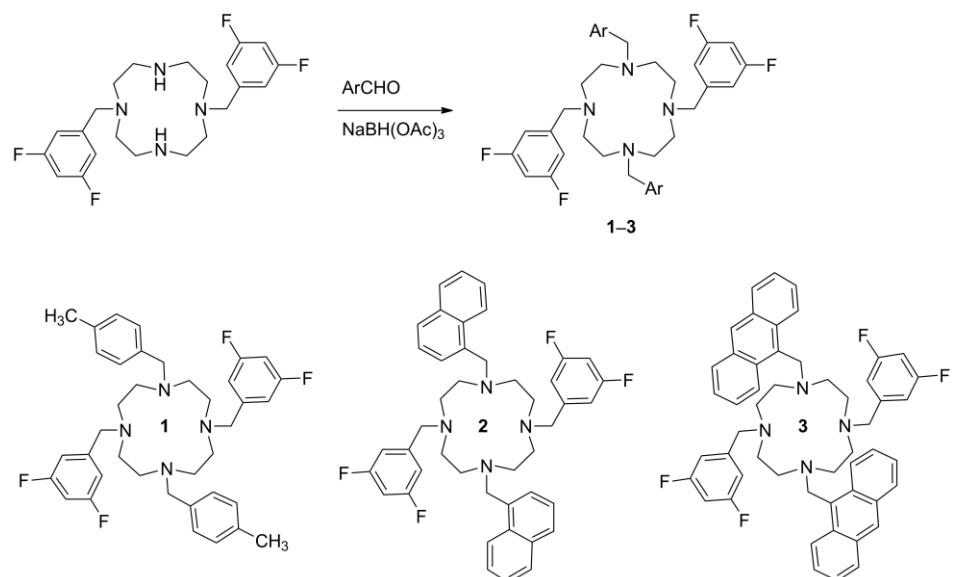


Electronic Supporting Information for
Argentivorous Molecules having Two Kinds of Aromatic Side-
Arms: Intramolecular Competition between Side-Arms


*Yoichi Habata**^{†,‡}, *Yosuke Oyama*,[†] *Mari Ikeda*,^{†,‡} and *Shunsuke Kuwahara*^{†,‡}

[†] Department of Chemistry, Faculty of Science, and [‡]Research Center for Materials with Integrated Properties, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

