Supplementary information for article:

Magnetic Anisotropy and Exchange Coupling in a Family of Isostructural Fe^{III}₂Ln^{III}₂ Complexes

Amer Baniodeh,^a Yanhua Lan,^a Ghenadie Novitchi,^a Valeriu Mereacre,^a Andrey Sukhanov,^c Marilena Ferbinteanu,^d Violeta Voronkova,^c Christopher E. Anson,^a Annie K. Powell^{*a,b}

^aInstitute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, D-76131, Karlsruhe, Germany. E-mail: <u>annie.powell@kit.edu</u>; Fax: +49 721 60848142; <u>Tel: +49</u> 721 60842135

^bInstitute of Nanotechnology, Karlsruhe Institute of Technology, Postfach 3640, D-76021 Karlsruhe, Germany

^cInstitution of the Russian Academy of Sciences Kazan E.K. Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the RAS, Kazan, Russian Federation.

^dUniversity of Bucharest, Faculty of Chemistry Inorganic Chemistry Department Dumbrava Rosie 23, Bucharest 020462, Romania

Figure S1. Powder diffraction X-ray data for Fe_2Y_2 (red line) theoretical powder diffraction for Fe_2Dy_2 (green line) and Lorentzian profile powder diffraction for Fe_2Dy_2 (blue line base width 8).

Figure S2. Powder diffraction of compounds Fe₂Sm₂, Fe₂Pr₂, Fe₂Gd₂ and Fe₂Nd₂.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2013

Figure S3. Field dependence of magnetization at low temperatures for all compounds. Compound codes are indicated in the inset of figures.

Figure S4. Plots of in-phase (left) and out-of-phase (right) ac susceptibility signals vs. temperature for 8 Fe₂Dy₂ at the indicated oscillation frequencies.

Figure S5. Plots of in-phase (left) and out-of-phase (right) ac susceptibility signals vs. frequency for Fe₂Dy₂ at 1.8 K under the indicated external dc fields.

Figure S6 Cole-Cole plot data

Figure S 7. The ⁵⁷Fe Mössbauer spectra for Fe₂Dy₂ (top, left) and Fe₂Tb₂ (top, right) at 3K, applied field of 5 T and Fe₂Gd₂ (bottom, left) and Fe₂Ho₂ (bottom, right) at 3K, applied field of 4 T. The solid lines are the spectral simulations for $\Delta E_Q = 0.94$ mm/s, $\delta = 0.49$ mm/s, $H_{eff} = 5.0$ T and $\eta = 1.0$ for Fe₂Dy₂, $\Delta E_Q = 0.92$ mm/s, $\delta = 0.50$ mm/s, $H_{eff} = 5.0$ T and $\eta = 0.9$ for Fe₂Tb₂, $\Delta E_Q = 0.91$ mm/s, $\delta = 0.50$ mm/s, $H_{eff} = 3.3$ T and $\eta = 0.7$ for Fe₂Gd₂, and $\Delta E_Q = 0.96$ mm/s, $\delta = 0.48$ mm/s, $H_{eff} = 4.0$ T and $\eta = 1.0$ for Fe₂Ho₂, assuming an isolated ground state with S = 0.

Compound	Т, К	$\delta^{[a]}$, mm/s	ΔE_Q or ε , mm/s	Γ, mm/s	B _{eff} , T
Fe ₂ Y ₂	50	0.499(1)	0.999(1)	0.418(1)	-
	3	0.497(1)	0.982(2)	0.382(4)	-
Fe ₂ Gd ₂	77	0.492(2)	0.919(2)	0.467(4)	-
	3	0.501(1)	0.911(2)	0.412(3)	-
Fe ₂ Dy ₂	25	0.502(1)	0.947(6)	0.583(7)	-
	3	0.497(2) ^[b]	0.938(4)	0.607(7)	-
		0.497(2) ^[b]	0.014(1)	0.58(2)	11.94
Fe ₂ Tb ₂	3	0.500(1)	0.922(2)	0.362(3)	-
Fe ₂ Ho ₂	3	0.482(1)	0.96(2)	0.384(3)	-

Table S8. Mössbauer data for Fe₂Ln₂ compounds.

^[a] Relative to α -Fe at room temperature. The statistical errors are given in parentheses. ^[b] Constrained to the same value for both spectra.

Calculation details

Table S9. The table containing the $H[S,M_S, S,M_S] \models H[S,M_S, S,M_S] \mid \{J_z^A, J_z^B\}$ diagonal elements of the block Hamiltonian matrices, independently running as function of the four possible combinations of $J_z^A = \pm 15/2$ and $J_{z}^{B} = \pm 15/2.^{[a]}$

