Supporting Information

Direct, *in situ* Determination of pH and Solute Concentrations in Formic Acid Dehydrogenation and CO₂ Hydrogenation in Pressurised Aqueous Solutions Using ¹H and ¹³C NMR Spectroscopy

Séverine Moret, Paul J. Dyson and Gábor Laurenczy

Address Correspondence to:

Gabor Laurenczy, Professor Institue des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne, Switzerland Phone & Fax: +41.693.97.80 E-mail: Gabor.Laurenczy@epfl.ch

Table of Contents:

Page 1	Title						
Page 2	Table of Contents						
Page 3	Experimental part						
Page 4	Calibration curve as function of pH and temperature of: Fig.S1 ¹³ C NMR chemical shift of HCO ₃ ^{-/} CO ₃ ²⁻ Fig.S2 ¹³ C NMR chemical shift of HCOO ⁻ /HCOOH Fig.S3 ¹ H NMR chemical shift of HCOO ⁻ /HCOOH						
Page 5	Determination of the relaxation time (T ₁) for a HCO_3^{-7}/CO_3^{-2-} solution of pH 11 (Fig.S4)						
Page 6	¹ H and ¹³ C NMR pH and HCOO ⁻ or CO_3^{2-} concentration determination of respectivel						

Page 6 ¹H and ¹³C NMR pH and HCOO⁻ or CO₃²⁻ concentration determination of respectively: HCOOH/HCOONa solution of 0.74 M under 100 bar hydrogen pressure (Table S1) NaHCO₃/Na₂CO₃²⁻ solution of 0.39 M under 100 bar hydrogen pressure (Table S2)

Experimental Part

0.100 M solutions of carbonate/bicarbonate and formate/formic acid were prepared by dissolving Na_2CO_3 , $NaHCO_3$ or HCOONa, or by diluting HCOOH, depending on the desired pH of the sample. The pH values of the NMR samples were determined directly in the NMR tube using a pH meter with calibrated glass electrode, by pH calculation, by the NMR method developed. The pH of the solution was adjusted by dissolving CO_2 gas in the solution or by adding HCl and NaOH.

Measurements of the chemical shifts and spin-lattice T_1 relaxation time of CO_3^{2-} and $HCOO^-$ were performed on a Bruker DRX 400 NMR spectrometer. 99% enriched ¹³C Na₂CO₃, NaHCO₃, HCOONa and HCOOH were used for the ¹³C NMR spectroscopic studies.

¹³C and ¹H relaxation time

The spin-lattice relaxation time (T₁) of formic acid, formate, carbonate, bicarbonate and carbon dioxide were determined using the standard 180° - vd (variation delay) – 90° inversion recovery pulse sequence^[1]. A 90° pulse length of 13.5 μ s with 18 experiments of 4 scans was used for ¹³C NMR spectra. The ¹H NMR studies were carried out using 90° pulse lengths of 15 μ s with 16 experiments of 4 scans. Studies of the pH dependence on the relaxation time were performed at temperatures between 23 °C and 70 °C for ¹³C NMR spectra, and between 23 °C and 50 °C for ¹H NMR spectra. Determination of the relaxation rate was verified by fitting the corresponding peak intensity as a function of the recovery time using WIN-NMR^[2].

^[1] a)T. C. Farrar, B. Becker, *Pulse and Fourier Transform NMR*, New York, **1971**; b)R. R. Ernst, G. Bodenhausen, A. Wokaun, *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*, Oxford, **1987**.

^[2] Program library, developed at ISIC, EPFL.

Fig.S1 Calibration curve of the ¹³C NMR chemical shift of HCO₃^{-/}/CO₃²⁻ as function of pH and temperature ($c_{total} = 0.10$ M). Average values of several (2-4) measurements, reproducibility is ± 0.1 ppm

Fig.S2 Calibration curve of the ¹³C NMR chemical shift of HCOO⁺/HCOOH⁻ as function of pH and temperature (c_{total} = 0.10 M). Average values of several (2-4) measurements, reproducibility is ± 0.1 ppm

Fig.S3 Calibration curve of the ¹H NMR chemical shift of HCOO⁺/HCOOH⁻ as function of pH and temperature ($c_{total} = 0.10$ M). Average values of several (2-4) measurements, reproducibility is ± 0.01

Fig.S4 ¹³C NMR singlet ($c_{total} = 0.1$ M) chemical shift of H^{*}CO₃^{-/*}CO₃²⁻ in the fast exchange domain for a solution of pH 11. By the use of the inversion recovery experiment with a variation delay (vd) list of 600, 0.01, 80, 0.1, 100, 50, 1, 200, 5, 60, 125, 10, 150, 30, 7, 40, 20 and 300s.

A standard solution of 0.22 M ethanol was prepared by the addition of 0.40 mL ethanol in 36 mL water (concentration determined by the weight of water and ethanol). The 3 samples were prepared by the respective dilution of HCOONa and HCOOH addition in the aqueous ethanol solution (Table T1). The resulting samples were analysed by ¹H NMR spectrometry with a relaxation time of 100 s.

Table S1 Determination of the HCOO⁻/HCOOH concentration by ¹H NMR spectroscopy.

Entry	HCOONa	COONa HCOOH Ethanol solut		Ethanol	HCOOH+HCOO ⁻	HCOOH+HCOO ⁻
	[g]	[g]	[g]	[M]	calculated [M]	determined [M]
1	-	1.11	9.98	0.22	2.36	2.38
2	0.75	0.64	10.5	0.22	2.34	2.38
3	0.76	-	5.18	0.22	2.14	2.10

A standard solution of 0.31 M ethanol was prepared by the addition of 0.2 mL ethanol in 18 mL D_2O (concentration determined by the weight of D_2O and ethanol). The 3 samples were prepared by the respective dilution of NaHCO₃ and /Na₂CO₃ in the aqueous ethanol solution (Table T2). The resulting samples were analysed by ¹³H NMR spectrometry with different delay time, depending of the pH of the solution.

Table S2 Determination of the NaHCO₃/Na₂CO₃ concentration by ¹³C NMR spectroscopy.

Entry	Delay time (D ₁) [s]	Na ₂ CO ₃ [g]	NaHCO ₃ [g]	Ethanol solution [g]	CO ₃ ²⁻ calculated [M]	CO ₃ ²⁻ determined [M]
1	900	0.23	-	5.65	0.42	0.40
2	600	0.13	0.10	5.64	0.47	0.47
3	100	-	0.18	5.65	0.41	0.39