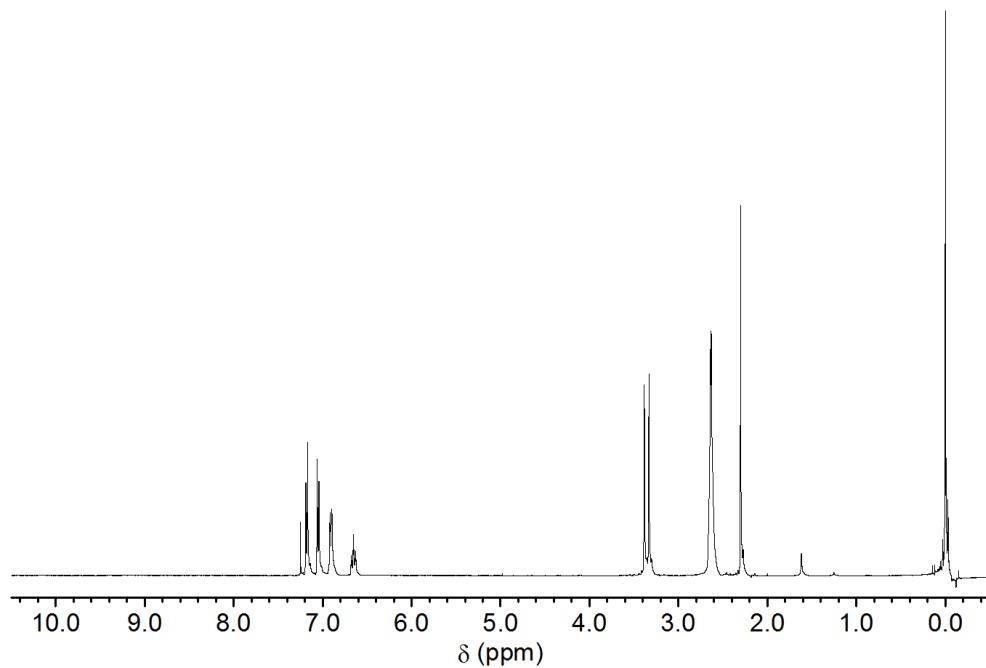
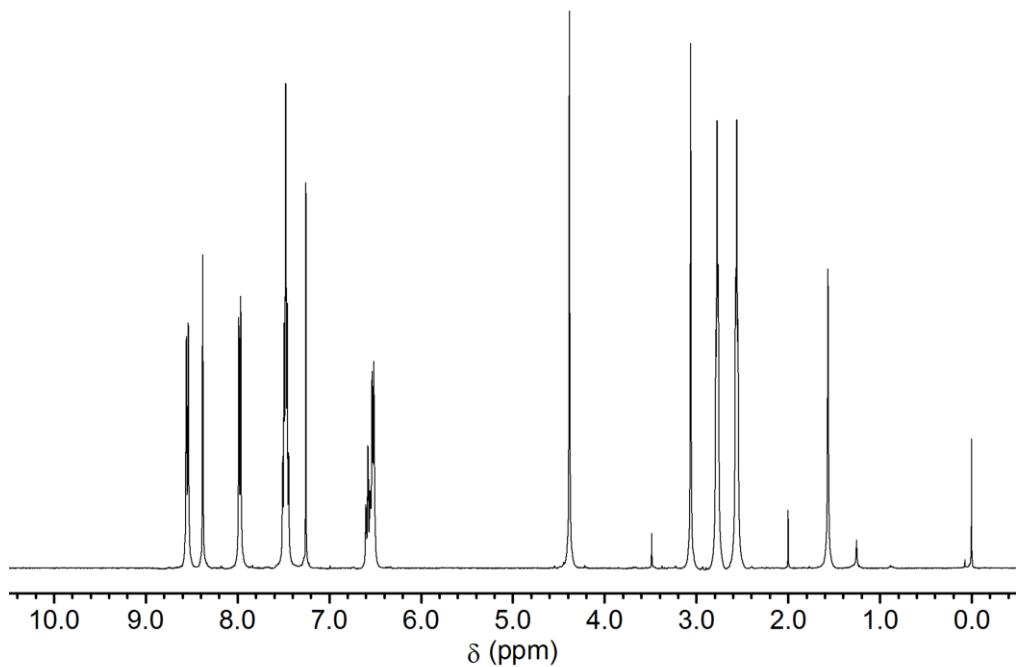
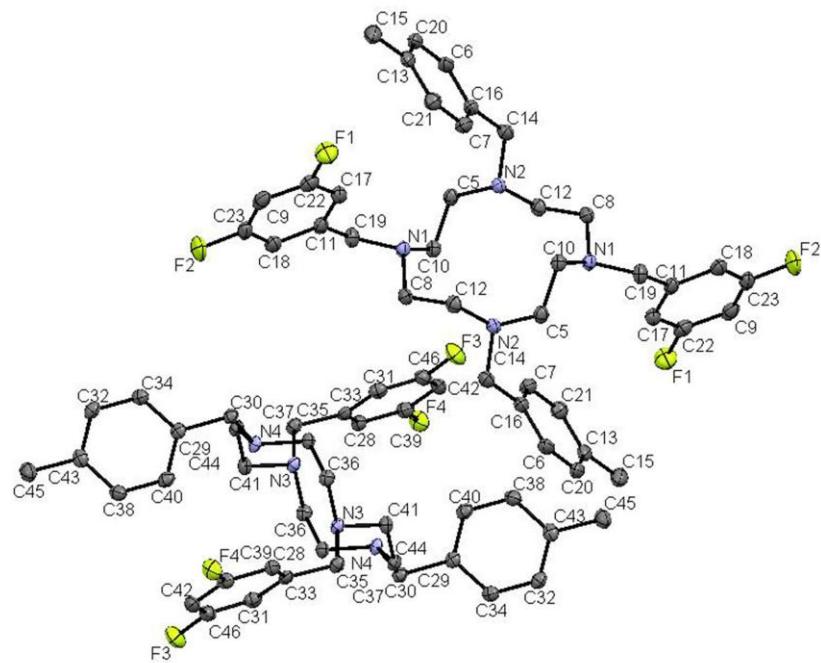
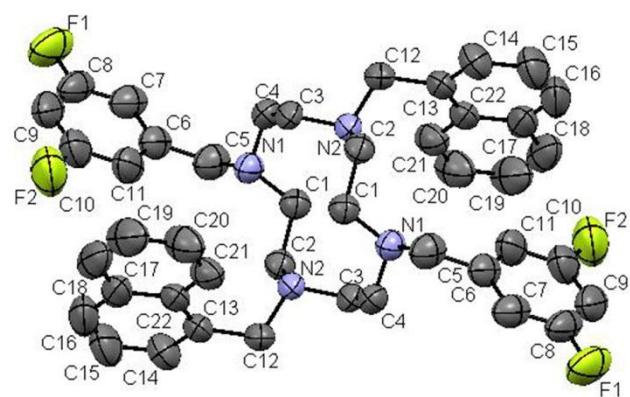

