6.96, N 4.30. Found (\%); C 66.20, H 7.08, N 4.28
$\mathrm{Al}(\mathbf{4}) \mathrm{Me} .4 \mathrm{H}_{2}(0.36 \mathrm{~g}, 0.80 \mathrm{mmol})$ was dissolved in toluene (30 ml) then 2 M AlMe 3 in heptane ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from a toluene $/$ hexane mix to yield a yellow solid ($0.18 \mathrm{~g}, 0.37 \mathrm{mmol}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR (d_{8}-Tol) (233 $\mathrm{K}): ~ \delta-0.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Al}-\mathrm{Me}), 0.70-0.90\left(4 \mathrm{H}, \mathrm{br}\right.$, ring $\left.-\mathrm{CH}_{2}\right), 1.35-1.55(4 \mathrm{H}, \mathrm{m}$, ring$\left.\mathrm{CH}_{2}\right), 1.40\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.79\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.55(1 \mathrm{H}, \mathrm{m}$, ring CH$)$, $2.66\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.73(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, \operatorname{ArH}), 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \operatorname{ArH}), 6.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{ArH}), 7.05(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.0 \mathrm{~Hz}, \operatorname{ArH}), 7.19(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \operatorname{ArH}), 7.72(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 7.73(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d d_{8}-Tol): δ-9.7 $\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{3}\right), 31.6$ $\left(\mathrm{CH}_{3}\right), 33.4(\mathrm{C}), 34.2(\mathrm{C}), 35.7\left(\mathrm{CH}_{2}\right), 40.8\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{2}\right), 61.5(\mathrm{CH}), 66.3(\mathrm{CH})$, 118.9 (Ar), $119.0(\mathrm{Ar}), 121.3(\mathrm{Ar}), 123.5(\mathrm{ArH}), 124.0(\mathrm{ArH}), 128.1(\mathrm{Ar}), 130.9$ (ArH), 135.9 (ArH), 138.4 (Ar), 138.9 (Ar), 156.9 (Ar-O), 162.0 (Ar-O), 170.4 $(\mathrm{N}=\mathrm{CH})$. Calc.(\%) for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{AlN}_{2} \mathrm{O}_{2}$; C 73.44, H 8.83, N 5.71. Found (\%); C 73.37, H 8.90, N 5.82.
$\mathrm{Al}(\mathbf{4}) \mathrm{OBn} .4 \mathrm{H}_{2}(0.36 \mathrm{~g}, 0.80 \mathrm{mmol})$ was dissolved in toluene $(30 \mathrm{ml})$ then 2 M AlMe 3 in heptane ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was briefly washed with hexane to remove any traces of AlMe_{3}. The residue was dissolved in toluene (30 ml) then benzyl alcohol ($0.083 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and the reaction was stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised
from a toluene / hexane mix to yield a yellow solid ($0.23 \mathrm{~g}, 0.39 \mathrm{mmol}, 49 \%) .{ }^{1} \mathrm{H}$ NMR (d d_{8}-Tol) $(233 \mathrm{~K}): \delta 0.40-0.80\left(4 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.15-1.55(4 \mathrm{H}, \mathrm{m}$, ring$\left.\mathrm{CH}_{2}\right), 1.48\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.88\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.25(1 \mathrm{H}, \mathrm{br}$, ring CH$)$, $2.59\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.77(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}$, ring CH$), 3.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.34\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.44\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.86$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{ArH}), 6.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.15-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.60(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.85(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d d_{8}-Tol): $\delta 24.9\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 31.6\left(\mathrm{CH}_{3}\right), 32.4(\mathrm{C}), 34.2(\mathrm{C}), 35.8$ $\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{3}\right), 51.5\left(\mathrm{CH}_{2}\right), 60.7(\mathrm{CH}), 66.1(\mathrm{CH}), 66.2\left(\mathrm{CH}_{2}\right), 116.9(\mathrm{ArH})$, 118.2 (Ar), 120.6 (ArH), 122.1 (Ar), $125.9(\mathrm{ArH}), 127.3(\mathrm{ArH}), 128.0(\mathrm{ArH}), 128.7$ (ArH), $130.0(\mathrm{ArH}), 132.1(\mathrm{ArH}), 137.3(\mathrm{Ar}), 141.8(\mathrm{Ar}), 161.3(\mathrm{Ar}-\mathrm{O}), 166.6$ (Ar$\mathrm{O}), 171.8(\mathrm{~N}=\mathrm{CH})$. Calc.(\%) for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{AlN}_{2} \mathrm{O}_{3}$; C 74.20, H 8.13, N 4.81. Found (\%); C 74.29, H 8.11, N 4.72.
