Supplementary Information for:

Cycloaddition Reactions Between Dicyclohexylboron Azides and Alkynes

Rebecca L. Melen and Douglas W. Stephan*

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6

1. Experimental

1.1 General Experimental

Unless otherwise stated, all reactions and manipulations were carried out under an atmosphere of dry, O₂free nitrogen using standard double-manifold techniques with a rotary oil pump. A nitrogen-filled glove box (MBRAUN) was used to manipulate solids including storage starting materials, room temperature reactions, product recovery and sample preparation for analysis. Molecular sieves (4 Å) were dried at 120 °C for 24 h prior to use. All solvents (toluene, DCM, THF, pentane, hexane) were dried by employing a Grubbs-type column system (Innovative Technology), degassed and stored over molecular sieves under a nitrogen atmosphere. Deuterated solvents were dried over molecular sieves before use. Cy2BCl (1M in hexanes) (Aldrich), TMSN₃ (TCI), PhC=CH (Aldrich), p-Tol-C=CH (Aldrich), 4-^tBuPh-C=CH (Aldrich), TMS-C=CH (TCI) and Ph₂PCl (Aldrich) were used as received. Ph₂P(=O)C=CH was prepared according to literature methods.¹ ¹H, ¹³C, ¹¹B and ³¹P NMR spectra were recorded on a Bruker Avance III or a Bruker Avance 500 spectrometer. Solid state ¹¹B and ¹³C NMR spectra were run on an Agilent DD2-600 spectrometer. Chemical shifts are expressed as parts per million (ppm, δ) downfield of tetramethylsilane (TMS) and are referenced to d_8 -toluene, d_6 -benzene, d_5 -bromobenzene and CD₂Cl₂ as internal standards. NMR spectra were referenced to 85% H₃PO₄ (³¹P) and BF₃ · Et₂O/CDCl₃ (¹¹B). The description of signals include: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broad. All coupling constants are absolute values and J values are expressed in Hertz (Hz). All spectra were analysed assuming a first order approximation. A Perkin-Elmer Analyser was used for carbon, hydrogen and nitrogen elemental analyses. High resolution mass spectrometry was performed in house employing DART or electrospray ionisation techniques in positive ion mode. Mass spectral data were recorded on an AB/Sciex QStarXL mass spectrometer (ESI) or a JEOL AccuTOF model JMS-T1000LC mass spectrometer (DART).

Caution: Covalent azides are potentially explosive and reactions were performed on small scale behind blast shields.

1.2 Experimental Details:

1.2.1 Synthesis of Cy₂BN₃ (1)

Dicyclohexyl borane (1 ml of a 1M solution in hexane, 1 mmol) was added dropwise to a solution of trimethylsilylazide (115 mg, 1 mmol) in toluene (2 ml). The resultant solution was stirred for 4h at room temperature affording a colourless, cloudy solution. The solvent and TMSCl by-product were removed *in vacuo* to afford Cy₂BN₃ as an off-white oil (197 mg, 0.91 mmol, 91%)² which was used directly in subsequent reactions.

¹H NMR (400 MHz, d_6 -benzene, 298 K): 1.44 (s, br., 3H, <u>Cy</u>), 1.30 (s, br., 2H, <u>Cy</u>), 0.96-0.98 (m, br., 6H, <u>Cy</u>); ¹³C NMR (500 MHz, C₆D₅Br, 298 K): 31.7 (br., <u>Cy</u>), 27.8 (m, <u>Cy</u>), 27.3 (s, <u>Cy</u>), 26.8 (s, <u>Cy</u>); ¹¹B NMR (128 MHz, d_6 -benzene, 298 K): 61.3 (br. s). Elemental analysis calcd (%) for C 65.77, H 10.12, N 19.18%; Obs. C 65.63, H 9.99, N 17.84%.

Figure 1 ¹H NMR spectrum of 1 (400 MHz, d_6 -benzene, 298 K).

Figure 3 ¹³C NMR spectrum of **1** (100 MHz, C₆D₅Br, 298 K).