habata@chem.sci.toho-u.ac.jp

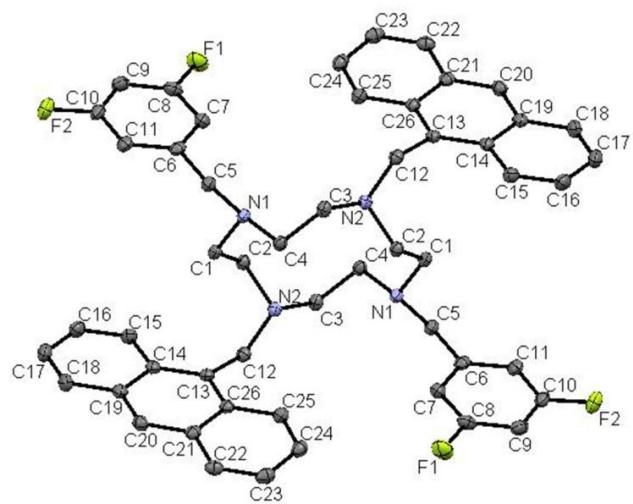
Table of Contents

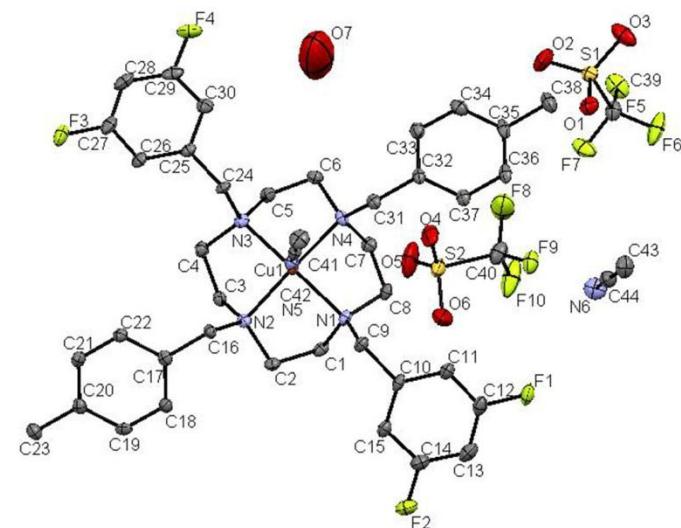

Figure S1. Synthetic scheme.	3
Figure S2. ^1H NMR spectrum of 1 in CDCl_3 .	4
Figure S3. ^1H NMR spectrum of 2 in CDCl_3 .	4
Figure S4. ^1H NMR spectrum of 3 in CDCl_3 .	5
Figure S5. X-ray structure of 1 .	6
Figure S6. X-ray structure of 2 .	6
Figure S7. X-ray structure of 3	7
Figure S8. X-ray structure of 1 / $\text{Cu}(\text{CF}_3\text{SO}_3)_2$ complex.	7
Figure S9. Ag^+ -ion-induced ^1H NMR spectral changes of 1 (in $\text{CD}_2\text{Cl}_2/\text{CD}_3\text{OD}$).	8
Figure S10. Ag^+ -ion-induced ^1H NMR spectral changes of 2 (in $\text{CD}_2\text{Cl}_2/\text{CD}_3\text{OD}$).	8
Figure S11. Ag^+ -ion-induced ^1H NMR spectral changes of 3 (in $\text{CD}_2\text{Cl}_2/\text{CD}_3\text{OD}$).	9
Figure S12. Ag^+ -ion-induced UV-vis spectral changes of 2 . $[2] = 1.0 \times 10^{-4}$ mol/L (CH_3CN).	10
Figure S13. Ag^+ -ion-induced UV-vis spectral changes of 3 . $[3] = 1.0 \times 10^{-4}$ mol/L (CH_3CN).	10
Figure S14. Nonlinear least-squares analyses of the titration profiles of 1 .	11
Figure S15. Nonlinear least-squares analyses of the titration profiles of 2 .	12
Figure S16. Nonlinear least-squares analyses of the titration profiles of 3 .	13
Figure S17. The LUMOs and HOMOs of 1 / Ag^+ , 2 / Ag^+ , and 3 / Ag^+ complexes.	14

