Supporting Information

Dioxygen Adducts of Rhodium N-Heterocyclic Carbene Complexes[†]

Eric C. Keske,^a Olena V. Zenkina,^a Ali Asadi,^b Hongsui Sun,^b Jeremy M. Praetorius,^a Daryl P.

Allen,^{*a*} Danielle Covelli,^{*b*} Brian O. Patrick,^{*b*} Ruiyao Wang,^{*a*} Pierre Kennepohl,^{*b*}* Brian R.

James,^b* Cathleen M. Crudden^a*

^aDepartment of Chemistry, Queen's University, Chernoff Hall, 90 Bader Lane, Kingston,

Ontario, Canada K7L 3N6 and ^bDepartment of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

cathleen.crudden@chem.queensu.ca; pierre.kennepohl@chem.ubc.ca; brj@chem.ubc.ca

Table of contentspage

Table S1	Crystallographic data for Rh ^I complexes: RhCl(IPr)(PPh ₃)(O ₂) (2), <i>trans</i> -RhCl(IMes) ₂ (O ₂) (3), <i>trans</i> -structure determinations	S-3
Table S2	Selected bond lengths (Å) with estimated standard deviations in parentheses for Rh ^I complexes: RhCl(IPr)(PPh ₃)(O ₂) (2), <i>trans</i> -RhCl(IMes) ₂ (O ₂) (3), <i>trans</i> -RhCl(IPr) ₂ (O ₂) (4) and repeat determinations	S-5
Table S3	Selected bond angles (deg) with estimated standard deviations in parentheses for Rh ^I complexes.	S-6

DFT Calculations

Table S1 Crystallographic data for Rh^{I} complexes: $RhCl(IPr)(PPh_{3})(O_{2})$ (2), *trans*- $RhCl(IMes)_{2}(O_{2})$ (3), *trans*- $RhCl(IPr)_{2}(O_{2})$ (4), and repeat determinations of 3 and 4.

Complex	2	3 and $3'^{a_1}$	4 , 4 ′, 4 ′′ ^{<i>a</i>1}
	2: ccdc888671	3: ccdc915322	4: ccdc915321
		3': ccdc725326	4' : ccdc888672
			4'' : ccdc725327
Empirical formula	C45H51N2O2PCIRh	3:C ₄₄ H ₅₂ N ₄ O _{2.5} RhCl	$C_{54}H_{72}N_4O_2ClRh$
		$\textbf{3':} C_{43.46} H_{50.91} ClN_4 O_{2.36} Rh$	
Fw	821.21	815.26/806.46	947.52
Cryst colour, habit	blue, needle	blue, plate	blue, needle
Cryst size, (mm)	0.10 x 0.10 x 0.40	3 :0.03 x 0.20 x 0.30	4 :0.05 x 0.10 x 0.40
		3' :0.35 x 0.08 x 0.08	4' :0.12 x 0.16 x 0.60
			4'' :0.40 x 0.20 x 0.04
Crystal system	hexagonal	monoclinic	monoclinic
Space group	P61	C2/c	P2 ₁ /c
a (Å)	25.697(1)	3 : 32.900(16)	4 :12.6048(5)
		3' : 33.058(4)	4' :12.6052(11)
			4'' :12.6388(12)
b (Å)	25.967	3 :10.8535(9)	4:21.1023(10)
		3' :10.8530(12)	4' :21.171(2)
			4'' :21.168(2)
c (Å)	12.2498(5)	3:23.717(2)	4:19.8279(9)
		3' :23.786(3)	4' :19.8672(18)
			4'' :19.895(2)
$\alpha, \beta, \gamma(\text{deg})$	90, 90, 120	3:90, 100.445(3), 90	4:90, 95.063(1), 90
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3' :90, 100.712(2),90	4' :90, 95.098(5), 90
			4":90, 95.120(2), 90
$V(Å^3)$	7005.3(4)	3:8328.4(12)	4 :5253.5(4) 4' :5280.9(8)
	· ·	3' :8385.2(16)	4'' :5301.3(9)
Ζ	6	8	4