$\mathrm{Al}(\mathbf{5}) \mathrm{Me}$ - too insoluble for analysis
$\mathrm{Al}(\mathbf{5}) \mathrm{OBn} .5 \mathrm{H}_{2}(0.34 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in toluene $(30 \mathrm{ml})$ then 2 M AlMe 3 in heptane ($0.50 \mathrm{ml}, 1.00 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was briefly washed with hexane to remove any traces of AlMe_{3}. The residue was dissolved in toluene (30 ml) then benzyl alcohol ($0.11 \mathrm{ml}, 1.06 \mathrm{mmol}$) was slowly added and the reaction was stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from a toluene / hexane mix to yield a yellow solid ($0.27 \mathrm{~g}, 0.57 \mathrm{mmol}, 57 \%)$. The following analysis shows a diastereomeric compound in an approximate $1: 1$ ratio. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{8}-\mathrm{Tol}\right): \delta 0.45-0.90\left(8 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.15-1.55\left(8 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 2.16$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.39(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz}$, ring CH$), 2.52$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}$, ring CH$), 2.64(1 \mathrm{H}$, br, ring CH$), 2.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $2.74\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}), 3.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5$ $\mathrm{Hz}, \mathrm{CH}), 4.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}), 5.09\left(4 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 6.54(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}$, ArH), $6.70(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \operatorname{ArH}), 6.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}$, ArH), 6.92 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArH}$), $7.03-7.09$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.16 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.38(4 \mathrm{H}, \mathrm{br}, \mathrm{ArH}), 7.56(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.67(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{d}_{8}-\mathrm{Tol}\right): \delta$ $21.3\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right)$, $37.4\left(\mathrm{CH}_{3}\right), 41.6\left(\mathrm{CH}_{3}\right), 51.6\left(\mathrm{CH}_{2}\right), 58.3\left(\mathrm{CH}_{3}\right), 59.7(\mathrm{CH}), 59.8(\mathrm{CH}), 60.5(\mathrm{CH})$, $66.1(\mathrm{CH}), 66.2\left(\mathrm{CH}_{2}\right), 115.7(\mathrm{ArH}), 115.7(\mathrm{ArH}), 117.0(\mathrm{ArH}), 117.2(\mathrm{ArH}), 118.6$ (Ar), $118.7(\mathrm{Ar}), 120.4(\mathrm{ArH}), 120.5(\mathrm{ArH}), 121.1(\mathrm{Ar}), 122.2(\mathrm{Ar}), 122.6(\mathrm{ArH})$, $122.8(\mathrm{ArH}), 125.9(\mathrm{ArH}), 127.1(\mathrm{ArH}), 128.1(\mathrm{ArH}), 130.1(\mathrm{ArH}), 130.2(\mathrm{ArH})$, 133.9 (ArH), 134.0 (ArH), 137.1 (ArH), 137.2 (ArH), 160.9 (Ar-O), 161.3 (Ar-O), 168.4 (Ar-O), 168.8 (Ar-O), 170.8 (N=CH), 171.1 (N=CH). Calc.(\%) for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{AlN}_{2} \mathrm{O}_{3} ;$ C 71.47, H 6.64, N 5.95. Found (\%); C 71.38, H 6.65, N 6.02.