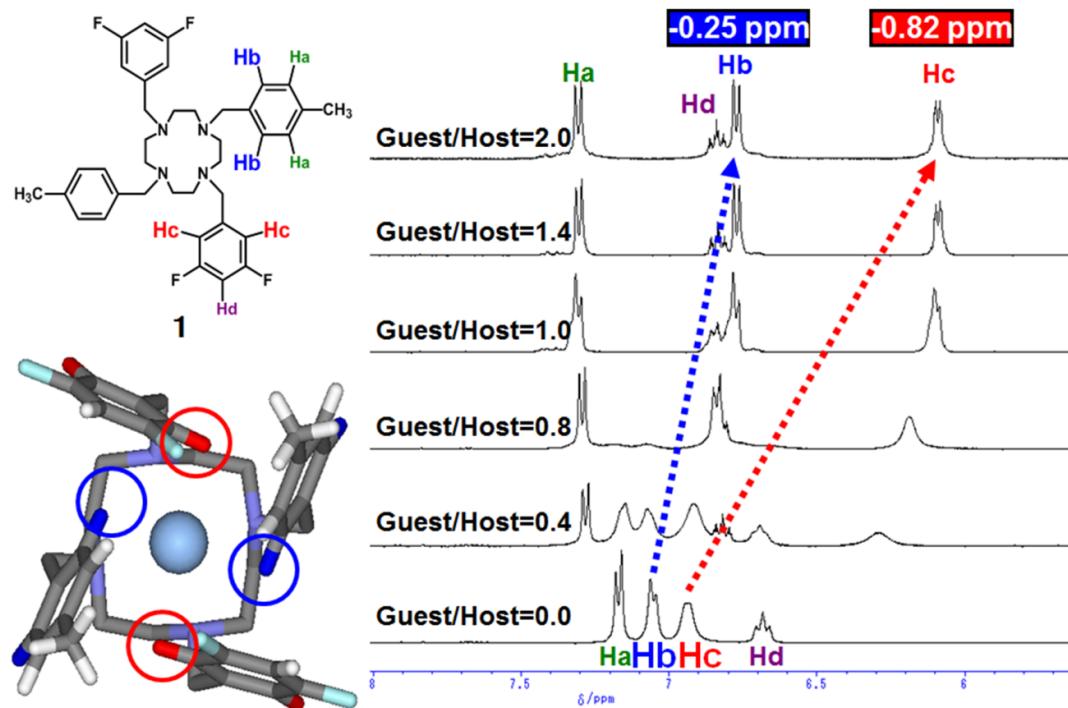

Figure S1. Synthetic scheme.

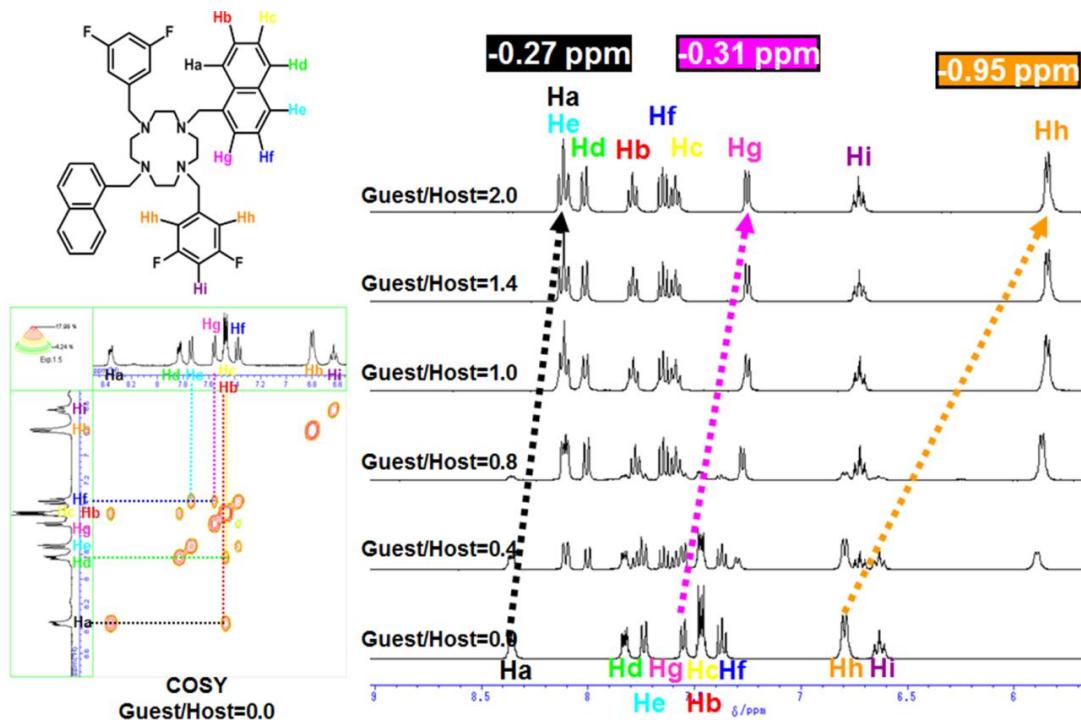

Figure S2. ^1H NMR spectrum of **1** in CDCl_3 .