μ (mm ⁻¹)	0.491	3 :0.515	4 :0.417
		3' :0.511	4' :0.415
			4'' :0.417
Total no. of rflns	44176	3 :33986; 3' :23948	4 :40534
			4' :61476
			4'' :30576
No. of unique rflns	8170	3 :7617; 3' :7376	4 :9294 ; 4 ':12543
			4'': 9330;
No. of variables	488	3 :512; 3 ':490	4 :588; 4' :601
			4'' 596
$R1 (I > 2\sigma(I))$	0.038	3 :0.044; 3 ':0.0432	4 :0.049; 4 ':0.040
			4'' :0.0384;
wR2 (all data)	0.076	3 :0.098; 3 ':0.1013	4 :0.086; 4 ':0.099
			4'' :0.0758;
GOF (all data)	1.01	3 :1.00; 3' :0.914	4 :1.02; 4' :1.02
			4'' :0.845
Max. diff. peak/hole	0.27/-0.25	3: 0.37/-0.55;	4:0.42/-0.56
(e Å ⁻³)		3':0.60/-0.55	4' :0.47/-0.95
			4'' :0.729/-0.50

^{*a*}**3'**, and **4'** and **4''** represent repeat structure determinations of complexes **3** and **4**, respectively, each synthesized independently; **3**, **4**, and **4'** are all made by oxygenation of $Rh(H)_2$ complexes, while **3'**, **4''** are all made by oxygenation of $Rh(N_2)$ complexes.

Bond	2	3	3' ^{a1}	4	4' ^a	4′′ ^{<i>a</i>1}
	ccdc888671	ccdc915322	ccdc725326	ccdc915321	ccdc888672	ccdc725327
0–0	1.382(4)	$1.34(4)^{b}$	1.24(5)	$1.391(6)^{b}$	$1.379(4)^{b}$	1.381(9)
		$1.37(6)^{c}$	1.26(6)	$1.42(5)^{c}$	$1.376(10)^{c}$	
Rh–O1	2.027(3)	$2.071(11)^{b}$	$2.110(15)^{b};$	$1.990(3)^{b}$	$2.000(3)^{b}$	1.989(3)
		$2.08(2)^{c}$	$2.15(2)^{c}$	$1.95(3)^{c}$	$2.12(3)^{c}$	1.995(4)
Rh–O2	1.970(3)	$2.090(9)^{b}$	$2.110(14))^{b}$	$1.986(3)^{b}$	$1.985(2)^{b}$	
		$2.091(11)^c$	$2.129(15)^c$	$1.92(4)^{c}$	$2.00(2)^{c}$	
RhCl	2.2798(11)	$2.214(5)^{b}$	$2.217(6)^{b}$,	$2.2837(15)^{b}$	2.2960(10)	2.2876(9)
		$2.157(6)^{c}$	2.205(8) ^c	$2.276(12)^{c}$	$b^{b}2.314(7)^{c}$	
Rh–C	$2.032(4)^d$	$2.052(3)^{b}$	$2.040(3)^{b};$	$2.059(4)^{b}$	$2.066(3)^{b}$	2.056(3)
		2.036(3) ^c	$2.049(3)^{c}$	2.062(3) ^c	2.076(3) ^c	

Table S2 Selected bond lengths (Å) with estimated standard deviations in parentheses for Rh^I complexes: RhCl(IPr)(PPh₃)(O₂) (**2**), *trans*-RhCl(IMes)₂(O₂) (**3**), ¹ *trans*-RhCl(IPr)₂(O₂) (**4**), ¹ and repeat independent determinations.