H[(0,0);(0,0)] = 0	$H[(4,-4);(4,-4)] = -20J_{dd} - 2j_z J_z^A - 2j_z J_z^B$
	$H[(4,-3);(4,-3)] = -20J_{dd} - \frac{3j_z J_z^A}{2} - \frac{3j_z J_z^B}{2}$
	$H[(4,-2);(4,-2)] = -20J_{dd} - j_z J_z^A - j_z J_z^B$
	$H[(4,-1);(4,-1)] = -20J_{dd} - \frac{j_z J_z^A}{2} - \frac{j_z J_z^B}{2}$

$$\begin{split} H[(1,-1);(1,-1)] &= -2J_{dd} - \frac{j_z J_z^A}{2} - \frac{j_z J_z^B}{2} \\ H[(1,0);(1,0)] &= -2J_{dd} \\ H[(1,0);(1,0)] &= -2J_{dd} \\ H[(1,0);(1,0)] &= -2J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(1,1);(1,1)] &= -2J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(1,1);(1,1)] &= -2J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(1,1);(1,1)] &= -2J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(2,-2);(2,-2)] &= -6J_{dd} - j_z J_z^A - j_z J_z^B \\ H[(2,-1);(2,-1)] &= -6J_{dd} - \frac{j_z J_z^A}{2} - \frac{j_z J_z^B}{2} \\ H[(2,0);(2,0)] &= -6J_{dd} \\ H[(2,0);(2,0)] &= -6J_{dd} \\ H[(2,0);(2,0)] &= -6J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(2,2);(2,2)] &= -6J_{dd} + j_z J_z^A + j_z J_z^B \\ H[(2,2);(2,2)] &= -6J_{dd} + j_z J_z^A + j_z J_z^B \\ H[(3,-3);(3,-3)] &= -12J_{dd} - \frac{3j_z J_z^A}{2} - \frac{3j_z J_z^B}{2} \\ H[(3,-2);(3,-2)] &= -12J_{dd} - \frac{j_z J_z^A}{2} - \frac{3j_z J_z^B}{2} \\ H[(3,-1);(3,-1)] &= -12J_{dd} - \frac{j_z J_z^A}{2} - \frac{j_z J_z^B}{2} \\ H[(3,0);(3,0)] &= -12J_{dd} - \frac{j_z J_z^A}{2} - \frac{j_z J_z^B}{2} \\ H[(3,0);(3,0)] &= -12J_{dd} - \frac{j_z J_z^A}{2} - \frac{j_z J_z^B}{2} \\ H[(3,0);(3,0)] &= -12J_{dd} - \frac{j_z J_z^A}{2} - \frac{j_z J_z^B}{2} \\ H[(3,2);(3,2)] &= -12J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(3,2);(3,2)] &= -12J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(3,2);(3,2)] &= -12J_{dd} + j_z J_z^A + j_z J_z^B \\ H[(3,3);(3,3)] &= -12J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(3,2);(3,2)] &= -12J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(5,3);(5,3)] &= -30J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(5,3);(5,3)] &= -30J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(5,3);(5,3)] &= -30J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(5,3);(5,3)] &= -30J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(5,3);(5,3)] &= -30J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(5,3);(5,5)] &= -30J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(5,3);(5,5)] &= -30J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(5,3);(5,5)] &= -30J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J_z^B}{2} \\ H[(5,3);(5,5)] &= -30J_{dd} + \frac{j_z J_z^A}{2} + \frac{j_z J$$

parameter) and Ising like Fe-Dy effects (the $j_z = j_{df}$ parameter), involving the $J_z = \pm 15/2$ states on lanthanide and $|S,M\rangle|J,J_z^A\rangle|J,J_z^B\rangle$ product wavefunctions.

EPR spectra

Figure S10a. Experimental (black) spectrum of compound Fe₂Y₂ in X-band at T=30K and simulated spectrum (red) of Fe(III)-Fe(III) dimer with S₁=S₂=5/2, J = -6.5 cm⁻¹, $D_{Fe} = -0.266$ cm⁻¹, $E_{Fe} = 0.044$ cm⁻¹, g=1.98. Dipole-dipole contribution was taken into account using the model of point dipoles for R=3.25 A.

Figure S10b. EPR spectra of Fe_2Gd_2 cluster (6) in the X-band at various temperatures. Spectra are shown with different relative gain values given on the left. The simulated spectrum (blue trace) for a single Gd^{III} ion with S=7/2, D=0.037 cm⁻¹, E=0.0033 cm⁻¹ gives a satisfactory fit to the low temperature spectrum of compound 6.

Table S11. The table containing the $H[S,M_S, S',M_S'] \equiv H[S,M_S, S',M_S'] \{J_z^A, J_z^B\}$ non-diagonal elements of the block Hamiltonian matrices, independently running as function of the four possible combinations of $J_z^A = \pm 15/2$ and $J_z^B = \pm 15/2$.^[a]

