Supporting Information

for

Syntheses, Structures and Properties of Ruthenium Complexes of Tridentate Ligands: Isolation and Characterization of a Rare Example of Ruthenium Nitrosyl Complex Containing {RuNO}⁵ Moiety

Kaushik Ghosh*, Rajan Kumar, Sushil Kumar and Jay Singh Meena

Department of Chemistry, Indian Institute of Technology Roorkee,

Roorkee-247667 Uttarakhand INDIA.

E-mail: <u>ghoshfcy@iitr.ernet.in</u>

Fig. S1 ¹H NMR spectrum of complex 2 in CDCl₃ at room temperature.

Fig. S2 ³¹P NMR spectrum of complex **2** in CDCl₃ at room temperature.

Fig. S3 ¹H NMR spectrum of complex 3 in CDCl₃ at room temperature.

Fig. S4 ³¹P NMR spectrum of complex **3** in CDCl₃ at room temperature.

Fig. S5 ¹H NMR spectrum of complex 1 in CDCl₃ at room temperature.

Fig. S6 ¹H NMR spectrum of complex **4** in CD₃CN at room temperature.

Fig. S7 ³¹P NMR spectrum of complex 4 in CDCl₃ at room temperature.

Compd	2-Н	11-Н	7–Н	15-Н	6-Н	Other protons
1	8.25	6.67	6.84	7.84	-	7.93–7.4 (ligand–H)
2	8.73	5.84	6.57	8.62	7.34	7.44–6.92 (PPh ₃ , 15H and ligand–H)
3	9.52	5.95	6.86	9.37	7.45	7.34–7.12 (PPh ₃ , 15H and ligand–H)
4	8.79	6.43	7.35	8.31	7.63	7.89–7.48 (PPh ₃ , 15H and ligand–H)

Table S1 ¹H NMR Spectral Data [δ , ppm (*J*, Hz)] of Complexs **1**, **2**, **3**, **4**.

Fig. S8 Electronic absorption spectra of 1 (red line) and 4 (black line) in acetonitrile solutions.

Fig. S9 Infrared spectrum of complex 1. IR (KBr disk, cm^{-1}): 1871 (v_{NO}) and 1654 (v_{CONH}) cm^{-1} .

Fig. S10 Infrared spectrum of complex 4. IR (KBr disk, cm⁻¹): 1890 (v_{NO}), 1092, 623 (v_{CIO4}), 746, 694, 522 (v_{PPh3}) cm⁻¹.

Fig. S11 Electronic spectra of conversion of reduced myoglobin to Mb–NO adduct upon reaction with **1** in buffer solution (50 mM phosphate buffer, pH 6.8) under exposure of UV light. Green line, Met Mb (intense band at 409 nm); blue line, reduced Mb (near 433 nm, with excess of sodium dithionite); red dotted line, reduced Mb + solution of **1** ($\sim 4.5 \times 10^{-5}$ M) in dark; black line, Mb–NO adduct for **1** at 422 nm when same solutions were exposed to UV light for 2-3 minutes.

Fig. S12 Reaction of photoreleased NO derived from complex 1 with DPPH radical (~ 10^{-5} M) in acetonitrile solution.

Fig. S13 (a) Infrared and (b) UV-Vis spectra (black line, complex 4; blue line, 4 (1 mM) + CAN (8 mM); red line, 4 (1 mM) + CAN (8 mM) + sodium dithionite (2 mM)) showing the conversion of $\{RuNO\}^6$ to $\{RuNO\}^5$ species when complex 4 was treated with ceric ammonium nitrate in acetonitrile solution.

Fig. S14 Infrared spectrum of complex **5**. IR (KBr disk, cm⁻¹): 1910 (v_{NO}), 1391 (v_{NO3}), 1085, 750, 695, 518 (v_{PPh3}) cm⁻¹.

Fig. S15 Experimental and TDDFT calculated absorption spectra of (a) complex **1** and (b) complex **4**.

