Supporting Information

Ethylene polymerisation and oligomerisation with arenesubstituted phenoxy-imine complexes of titanium: Investigation of multi-mechanism catalytic behaviour.

James A. Suttil, David S. McGuinness, * Michael G. Gardiner and Stephen J. Evans

X-Ray Structure of dichlorobis(3-tert-butyl-2-oxybenzoyl)titanium(IV) (S1)

Fig. S1 Molecular structure of dichlorobis(3-*tert*-butyl-2-oxybenzoyl)titanium(IV) (**S1**). Thermal ellipsoids are shown at the 50% probability level. All methyl and aromatic-ring hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Ti1-O1,O3 1.8204(11), 1.8635(11), Ti1-O2,O4 2.1006(11)-2.0760(11), Ti1-Cl1,Cl2 2.2889(5), 2.3379(5), O-Ti1-O_{chelate ring} 82.63(5)-83.87(5), X-Ti1-Y_{cis(acyclic),trans} 83.32(4)-97.14(4), 163.62(4)-177.55(4), C_{phenoxide}-O-Ti1 140.67(10), 141.31(10), C_{aldehyde}-O-Ti1 128.05(10),130.36(11).

Hydrolysis product from an attempted recrystallisation of complex **13.** Structural geometry, bond lengths and bond angles are consistent with those for the previously reported analogous compound dichlorobis(3-*tert*-butyl-5-methyl-2-oxybenzoyl) titanium (IV).¹

X-Ray Structure of 13.

Fig. S2 Molecular structure of **13**. Thermal ellipsoids are shown at the 50% probability level (one of two, similar molecules shown). Diffuse lattice solvent was removed in the refinement. All methyl and aromatic-ring hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Ti-O_{phenoxide.THF} 1.786(5)-1.802(4), 2.195(4)-2.191(4), Ti-N 2.275(5)-2.277(5), Ti-Cl 2.2926(18)-2.3091(17), O-Ti-N_{chelate ring} 83.85(19), 83.57(18), X-Ti-Y_{cis(acvclic),trans} 81.67(13)-98.21(17), 164.59(8)-178.92(13), C-O-Ti_{chelate ring} 140.0(4), 139.7(4).

 C_2H_4/C_2D_4 Co-oligomerisation – Mass Spectrum and Method of Calculation of Expected Isotopomer Distribution. Comparison of the theorectical mass spectrum for 1-butene formed via a metallacycle mechanism and the experimental data is shown in figure S3. It is clear that no correlation between the two exists. The mass spectrum of 1-butene obtained by the co-oligomerisation of a 1:1 mixture of ethylene/perdeuteroethylene with 15/MAO is shown in figure S4.

The statistical isotopomer distribution for 1-butene formed via a Cossee mechanism is shown in table S1. The actual theoretical mass spectrum, as reported in Figure 6 of the main article, is obtained by applying corrections for:

- i. The fragmentation pattern of 1-butene in the mass spectrometer.
- ii. The natural abundance of 13 C (1.1 %).

Full details of these calculations have been reported previously.²

Table S1. 1-butene isotopomer ratios predicted for metallacycle and Cossee mechanism.

Model	D_0	D ₁	D_2	D ₃	D_4	D_5	D_6	D_7	D ₈
Metallacycle	1	0	0	0	2	0	0	0	1
Cossee	1	1	0	1	2	1	0	1	1

Figure S3. Experimental and theorectical mass spectrum of 1-butene formed from a 1:1 mixture of ethylene/perdeuteroethylene and 15/MAO. Normalised to m/z 60.

Figure S4. Mass spectrum of 1-butene produced from C_2H_4/C_2D_4 with 15/MAO.

Comparison of the theorectical mass spectrum for 1-hexene formed via a Cossee mechanism and the experimental data is shown in figure S5. It is clear that no correlation between the two exists. The mass spectrum of 1-hexene obtained by the co-oligomerisation of a 1:1 mixture of ethylene/perdeuteroethylene with **15**/MAO is shown in figure S6.

The statistical isotopomer distribution for 1-hexene formed via a metallacycle mechanism is shown in table S2. The actual theoretical mass spectrum, as reported in Figure 7 of the main article, is obtained by applying corrections for:³

- i. The natural abundance of deuterium in ethylene (0.016 %).
- ii. Hydrogen impurity in perdeuteroethylene (2 %).
 - Experimental Cossee **Relative Abundance** 85 86 89 90 91 92 93 94 95 96 84 87 88 m/z
- iii. The natural abundance of 13 C (1.1 %).

Figure S5. Experimental and theorectical mass spectrum of 1-hexene formed from a 1:1 mixture of ethylene/perdeuteroethylene and 15/MAO. Normalised to *m/z* 88.

Table S2. 1-hexene isotopomer ratios predicted for metallacycle and Cossee mechanism.

Model	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D ₇	D_8	D ₉	D ₁₀	D ₁₁	D ₁₂
Metallacycle	1	0	0	0	3	0	0	0	3	0	0	0	1
Cossee	1	1	0	1	3	2	0	2	3	1	0	1	1

Figure S6. Mass spectrum of 1-hexene produced from C_2H_4/C_2D_4 with 15/MAO.

References:

- ¹ L. Matilainen, M. Klinga and M. Leskelä, J. Chem. Soc., Dalton Trans., 1996, 219.
- ² J. A. Suttil and D. S. McGuinness, *Organometallics*, 2012, published online, dx.doi.org/10.1021/om3008508.
- ³ D. S. McGuinness, J. A. Suttil, M. G. Gardiner and N. W. Davies, *Organometallics*, 2008, **27**, 4238.