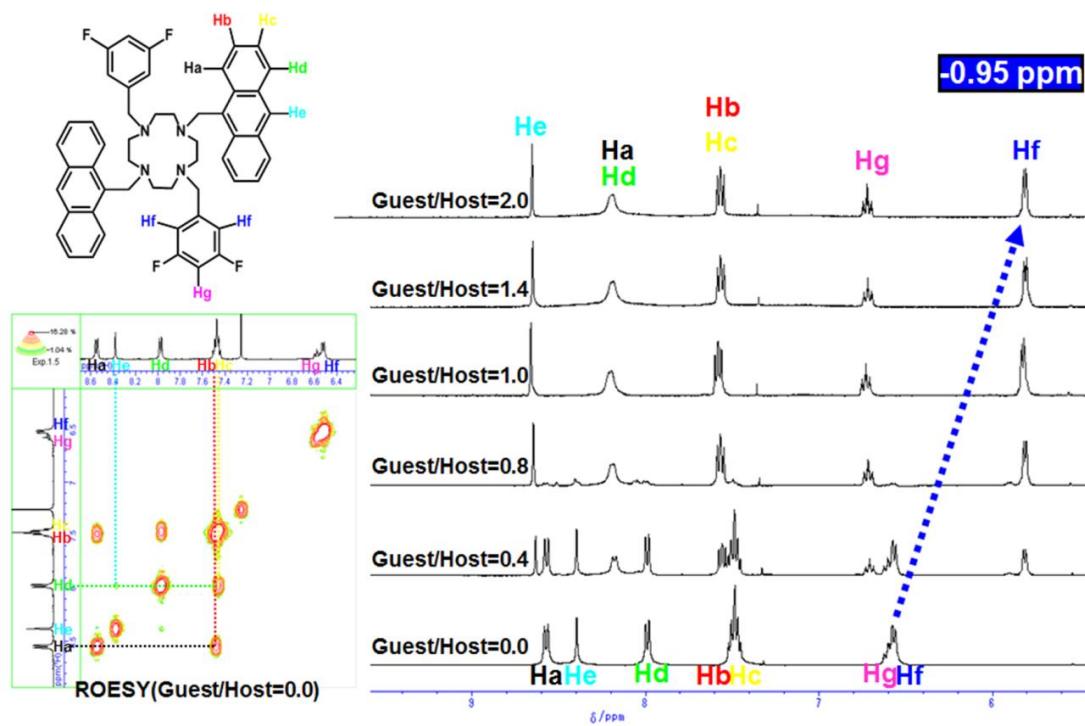

Figure S3. ^1H NMR spectrum of **2** in CDCl_3 .

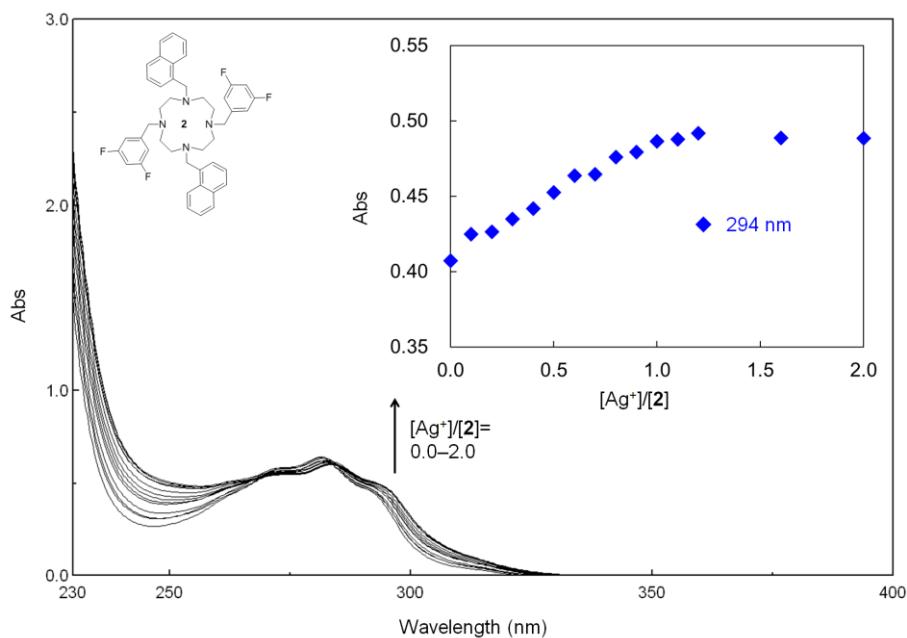

Figure S4. ^1H NMR spectrum of **3** in CDCl_3 .


Figure S5. X-ray structure of **1** (50% probability label). Hydrogen atoms omitted.


Figure S6. X-ray structure of **2** (50% probability label). Hydrogen atoms omitted.


Figure S7. X-ray structure of **3** (50% probability label). Hydrogen atoms omitted.


Figure S8. X-ray structure of **1/Cu(CF₃SO₃)₂** complex (50% probability label). Hydrogen atoms omitted.


Figure S9. Ag^+ -ion-induced ^1H NMR spectral changes of **1** (in $\text{CD}_2\text{Cl}_2/\text{CD}_3\text{OD}$).