$\mathrm{Al}(6) \mathrm{Me}$ - too insoluble for analysis
$\mathrm{Al}(\mathbf{6}) \mathrm{OBn} .6 \mathrm{H}_{2}(0.41 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in toluene $(30 \mathrm{ml})$ then 2 M AlMe 3 in heptane $(0.50 \mathrm{ml}, 1.00 \mathrm{mmol})$ was slowly added and stirred $(16 \mathrm{~h})$. The solvent was removed in-vacuo and the crude mixture was briefly washed with hexane to remove any traces of AlMe_{3}. The residue was dissolved in toluene (30 ml) then benzyl alcohol ($0.11 \mathrm{ml}, 1.06 \mathrm{mmol}$) was slowly added and the reaction was stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from a toluene / hexane mix to yield a yellow solid ($0.20 \mathrm{~g}, 0.37 \mathrm{mmol}, 37 \%$). The
following analysis shows a diastereomeric compound in an approximate $1: 1$ ratio. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{8}-\mathrm{Tol}\right): \delta 0.30-0.80\left(8 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.30-1.50\left(8 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.66$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.36(1 \mathrm{H}, \mathrm{m}$, ring CH$), 2.57(1 \mathrm{H}$, m , ring CH$), 2.65\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.72\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.79$ $\left(1 \mathrm{H}, \mathrm{m}\right.$, ring CH), $2.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $4.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.13\left(4 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 6.50-6.85(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.03$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.14 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.25-7.40(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.51$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{d}_{8}\right.$-Tol): $\delta 21.3\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 24.8$ $\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{3}\right), 41.7\left(\mathrm{CH}_{3}\right), 51.6\left(\mathrm{CH}_{2}\right), 58.3\left(\mathrm{CH}_{3}\right), 59.5$ $(\mathrm{CH}), 60.2(\mathrm{CH}), 60.9(\mathrm{CH}), 65.9\left(\mathrm{CH}_{2}\right), 66.1(\mathrm{CH}), 117.3(\mathrm{ArH}), 117.5(\mathrm{ArH}), 118.9$ (Ar), 119.0 (Ar), 119.2 (Ar), 119.3 (Ar), 120.4 (ArH), 120.6 (ArH), 120.8 (Ar), $121.9(\mathrm{Ar}), 126.2(\mathrm{ArH}), 127.0(\mathrm{ArH}), 128.1(\mathrm{ArH}), 130.2(\mathrm{ArH}), 130.3(\mathrm{ArH}), 131.0$ (ArH$), 131.1(\mathrm{ArH}), 135.7(\mathrm{ArH}), 135.82(\mathrm{ArH}), 160.5(\mathrm{Ar}-\mathrm{O}), 160.8(\mathrm{Ar}-\mathrm{O}), 161.3$ (Ar-O), $161.8 \quad(\mathrm{Ar}-\mathrm{O}), \quad 169.7 \quad(\mathrm{~N}=\mathrm{CH}), \quad 170.3 \quad(\mathrm{~N}=\mathrm{CH}) . \quad$ Calc.(\%) for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{AlCl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} ; \mathrm{C} 62.34$, H 5.42, N 5.19. Found (\%); C 62.28, H 5.46, N 5.07.
$\mathrm{Al}(7) \mathrm{Me} .7 \mathrm{H}_{2}(0.41 \mathrm{~g}, 0.79 \mathrm{mmol})$ was dissolved in toluene (30 ml) then 2 M AlMe 3 in heptane ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from a toluene / hexane mix to yield a yellow solid ($0.32 \mathrm{~g}, 0.57 \mathrm{mmol}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (d_{8}-Tol $) ~: ~ \delta-$ $0.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Al}-\mathrm{Me}), 0.60-1.00\left(4 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.20-1.60\left(4 \mathrm{H}\right.$, br, ring- $\left.\mathrm{CH}_{2}\right)$, $1.37\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.78\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.61(1 \mathrm{H}$, m , ring CH$), 3.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{CH}), 6.65(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.94(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $7.34(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.72(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.73(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{d}_{8}-\mathrm{Tol}\right): \delta$ -9.4 (CH_{3}), $24.8\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{3}\right), 32.2(\mathrm{C}), 34.2(\mathrm{C}), 35.7$ $\left(\mathrm{CH}_{2}\right), 40.7\left(\mathrm{CH}_{3}\right), 51.0\left(\mathrm{CH}_{2}\right), 61.3(\mathrm{CH}), 66.3(\mathrm{CH}), 117.8(\mathrm{Ar}), 120.2(\mathrm{Ar}), 124.7$ (Ar), $125.4(\mathrm{Ar}), 127.1(\mathrm{ArH}), 127.4(\mathrm{ArH}), 129.8(\mathrm{ArH}), 127.5(\mathrm{ArH}), 132.3(\mathrm{ArH})$, 137.3 (Ar), 141.9 (Ar), 155.7 (Ar-O), 166.2 (Ar-O), 172.3 (N=CH). Calc.(\%) for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{AlCl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$; C 64.40, H 7.39, N 5.01. Found (\%); C 64.47, H 7.51, N 5.13.