The thermal stability of **1** was investigated by NMR spectroscopy: Cy_2BCl (0.5 ml of a 1M solution in hexane, 0.5 mmol) was added to a solution of TMSN₃ (58 mg, 0.5 mmol) in toluene (2 ml). The resultant solution was left to stand for 2h at room temperature affording a colourless, cloudy solution. The solvent and TMSCl by-product were removed *in vacuo* to afford Cy_2BN_3 as an off white oil. The Cy_2BN_3 was redissolved in d_8 -toluene and the NMR spectrum was measured after 4 h at the respective temperature.

Figure 4 Decomposition of the boron azide **1** at various temperatures as seen in the ¹H NMR spectrum (400 MHz, *d*₈-toluene, 298 K).

Figure 5 Decomposition of the boron azide 1 at various temperatures as seen in the ¹¹B NMR spectrum (128 MHz, *d*₈-toluene, 298 K).

1.2.2 Synthesis of 2

EtC=CCOMe (96 mg, 1 mmol) in toluene (5 ml) was added to neat Cy_2BN_3 (1 mmol) prepared *in situ* as described above. The resulting solution was stirred for 18 h affording a purple solution. Slow evaporation of the toluene solution afforded colourless crystals of **2** suitable for X-ray diffraction. The residual solvent was removed and the crystalline solid washed with hexane (3 × 2 ml) to afford pure **2** (137 mg, 0.25 mmol, 51% relative to Cy_2BN_3).

¹H NMR (500 MHz, d_6 -benzene, 298 K): 2.78 (q, 7.5 Hz, 2H, $-C\underline{H}_2CH_3$), 2.28 (s, 3H, $-C\underline{H}_3$), 2.12 (d, br., 12.3 Hz, 2H, \underline{Cy}), 2.02 (d, br., 9.3 Hz, 2H, \underline{Cy}), 1.89-1.76 (m, 16H, \underline{Cy}), 1.81-1.76 (m, 2H, \underline{Cy}), 1.50-1.17 (m, 22H, \underline{Cy}), 1.12 (t, 7.5 Hz, 3H, $-C\underline{H}_2C\underline{H}_3$); ¹³C NMR (500 MHz d_6 -benzene, 298 K): 191.6 (s, \underline{C} =O), 145.8 (s, \underline{C} -triazole), 145.0 (s, \underline{C} -triazole), 30.3, 29.8, 29.6, 28.9, 28.6, 27.5, 27.2, 18.3, 12.4; ¹¹B NMR (128 MHz, d_6 -benzene, 298 K): 8.2 (br. s). Elemental analysis calcd (%) for $C_{30}H_{52}N_6B_2O$: C 67.43, H 9.81, N 15.73%; Obs. C 67.87, H 9.58, N 15.38%; m/z (+ESI-MS): 315.3 [M-Cy₂BN₃]⁺; m/z (DART-MS): 630.5 [(M-Cy₂BN₃)₂+H]⁺, 316.3 [(M+H)-Cy₂BN₃]⁺.

Figure 6 ¹H NMR spectrum of **2** (400 MHz, d_6 -benzene, 298 K).

___8.17

Figure 8 ¹³C NMR spectrum of **2** (100 MHz d_6 -benzene, 298 K).

Figure 9 in situ ¹H NMR spectrum of 2 (400 MHz, CD₂Cl₂, 298 K).

1.2.3 Synthesis of 3

Ph₂P(=O)C=CH (226 mg, 1 mmol) in toluene (3 ml) was added to Cy₂BN₃ (1 mmol) prepared *in situ* as described above in toluene (2 ml) and the resulting solution was stirred for 2 days at room temperature. The solvent was removed *in vacuo* and the resulting solid was redissolved in DCM (*ca.* 1 ml) to afford a saturated solution. Storage of the solution at -35 °C afforded colourless crystals suitable for X-ray diffraction. The supernatant was decanted off and the crystalline solid washed with hexane (3 × 2 ml) to give pure **3** (157 mg, 0.23 mmol, 47%).