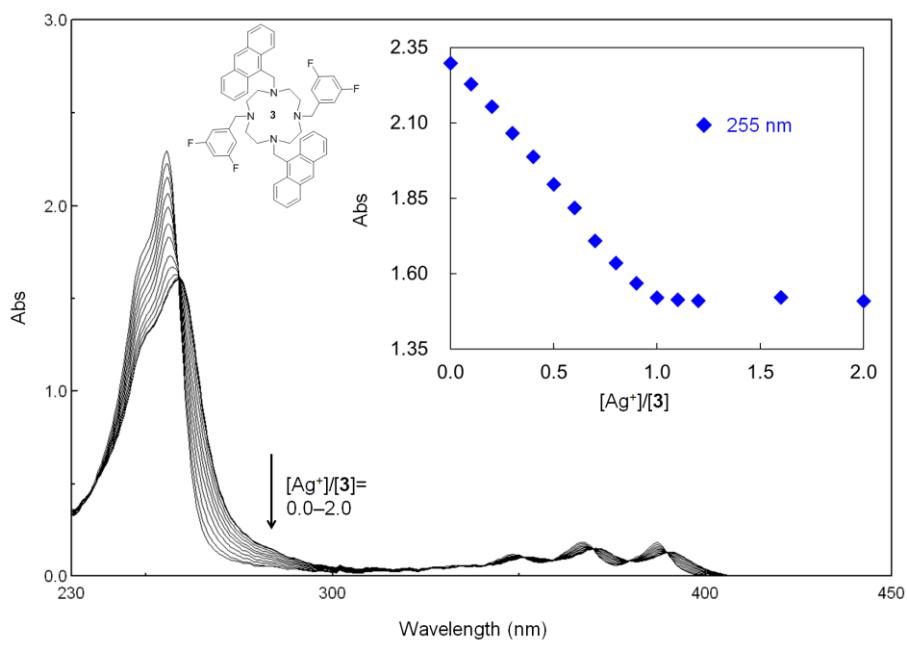

Figure S10. Ag^+ -ion-induced ^1H NMR spectral changes of **2** (in $\text{CD}_2\text{Cl}_2/\text{CD}_3\text{OD}$).

Figure S11. Ag^+ -ion-induced ^1H NMR spectral changes of **3** (in $\text{CD}_2\text{Cl}_2/\text{CD}_3\text{OD}$).

Figure S12. Ag^+ -ion-induced UV-vis spectral changes of **2**. $[2] = 1.0 \times 10^{-4} \text{ mol/L}$ (CH_3CN).

Figure S13. Ag^+ -ion-induced UV-vis spectral changes of **3**. $[3] = 1.0 \times 10^{-4} \text{ mol/L}$ (CH_3CN).

	A	B	C	D	E	F	G	H	I	J	
1	xt	A _{obs}			ML	X _{free}	A _{calc}	diff ²			
2	0.0	0.24958	0.000102058	0.0001021	0	1	0.24958	0			
3	0.1	0.26437	0.000112238	9.194E-05	1.015E-05	0.9002812	0.2622698	4.411E-06			
4	0.2	0.28235	0.000122418	8.183E-05	2.03E-05	0.8006322	0.2749508	5.475E-05			
5	0.3	0.28941	0.000132598	7.174E-05	3.043E-05	0.7010824	0.2876191	3.207E-06			
6	0.4	0.30668	0.000142778	6.168E-05	4.055E-05	0.6016806	0.3002685	4.111E-05			
7	0.5	0.31752	0.000152958	5.167E-05	5.064E-05	0.5025133	0.3128882	2.145E-05			
8	0.6	0.32518	0.000163138	4.174E-05	6.07E-05	0.4037491	0.3254565	7.645E-08			
9	0.7	0.33747	0.000173318	3.197E-05	7.067E-05	0.3057641	0.3379257	2.076E-07			
10	0.8	0.34700	0.000183498	2.257E-05	8.047E-05	0.2095748	0.3501663	1.003E-05			
11	0.9	0.35747	0.000193678	1.427E-05	8.97E-05	0.1188261	0.3617147	1.802E-05			
12	1.0	0.37018	0.000203858	1.026E-05	9.68E-05	0.0491321	0.3705836	1.629E-07	0.37018		
13	1.1	0.37708	0.000214038	1.464E-05	9.97E-05	0.0206142	0.3742127	8.221E-06	0.37708		
14	1.2	0.37616	0.000224218	2.303E-05	0.0001006	0.011842	0.375329	6.905E-07	0.37616		
15	1.6	0.37721	0.000264938	6.219E-05	0.0001014	0.0041843	0.3763035	8.217E-07	0.37721		
16	2.0	0.38355	0.000305658	0.0001026	0.0001015	0.0025259	0.3765146	4.95E-05	0.38355		
17								0.0002126		0.38	
18	K	3869385.24	6.59	0.0002126							
19	d _{comp}	0.376836									
20	Lt	1.02E-04									
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
33											
34											
35											
36											

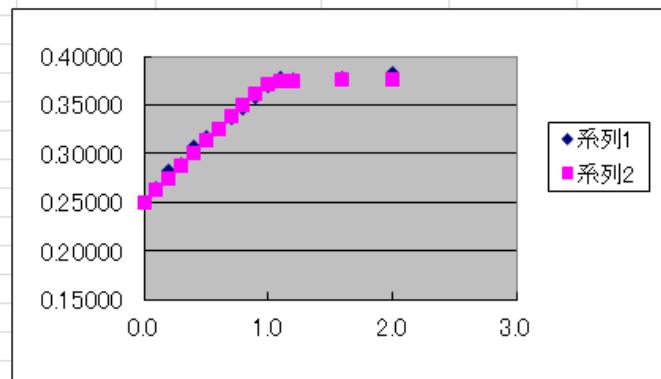
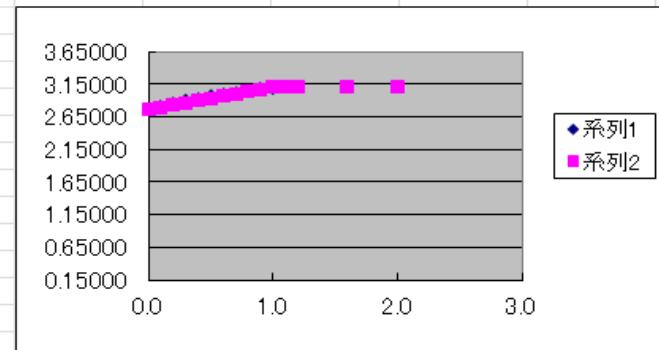



Figure S14. Nonlinear least-squares analyses of the titration profiles of **1**.