$$\begin{split} H[(1,0);(0,0)] &= \frac{1}{2}\sqrt{\frac{35}{3}} j_z J_z^A - \frac{1}{2}\sqrt{\frac{35}{3}} j_z J_z^B \\ H[(4,-3);(3,-3)] &= \frac{1}{3}\sqrt{5} j_z J_z^A - \frac{1}{3}\sqrt{5} j_z J_z^B \\ H[(4,-2);(3,-2)] &= 2\sqrt{\frac{5}{21}} j_z J_z^A - 2\sqrt{\frac{5}{21}} j_z J_z^B \\ H[(4,-1);(3,-1)] &= 5\sqrt{\frac{1}{21}} j_z J_z^A - 5\sqrt{\frac{1}{21}} j_z J_z^B \\ H[(2,-1);(1,-1)] &= 2\sqrt{\frac{2}{5}} j_z J_z^A - 2\sqrt{\frac{2}{5}} j_z J_z^B \\ H[(2,0);(1,0)] &= 4\sqrt{\frac{12}{15}} j_z J_z^A - 4\sqrt{\frac{12}{15}} j_z J_z^B \\ H[(2,-1);(1,-1)] &= 2\sqrt{\frac{2}{5}} j_z J_z^A - 4\sqrt{\frac{2}{15}} j_z J_z^B \\ H[(2,-1);(1,-1)] &= 2\sqrt{\frac{2}{5}} j_z J_z^A - 2\sqrt{\frac{2}{5}} j_z J_z^B \\ H[(2,-1);(1,-1)] &= 2\sqrt{\frac{2}{5}} j_z J_z^A - 2\sqrt{\frac{2}{5}} j_z J_z^B \\ H[(3,-2);(2,-2)] &= \frac{3}{2}\sqrt{\frac{3}{7}} j_z J_z^A - \frac{3}{2}\sqrt{\frac{3}{7}} j_z J_z^B \\ H[(3,-1);(2,-1)] &= 3\sqrt{\frac{6}{35}} j_z J_z^A - \frac{3}{2}\sqrt{\frac{3}{7}} j_z J_z^B \\ H[(3,0);(2,0)] &= \frac{9}{2}\sqrt{\frac{3}{35}} j_z J_z^A - \frac{9}{2}\sqrt{\frac{3}{35}} j_z J_z^B \\ H[(3,0);(2,0)] &= \frac{9}{2}\sqrt{\frac{3}{35}} j_z J_z^A - \frac{9}{2}\sqrt{\frac{3}{35}} j_z J_z^B \\ H[(3,1);(2,1)] &= 3\sqrt{\frac{6}{35}} j_z J_z^A - \frac{3}{2}\sqrt{\frac{3}{7}} j_z J_z^B \\ H[(3,2);(2,2)] &= \frac{3}{2}\sqrt{\frac{3}{7}} j_z J_z^A - \frac{3}{2}\sqrt{\frac{3}{7}} j_z J_z^B \\ H[(3,2);(2,2)] &= \frac{3}{2}\sqrt{\frac{3}{7}} j_z J_z^A - \frac{3}{2}\sqrt{\frac{3}{7}} j_z J_z^B \\ H[(5,2);(4,2)] &= \frac{1}{2}\sqrt{\frac{7}{3}} j_z J_z^A - \sqrt{\frac{2}{3}} j_z J_z^B \\ H[(5,2);(4,2)] &= \frac{1}{2}\sqrt{\frac{7}{3}} j_z J_z^A - \sqrt{\frac{2}{3}} j_z J_z^B \\ H[(5,2);(4,2)] &= \frac{1}{2}\sqrt{\frac{7}{3}} j_z J_z^A - \sqrt{\frac{2}{3}} j_z J_z^B \\ H[(5,2);(4,2)] &= \frac{1}{2}\sqrt{\frac{7}{3}} j_z J_z^A - \sqrt{\frac{2}{3}} j_z J_z^B \\ H[(5,2);(4,2)] &= \frac{1}{2}\sqrt{\frac{7}{3}} j_z J_z^A - \sqrt{\frac{2}{3}} j_z J_z^B \\ H[(5,2);(4,2)] &= \frac{1}{2}\sqrt{\frac{7}{3}} j_z J_z^A - \sqrt{\frac{2}{3}} j_z J_z^B \\ H[(5,2);(4,2)] &= \frac{1}{2}\sqrt{\frac{7}{3}} j_z J_z^B \\ H[(5,3);(4,3)] &= \frac{2}{3} j_z J_z^A - \sqrt{\frac{2}{3}} j_z J_z^B \\ H[(5,3);(4,3)] &= \frac{2}{3} j_z J_z^A - \sqrt{\frac{2}{3}} j_z J_z^B \\ H[(5,2);(4,2)] &= \frac{1}{2}\sqrt{\frac{7}{3}} j_z J_z^B \\ H[(5,2);(4,2)] &= \frac{1}{2}\sqrt{\frac{7}{3}} j_z J_z^B \\ H[(5,2);(4,2)] &= \frac{1}{2}\sqrt{\frac{7}{3}} j_z J_z^B \\ H[(5,3);(4,3)] &= \frac{2}{3} j_z J_z^A - \sqrt{\frac{2}{3}} j_z J_z^B \\ H[(5,3);(4,3)] &= \frac{2}{3} j_z J_z^A - \sqrt{\frac{2}{3}} j_z J_z^B \\ H[(5,$$

^[a]The phenomenological Hamiltonian for Fe₂Dy₂ system is based on Heisenberg interaction between Fe(III) ions (the J_{dd} parameter) and Ising like Fe-Dy effects (the $j_z = j_{df}$ parameter), involving the $J_z = \pm 15/2$ states on lanthanide and $|S,M\rangle|J,J_z^A\rangle|J,J_z^B\rangle$ product wavefunctions.