¹H NMR (400 MHz, CD₂Cl₂, 298K): 8.29 (s, 1H), 8.00 (m, 4H, *o*-C<u>H</u>), 7.68 (m, 2H, *p*-C<u>H</u>), 7.61 (m, 4H, *m*-C<u>H</u>), 1.98 (d, 11.4 Hz, 2H, <u>Cy</u>), 1.83-1.93 (m, br., 14H, <u>Cy</u>), 1.48 (t, 13.6 Hz, 4H, <u>Cy</u>), 1.55-1.24 (m, br., 20H, <u>Cy</u>), 1.14 (t, br., 12.2 Hz, 2H, <u>Cy</u>), 1.04 (t, br., 11.1 Hz, 2H, <u>Cy</u>);¹³C{1H} NMR (100 MHz, CD₂Cl₂, 298K): 132.8 (d, 2.9 Hz), 131.8, 131.7, 130.3, 130.1, 129.1 (d, ${}^{3}J_{PH} = 12$ Hz), 129.0, 30.1, 30.0, 28.9, 28.9, 28.9, 28.9, 28.1, 27.8, 27.6; ¹¹B NMR (128 MHz, *d*₆-benzene, 298K): 9.31 (br. s); ³¹P NMR (162 MHz, CD₂Cl₂, 298K): 14.4 (q, ${}^{3}J_{PH} = 12$ Hz); Elemental analysis calcd (%) for C₃₈H₅₅N₆B₂PO: C 68.69; H 8.34; N 12.65%; Obs. C 68.37, H 8.17; N 12.40%.

Figure 10 ¹H NMR spectrum of **3** (400 MHz, CD_2Cl_2 , 298 K).

Figure 11 ¹¹B NMR spectrum of **3** (128 MHz, CD₂Cl₂, 298 K).

Figure 12 ³¹P NMR spectrum of **3** (160 MHz, CD₂Cl₂, 298 K).

Figure 13 13 C NMR spectrum of 3 (100 MHz d_6 -benzene, 298 K).

1.2.4 Synthesis of 4

A solution of 2 (27 mg, 0.05 mmol) and a large excess of EtC=CCOMe (100 mg, 0.96 mmol) were heated to 90 °C in toluene (5 ml) for 16h. The toluene solvent and excess EtC=CCOMe were removed *in vacuo* to give a residue which was redissolved in CD₂Cl₂ (0.7 ml) and characterised by ¹H and ¹¹B NMR spectroscopy. Although the alkyl region of the ¹H NMR spectrum is complicated by the presence of the cyclohexyl groups, the appearance of two new peaks due to the CH₂-protons in the Et group (δ = 2.41 and 2.96 ppm) and the terminal CH₃ group adjacent to the carbonyl (δ = 2.32 and 2.66 ppm) were particularly diagnostic of the formation of two new products. In addition, this was observed by the presence of a new species (4) (δ = 7.7 ppm) and also a peak at δ = 51.6 ppm [a result of the decomposition of the Cy₂BN₃ (Fig. 4) released from the intermediate 2] in the ¹¹B NMR spectrum.

¹H NMR (400 MHz, CD₂Cl₂, 298K): 2.96 (q, 2H, 7.5 Hz, $-C\underline{H}_2CH_3$), 2.65 (s, 3H, $C\underline{H}_3$), 2.41 (q, 7.5 Hz, 9H, $-CH_2CH_3$), 2.32 (s, 13H, $-CH_3$), 1.97-1.64 (m, br., \underline{Cy}), 1.47-1.39 (m, br., \underline{Cy}), 1.30-1.16 (m, br., \underline{Cy}), 1.25 (t, 7.5 Hz, $-CH_2C\underline{H}_3$), 0.95 (t, br., 11.9 Hz, \underline{Cy}); ¹¹B NMR (128 MHz, CD₂Cl₂, 298K): 51.6 (br., s, decomposed Cy₂BN₃), 7.6 (br. s, compound 4). *m/z* (+ESI-MS): 315.3 [M⁺-Cy₂BN₃]⁺; *m/z* (DART-MS): 630.5 [(M⁺-Cy₂BN₃)₂+H]⁺, 316.3 [(M+H)-Cy₂BN₃]⁺.

Figure 15 ¹H NMR spectrum of 4 (400 MHz, CD_2Cl_2 , 298 K).

Figure 16¹¹B NMR spectrum of **4** (128 MHz, CD₂Cl₂, 298 K).