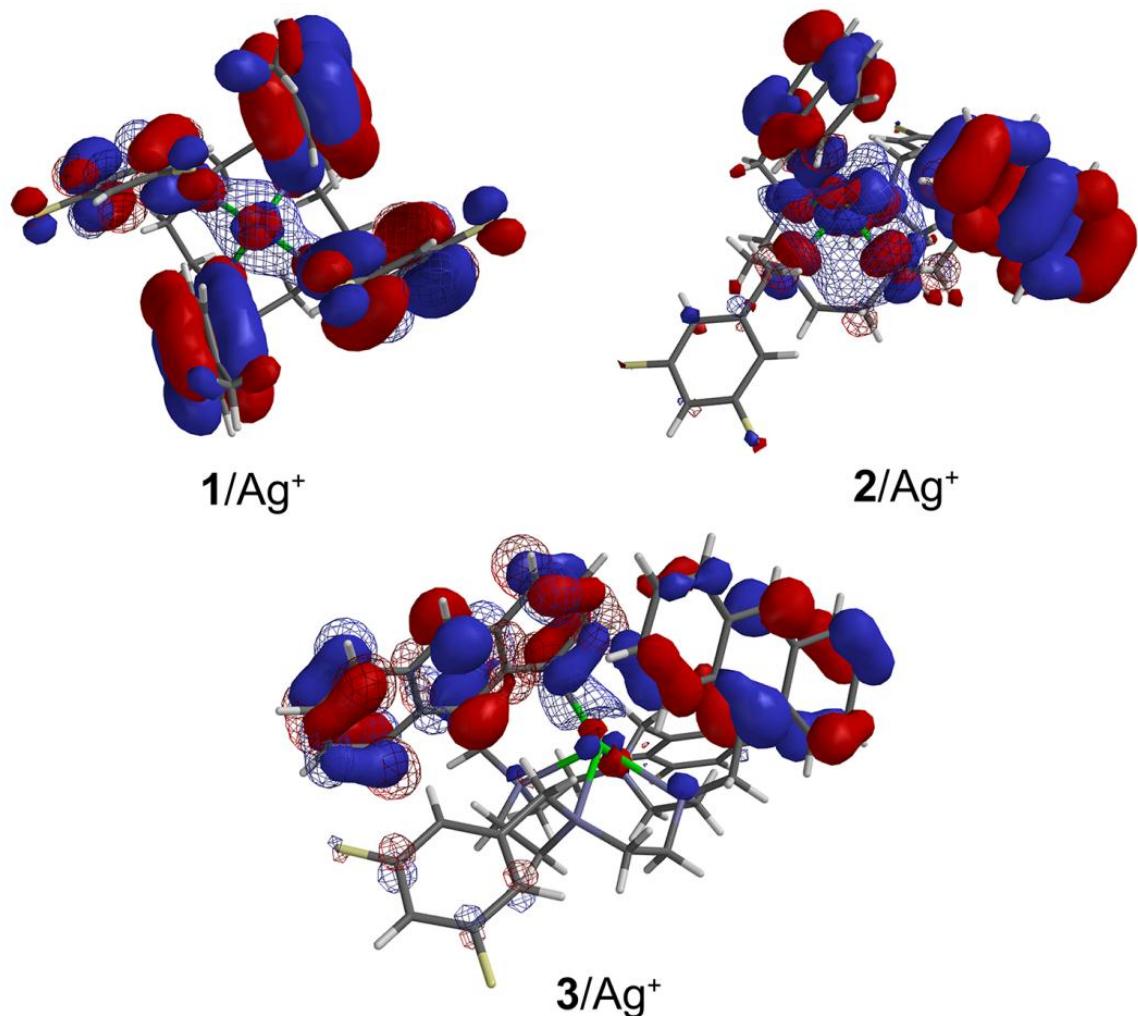

	1	2	3	4	5	6	7	8	9	10	
1	xt	A_obs			ML	Xfree	A_calc	diff^2			
2	0.0	2.75549	5.00044E-05	5E-05	0	1	2.75549	0			
3	0.1	2.81545	5.50044E-05	4.501E-05	5E-06	0.9000099	2.7903204	0.0006315			
4	0.2	2.85820	6.00044E-05	4.001E-05	9.999E-06	0.8000222	2.8251499	0.0010923			
5	0.3	2.89636	6.50044E-05	3.501E-05	1.5E-05	0.700038	2.8599782	0.0013236			
6	0.4	2.93362	7.00044E-05	3.001E-05	2E-05	0.6000591	2.8948046	0.0015066			
7	0.5	2.95967	7.50044E-05	2.501E-05	2.5E-05	0.5000886	2.9296281	0.0009025			
8	0.6	2.99129	8.00044E-05	2.002E-05	2.999E-05	0.4001329	2.9644465	0.0007206			
9	0.7	3.00929	8.50044E-05	1.503E-05	3.499E-05	0.3002067	2.9992546	0.0001007			
10	0.8	3.05159	9.00044E-05	1.004E-05	3.998E-05	0.2003539	3.0340371	0.0003081	3.09246		
11	0.9	3.08280	9.50044E-05	5.084E-06	4.496E-05	0.1007911	3.0687186	0.0001983	3.10904		
12	1.0	3.09246	0.00010004	9.417E-07	4.953E-05	0.0093722	3.1005633	6.566E-05	3.10914		
13	1.1	3.10904	0.000105004	5.092E-06	4.996E-05	0.0008782	3.1035221	3.045E-05	3.10894		
14	1.2	3.10914	0.000110004	1.005E-05	4.998E-05	0.0004422	3.103674	2.988E-05			
15	1.6	3.10894	0.000130004	3.002E-05	4.999E-05	0.0001477	3.1037765	2.666E-05			
16	2.0	3.09956	0.000150004	5.001E-05	5E-05	8.865E-05	3.1037971	1.795E-05			
17								0.0069549			
18	K	225557079	8.35	0.0069549							
19	d_comp	3.10383									
20	Lt	5.00E-05									
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
33											

Figure S15. Nonlinear least-squares analyses of the titration profiles of **2**.

	1	2	3	4	5	6	7	8	9	10	11	
1	xt	A _{obs}			ML	X _{free}	A _{calc}	diff ²				
2	0	2.29708	1.00001 E-05	1E-05	0	1	2.29708	0				
3	0.1	2.22822	1.10001 E-05	9E-06	1E-06	0.900001	2.218768	8.934E-05				
4	0.2	2.15262	1.20001 E-05	8E-06	2E-06	0.8000022	2.1404561	0.000148				
5	0.3	2.06479	1.30001 E-05	7E-06	3E-06	0.7000038	2.0621446	6.998E-06				