$\mathrm{Al}(7) \mathrm{OBn} .7 \mathrm{H}_{2}(0.42 \mathrm{~g}, 0.81 \mathrm{mmol})$ was dissolved in toluene $(30 \mathrm{ml})$ then 2 M AlMe 3 in heptane $(0.40 \mathrm{ml}, 0.80 \mathrm{mmol})$ was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was briefly washed with hexane to remove any traces of AlMe_{3}. The residue was dissolved in toluene (30 ml) then benzyl alcohol ($0.083 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and the reaction was stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from a toluene / hexane mix to yield a yellow solid ($0.34 \mathrm{~g}, 0.52 \mathrm{mmol}, 65 \%) .{ }^{1} \mathrm{H}$ NMR (D_{8}-Tol) : $\delta 0.65-0.95\left(4 \mathrm{H}\right.$, m, ring- $\left.\mathrm{CH}_{2}\right), 1.30-1.55\left(4 \mathrm{H}\right.$, br, ring- $\left.\mathrm{CH}_{2}\right)$, $1.37(9 \mathrm{H}, \mathrm{s}, \mathrm{t} \mathrm{Bu}), 1.75\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH})$, $2.58\left(1 \mathrm{H}, \mathrm{m}\right.$, ring CH), $2.74\left(1 \mathrm{H}, \mathrm{m}\right.$, ring CH), $3.23\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.16$ $\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 6.97(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0$ $\mathrm{Hz}, \mathrm{ArH}$), $7.19(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.41(2 \mathrm{H}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.75(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.77(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d 8 - Toll): $\delta 24.8$ $\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{3}\right), 32.3(\mathrm{C}), 34.2(\mathrm{C}), 37.8\left(\mathrm{CH}_{2}\right), 41.4$ $\left(\mathrm{CH}_{3}\right), 60.5(\mathrm{CH}), 65.5\left(\mathrm{CH}_{2}\right), 66.2(\mathrm{CH}), 118.1(\mathrm{Ar}), 120.8(\mathrm{Ar}), 124.6(\mathrm{Ar}), 125.6$ (Ar), $126.1(\mathrm{ArH}), 127.0(\mathrm{ArH}), 127.4(\mathrm{ArH}), 127.5(\mathrm{ArH}), 128.1(\mathrm{ArH}), 129.3$ (ArH$), 129.8(\mathrm{ArH}), 132.5(\mathrm{ArH}), 137.8$ (Ar), 142.1 (Ar), 146.7 (Ar), 155.5 (Ar-O), 166.4 (Ar-O), 172.1 (N=CH). Calc.(\%) for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{AlCl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$; C 66.35, H 6.96, N 4.30. Found (\%); C 66.45, H 7.02, N 4.40.
$\mathrm{Al}(\mathbf{8}) \mathrm{Me}$ - too insoluble for analysis
$\mathrm{Al}(\mathbf{8}) \mathrm{OBn} . \mathbf{8} \mathrm{H}_{2}(0.33 \mathrm{~g}, 0.81 \mathrm{mmol})$ was dissolved in toluene $(30 \mathrm{ml})$ then 2 M AlMe 3 in heptane ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was briefly washed with hexane to remove any traces of AlMe_{3}. The residue was dissolved in toluene (30 ml) then benzyl alcohol ($0.091 \mathrm{ml}, 0.88 \mathrm{mmol}$) was slowly added and the reaction was stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised twice from a toluene / hexane mix to yield a yellow solid ($0.19 \mathrm{~g}, 0.35 \mathrm{mmol}, 43 \%$). Analysis shows impurities were present in this sample despite extensive efforts to isolate a pure product. The following analysis shows a diastereomeric compound in an approximate $1: 1$ ratio. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{8}-\mathrm{Tol}\right): \delta 0.30-0.90\left(8 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.10-$ $1.65\left(8 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.95-2.15\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 2.30-2.70$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.10-4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.24(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.90-5.30\left(4 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 