1.2.5 Syntheses of 5

Depending upon the acetylene used the rate of reaction with Cy_2BN_3 varied significantly and as a consequence the preparation of **5** was varied accordingly:

a) Reaction of Cy_2BN_3 with $MeO_2CC \equiv CCO_2Me$

MeO₂CC=CCO₂Me (142 mg, 1 mmol) in toluene (2 ml) was added to neat Cy₂BN₃ (1 mmol). The solution was allowed to stir for 48 h at room temperature affording a pale yellow solution. The resulting solution was left to stand for 7 days during which pure crystals of **5** formed suitable for X-ray analysis. The supernatant was decanted off and the resultant crystals washed with hexane (3 × 2 ml) and dried *in vacuo* to afford **5** (89 mg, 0.13 mmol, 39% relative to Cy₂BN₃).

b) Reaction of Cy_2BN_3 with $EtO_2CC \equiv CCO_2Et$

EtO₂CC=CCO₂Et (170 mg, 1 mmol) in toluene (2 ml) was added to Cy_2BN_3 (1 mmol) (prepared *in situ*) in toluene (2 ml). The solution left for 18 h resulting in a yellow solution. The resulting solution was cooled to -35 °C for 2 days during which pure crystals of **5** formed suitable for X-ray analysis. The supernatant was decanted off and the resulting crystals washed with hexane (3 × 2 ml) and dried *in vacuo* to afford **5** (137 mg, 0.20 mmol, 61% relative to Cy_2BN_3).

c) Reaction of Cy_2BN_3 with ${}^tBuO_2CC \equiv CCO_2{}^tBu$

^{*i*}BuO₂CC=CCO₂^{*i*}Bu (226 mg, 1 mmol) in toluene (5 ml) was layered onto of Cy₂BN₃ (1 mmol) prepared *in situ* in toluene (5 ml). The solution was left to stand for 4 h affording colourless crystals of **5** (148 mg, 0.22 mmol, 65% relative to Cy₂BN₃).

¹³C CP-MAS NMR (151 MHz, 298 K); 161.8 (triazole <u>C</u>), 103.3 (triazole <u>C</u>), 28.4 (br., cyclohexyl C atoms); ¹¹B Onepul-MAS NMR (192 MHz, 298K): 12.9, 9.9, 8.8, 6.4. Elemental analysis calcd (%) for $C_{40}H_{66}N_3O_4B_3$: C 70.09, H 9.71, N 6.13%; Obs. C 70.38, H 9.72, N 6.09%.

Figure 18¹¹B Onepul-MAS NMR spectrum of 5.

1.2.6 in situ NMR studies of the reaction on Cy_2BN_3 with $RCO_2C \equiv CCO_2R$ (R = Me, Et, ^tBu)

In the glove box, the appropriate amount of $\text{RCO}_2\text{C}=\text{CCO}_2\text{R}$ (R = Me or Et) was added to a solution of Cy_2BN_3 (1 mmol) in d_6 -benzene (0.5 ml). The solution was then transferred to an NMR tube, sealed with a cap and parafilm and NMR taken of the reaction mixture. The equivalent NMR study with ${}^{t}\text{BuCO}_2\text{C}=\text{CCO}_2{}^{t}\text{Bu}$ was not possible due to the rapidity of the reaction.

Figure 19 Reaction of Cy₂BN₃ with MeO₂CC≡CCO₂Me in a 1:1 stoichiometric ratio [¹H NMR (400 MHz, *d*₆-benzene, 298 K)].

Figure 21 Reaction of Cy₂BN₃ with MeO₂CC≡CCO₂Me in a 1:1 stoichiometric ratio [¹³C NMR (100 MHz, *d*₆-benzene, 298 K)].

Figure 23 Reaction of Cy₂BN₃ with EtO₂CC=CCO₂Et in a 1:1 stoichiometric ratio [¹³C NMR (100 MHz, d_6 -benzene, 298 K)].

Figure 24 Reaction of Cy₂BN₃ with EtO₂CC≡CCO₂Et in a 3:1 stoichiometric ratio [¹H NMR (400 MHz, *d*₆-benzene, 298 K)].

Figure 25 Reaction of Cy_2BN_3 with $EtO_2CC \equiv CCO_2Et$ in a 3:1 stoichiometric ratio [¹H NMR (400 MHz, d_6 -benzene, 298 K)]. Red = immediately after $EtO_2CC \equiv CCO_2Et$ addition; blue = 12h after $EtO_2CC \equiv CCO_2Et$ addition.