Bond	l lengths (Å)		Bond	Bond angles (deg.)				
		Со	omplex 1					
	X-ray	DFT		X-ray	DFT			
Ru(1)-Cl(1)	2.3678(8)	2.471	N(1)-Ru(1)-N(4)	157.61(8)	156.81			
Ru(1)-Cl(2)	2.3882(8)	2.499	N(2)-Ru(1)-N(5)	173.51(10)	174.22			
Ru(1) - N(2)	1.977(2)	1.993	Cl(1)Ru(1)-Cl(2)	175.55(3)	176.14			
Ru(1) - N(1)	2.074(2)	2.083	N(1)-Ru(1)-N(2)	79.12(9)	78.16			
Ru(1)-N(4)	2.052(2)	2.098	N(4)-Ru(1)-N(2)	78.59(9)	78.91			
Ru(1)-N(5)	1.761(2)	1.782	N(4)-Ru(1)-Cl(1)	88.88(7)	87.76			
N(5)-O(2)	1.147(3)	1.197	N(4)-Ru(1)-Cl(2)	90.14(7)	92.05			
			O(2) - N(5) - Ru(1)	169.4(2)	171.89			
Complex 4								
Ru(1)-Cl(1)	2.3858(12)	2.473	N(3)-Ru(1)-N(2)	77.71(15)	77.70			
Ru(1) - P(1)	2.4057(13)	2.581	N(1)-Ru(1)-N(4)	96.44(16)	103.03			
Ru(1) - N(4)	2.082(3)	2.118	P(1)-Ru(1)-Cl(1)	173.71(5)	175.35			
Ru(1) - N(3)	2.002(4)	2.051	N(4) - Ru(1) - N(3)	78.17(15)	78.13			
Ru(1) - N(2)	2.077(3)	2.100	N(4) - Ru(1) - N(2)	155.39(14)	155.52			
Ru(1) - N(1)	1.731(4)	1.776	N(2)-Ru(1)-P(1)	92.53(9)	93.94			
N(1)-O(1)	1.142(4)	1.184	N(1)-Ru(1)-P(1)	89.88(12)	94.95			
			O(1)-N(1)-Ru(1)	173.7(4)	172.31			

 Table S2 Selected bond distances (Å) and bond angles (°) for nitrosyl complexes 1 and 4 along with the optimized DFT bond parameters for comparison.

Table S3 Calculated HOMO compositions (in %) expressed in terms of individual fragments.

Complex	Ru	Cl	NO	Other
[Ru(L1)(NO)Cl2](1)	2	6	8	83
$[Ru(L^2)(PPh_3)(NO)Cl]^{2+}(4)$	5	6	0	89
$[Ru(L^2)(PPh_3)(NO)Cl]^{3+}$ (5)	8	7	1	84

.

Composition	E (eV)	Oscillator strength (<i>f</i>)	$\lambda_{\mathrm{theo}} (\mathrm{nm})$	λ_{\exp} (nm)		
Complex 1						
HOMO → LUMO+2 (88%) HOMO-1 → LUMO+3 (6%)	2.76	0.0309	448.98	442		
HOMO→ LUMO+5 (49%) HOMO-12 → LUMO+1 (17%) HOMO-1 → LUMO+6 (4%) HOMO-2 → LUMO+2 (3%) HOMO-10 → LUMO+1 (3%) HOMO-3 → LUMO+2 (3%)	3.56	0.0366	348.20	383		
HOMO-12 → LUMO (13%) HOMO-3 → LUMO+4 (13%) HOMO-13 → LUMO+1 (11%) HOMO-14 → LUMO+1 (10%) HOMO-10 → LUMO+1 (7%) HOMO-9 → LUMO+1 (5%) HOMO-3 → LUMO+5 (4%) HOMO-13 → LUMO (4%) HOMO-14 → LUMO (3%)	4.52	0.0609	274.11	274		
HOMO-10 → LUMO+2 (53%) HOMO-7 → LUMO+4 (9%) HOMO-11 → LUMO+2 (7%) HOMO-10 → LUMO+3 (3%) HOMO-7 → LUMO+5 (3%) HOMO-1 → LUMO+7 (2%) HOMO-5 → LUMO+6 (2%)	4.91	0.0726	252.67	250		

Table S4 Calculated TD-DFT excitation energies (in eV), oscillator strengths (*f*), and nature of transitions in the complexes 1 and 4.

Complex 4					
HOMO → LUMO+2 (63%) HOMO-2 → LUMO+2 (3%) HOMO-5 → LUMO+2 (3%) HOMO-4 → LUMO+2 (5%) HOMO-6 → LUMO+2 (7%) HOMO-11 → LUMO (15%)	2.94	0.0355	420.98	425	
HOMO-1 → LUMO+6 (4%) HOMO-1 → LUMO+5 (3%) HOMO-9 → LUMO+4 (45%) HOMO → LUMO+6 (8%) HOMO-10 → LUMO+4 (24%) HOMO-6 → LUMO+5 (3%) HOMO-12 → LUMO+2 (2%) HOMO-8 → LUMO+4 (2%)	4.42	0.0429	280.62	275	

Fig S16 Spin density distribution in complex 5.

Fig. S17 ESI-MS spectrum of complex 2 along with fragmentation pattern.

Fig. S18 ESI-MS spectrum of complex 3 along with fragmentation pattern.

Fig. S19 ESI-MS spectrum of complex 5 along with fragmentation pattern.