6	0.4	1.98649	1.40001 E-05	6E-06	4E-06	0.6000059	1.9838334	7.057E-06				
7	0.5	1.89498	1.50001 E-05	5E-06	5E-06	0.5000089	1.9055229	0.0001112				
8	0.6	1.81675	1.60001 E-05	4E-06	6E-06	0.4000133	1.8272136	0.0001095				
9	0.7	1.7079	1.70001 E-05	3.001 E-06	7E-06	0.3000207	1.7489066	0.0016815				
10	0.8	1.63426	1.80001 E-05	2.001 E-06	8E-06	0.2000355	1.6706054	0.001321				
11	0.9	1.56723	1.90001 E-05	1.002 E-06	8.999E-06	0.1000797	1.5923272	0.0006299				
12	1	1.5194	2.00001 E-05	5.955E-08	9.97E-06	0.0029729	1.5162802	9.733E-06				
13	1.1	1.51205	2.10001 E-05	1.002 E-06	9.999E-06	8.856E-05	1.5140214	3.886E-06				
14	1.2	1.50957	2.20001 E-05	2.001 E-06	1E-05	4.431E-05	1.5139867	1.951E-05				
15	1.6	1.52036	2.60001 E-05	6E-06	1E-05	1.477E-05	1.5139636	4.091E-05	180000000	8.26	0.000449431	
16	2	1.50838	3.00001 E-05	1E-05	1E-05	8.865E-06	1.5139589	3.112E-05	200000000	8.30	0.000449394	
17								0.0042096	250000000	8.40	0.000449349	
18	K	1.1281 E+10	10.05	0.0042096					275000000	8.44	0.000449342	
19	d _{comp}	1.513952							290000000	8.46	0.000449340	
20	Lt	1.00E-05							295000000	8.47	0.00044934	
21									300000000	8.48	0.000449340	
22									305000000	8.48	0.000449341	
23									310000000	8.49	0.000449341	
24									325000000	8.51	0.000449343	
25									350000000	8.54	0.000449348	
26												
27												
28												
29												
30												
31												
32												
33												
34												
35												

Figure S16. Nonlinear least-squares analyses of the titration profiles of **3**.

Figure S14. The LUMOs and HOMOs calculated by the DFT methods [B3LYP/3-21G(*)] using the X-ray structures of the Ag^+ complexes with **1–2** (Isosurface value is 0.032 au).

1/Ag⁺ complx, LUMO (mesh) and HOMO[-4], HOMO[-5], HOMO[-6], HOMO[-7] (solid).

2Ag⁺ complx, LUMO[+9] (mesh) and HOMO[-2], HOMO[-4], HOMO[-7] (solid).

3/Ag⁺ complx, LUMO[+6] (mesh) and HOMO[-5], HOMO[-6], HOMO[-7], HOMO[-8] (solid).