5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 f1 (ppm)

Figure 26 Reaction of Cy₂BN₃ with EtO₂CC=CCO₂Et in a 3:1 stoichiometric ratio [¹³C NMR (100 MHz, d_6 -benzene, 298 K)].

2. DFT Studies:

Gas phase geometry-optimised structures for both $(Cy_2BN_3)_2$ (1) and 2 were determined using the B3LYP functional and 6-311G*+ basis set within Jaguar.³ Additional NBO analyses⁴ were undertaken to probe the dominant Lewis structure for 2. The frontier orbitals, NBO partial charges and bond orders of 1 are shown in Fig. 25. Those for 2 are shown in Fig. 26.

Figure 27 HOMO (left) and LUMO (centre) plus NBO partial charges and bond orders (right) for 1.

-0.2490 eV -0.0719 eV Figure 28 HOMO (left) and LUMO (centre) plus NBO partial charges and bond orders (right) for 2.

3. Crystallographic Details:

X-ray diffraction studies to determine the solid-state structure of crystalline materials were undertaken on single crystals grown under an inert atmosphere and protected from atmospheric air and moisture using an inert per-fluorinated polyether oil. Crystals were examined on a Bruker APEX-II diffractometer using monochromatic Mo-K α radiation and a CCD area detector. Data were collected at 150(2) K with temperatures maintained using an Oxford Cryostream cooler. Data were collected and processed using APEX-II software and an absorption correction applied using SAINT. Structure solution and refinement used the SHELXTL suite of programs. Crystallographic data are presented in Table 1, with full structural data available in cif format as ESI. We thank Dr M. Pilkington (Brock University) for diffractometer time for these studies

Compound	2	3	5
Empirical Formula	$C_{30}H_{52}B_2N_6O$	C ₃₈ H ₅₅ B ₂ N ₆ OP	$C_{80}H_{132}B_6N_6O_8$
Crystal System	Triclinic	Triclinic	Triclinic
Space Group	P-1	P-1	P-1
a/Å	9.1297(4)	9.5954(13)	10.3184(10)
b/Å	9.2734(4)	11.785(15)	14.6317(15)
c/Å	19.1974(8)	17.351(2)	15.0290(16)
$\alpha/^{\circ}$	79.937(2)	97.004(4)	69.271(5)
β/°	80.421(2)	97.151(4)	88.761(5)
$\gamma/^{o}$	73.642(2)	101.004(5)	75.300(5)
$V/Å^3$	1523.67(11)	1808.3(4)	2046.8(4)
Ζ	2	2	1*
T/K	150(2)	150(2)	150(2)
$D_c/g.cm^{-3}$	1.165	1.220	1.112
Crystal size/mm	$0.40 \times 0.40 \times 0.20$	$0.41 \times 0.06 \times 0.04$	$0.32 \times 0.22 \times 0.13$
Total data	20407	17751	26138
Unique data	5345	6296	7186
R _{int}	0.026	0.033	0.040
$R_1[F^2 > 2 \sigma(F^2)]$	0.055	0.058	0.070
wR2 (all data)	0.136	0.123	0.161
GoF	1.105	1.121	1.210
$\rho_{min}/\rho_{max}/e {\rm \AA}^{\text{-3}}$	-0.27/+0.23	-0.33/+0.42	-0.21/+0.29

Table 1: Selected Crystallographic Data for 2, 3 and 5

* molecule lies about a crystallographic inversion centre.

4. References:

- 1. X. Yang, D. Matsuo, Y. Suzuma, J.-K. Fang, F. Xu, A. Orita, J. Otera, S. Kajiyama, N. Koumura and K. Hara, *Synlett*, 2011, **16**, 2402.
- Cy₂BN₃·Py has been synthesised previously from the reaction on (Cy)(Ph)BCl and NaN₃ in pyridine.
 See: Gmelin Handbook: B: B-Verb.4, 8, 260.
- 3. Jaguar, version 7.7, Schrodinger, LLC, New York, NY, 2010
- NBO 5.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001); http://www.chem.wisc.edu/~nbo5