6.45-6.75(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.80-6.90$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.07(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.10-7.23(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.29$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.35(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.38(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.48(1 \mathrm{H}, \mathrm{br}, \mathrm{ArH}), 7.54(1 \mathrm{H}, \mathrm{s}$, $\mathrm{N}=\mathrm{CH}), 7.55-7.90(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}, \mathrm{N}=\mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{8}-Tol) : $\delta 21.2\left(\mathrm{CH}_{2}\right)$, $23.7\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{3}\right)$, $41.5\left(\mathrm{CH}_{3}\right), 50.8\left(\mathrm{CH}_{2}\right), 57.4\left(\mathrm{CH}_{2}\right), 59.6(\mathrm{CH}), 60.2(\mathrm{CH}), 60.3(\mathrm{CH}), 66.1\left(\mathrm{CH}_{2}\right)$, $66.1(\mathrm{CH}), 116.0(\mathrm{ArH}), 118.4(\mathrm{Ar}), 118.5(\mathrm{Ar}), 120.8(\mathrm{Ar}), 120.9(\mathrm{Ar}), 122.7(\mathrm{ArH})$, $122.7(\mathrm{ArH}), 123.5(\mathrm{Ar}), 124.2(\mathrm{Ar}), 24.6(\mathrm{Ar}), 126.2(\mathrm{ArH}), 126.9(\mathrm{ArH}), 127.1$ $(\mathrm{ArH}), 127.1(\mathrm{ArH}), 128.1(\mathrm{ArH}), 129.8(\mathrm{ArH}), 129.9(\mathrm{ArH}), 133.8(\mathrm{ArH}), 133.9$ (ArH), $137.4(\mathrm{ArH}), 137.6$ (ArH), 155.3 (Ar-O), 155.5 (Ar-O), 168.3 (Ar-O), 168.8 (Ar-O), $170.9(\mathrm{~N}=\mathrm{CH}), 171.1(\mathrm{~N}=\mathrm{CH})$. Calc.(\%) for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{AlCl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} ; \mathrm{C} 62.34, \mathrm{H}$ 5.42, N 5.19. Found (\%); C 57.91, H 5.78, N 4.39.
$\mathrm{Al}(\mathbf{9}) \mathrm{Me}$ - too insoluble for analysis
$\mathrm{Al}(\mathbf{9}) \mathrm{OBn} .9 \mathrm{H}_{2}(0.38 \mathrm{~g}, 0.80 \mathrm{mmol})$ was dissolved in toluene (30 ml) then 2 M AlMe 3 in heptane ($0.40 \mathrm{ml}, 0.80 \mathrm{mmol}$) was slowly added and stirred (16 h). The solvent was removed in-vacuo and the crude mixture was briefly washed with hexane to remove any traces of AlMe_{3}. The residue was dissolved in toluene (30 ml) then benzyl alcohol ($0.091 \mathrm{ml}, 0.88 \mathrm{mmol}$) was slowly added and the reaction was stirred (16 h). The solvent was removed in-vacuo and the crude mixture was recrystallised from a toluene / hexane mix to yield a yellow solid ($0.16 \mathrm{~g}, 0.26 \mathrm{mmol}, 33 \%$). The following analysis shows a diastereomeric compound in an approximate 3:1 ratio (the major diastereomers is characterised). ${ }^{1} \mathrm{H}$ NMR (d_{8}-Tol) : $\delta 0.25-0.40(2 \mathrm{H}, \mathrm{m}$, ring- CH_{2}), $0.50-0.75\left(2 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 1.17\left(2 \mathrm{H}, \mathrm{m}\right.$, ring $\left.-\mathrm{CH}_{2}\right), 1.32(1 \mathrm{H}, \mathrm{m}$, ring$\left.\mathrm{CH}_{2}\right), 1.44\left(1 \mathrm{H}, \mathrm{m}\right.$, ring- $\left.\mathrm{CH}_{2}\right), 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.45(1 \mathrm{H}, \mathrm{m}$, ring CH$), 2.68(1 \mathrm{H}$, m , ring CH), $3.22\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.18\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.11$ $\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 6.56(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.17(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, \mathrm{ArH}), 7.25(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.29(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.37(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$. Solubility does not allow a ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR to be obtained. Calc.(\%) for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{AlCl}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}$; C 55.28, H 4.47, N 4.61. Found (\%); C 55.17, H 4.54, N 4.64.