^{*a*}See footnote *a* of Table 1A. ^{*b*}Main fragment : ^{*c*}minor fragment within disordered Cl and O₂ ligands: fragment ratios are 9:1, 9:1, 3:2, and 5.6:4.4, respectively, for 4, 4', 3 and 3'.

Bond	2	3	3′ ^{a1}	4	4' ^a	4 ′′ ^{<i>a</i>1}
	ccdc88671	ccdc915322	ccdc725326	ccdc915321	ccdc888672	ccdc725327
Rh-O1-O2	67.56(16)	$71.9(8)^{b}$	$73.0(11)^{b}$	$69.36(18)^{b}$	$69.19(14)^{b}$	69.9(2)
		$71.3(10)^{c}$	71.9(13)	$67.1(19)^{c}$	65.8 ^{<i>c</i>}	
Rh-O2-O1	72.02(16)	$70.4(8)^{b}$	$72.9(12)^{b}$	$69.7(2)^{b}$	$70.32(16)^{b}$	69.50(18)
		$70.3(15)^{c}$	$73.9(17)^{c}$	$70(2)^{c}$	$75.2(14)^{c}$	
O2-Rh-O1	40.42(11)	$37.7(12)^{b}$	$34.2(15)^{b}$	$41.0(2)^{b}$	$40.49(14)^{b}$	40.6(3)
		$38(2)^{c}$	$34.2(19)^{c}$	$43.0(18)^{c}$	$39.0(5)^{c}$	
O1-Rh-Cl	163.22(9)	$161.0(6)^{b}$	$163.1(8)^{b}$	$162.27(14)^{b}$	$162.77(10)^{b}$	156.97(17)
		$163.1(9)^{c}$	$164.7(9)^{c}$	$159.8(11)^{c}$	$160.3(6)^{c}$	
O2-Rh-Cl	156.19(10)	$161.3(7)^{b}$	$162.6(8)^{b}$	$156.76(13)^{b}$	$156.74(11)^{b}$	162.45(16)
		$158.3(11)^{c}$	$160.7(11)^{c}$	$157.1(14)^{c}$	$160.7(6)^{c}$	
O1-Rh-C(1)	86.56(13)	$90.9(3)^{b}, 89.0(5)^{c}$	$90.0(4)^{b}$	$89.59(13)^{b}$	$89.50(11)^{b}$	90.92(11)
			89.8(6) ^{<i>c</i>}	$89.1(10)^{c}$	$89.9(7)^{c}$	
$O1-Rh-C_T^d$	$90.75(9)^{e}$	$89.5(3)^{b}$	$91.1(4)^{b}$	$88.74(13)^{b}$	88.74^{b}	87.51(11)
		$90.5(3)^{c}$	89.8(6) ^c	$91.7(9)^{c}$	$91.8(7)^{c}$	
O2-Rh-C(1)	88.75(13)	$91.4(3)^{b}$	$90.5(4)^{b}$	$91.07(13)^{b}$	$90.93(9)^{b}$	89.73(13)
		$88.5(3)^{c}$	$90.3(4)^{c}$	$89.2(11)^{c}$	$88.9(7)^{c}$	
$O2-Rh-C_T^d$	92.78(9) ^f	$89.5(3)^{b}$	90.4(4) ^b	$87.28(13)^{b}$	$87.53(9)^{b}$	88.59(13)
-		$90.5(3)^{c}$	88.6(4) ^{<i>c</i>}	$92.6(10)^{c}$	$92.7(7)^{c}$	
C–Rh–C _T	$173.85(11)^{g}$	179.03(14)	178.93(15)	178.23(14)	178.22(9)	178.25(11)

Table S3: Selected bond angles (deg) with estimated standard deviations in parentheses for Rh^I complexes

^{*a*} See footnote *a* of Table 1A. ^{*b,c*} See footnote *b* and *c* for Table 2A. ^{*d*}C_T represents the carbene-C trans to C(1). ^{*e*}O1–Rh–P angle. ^{*f*}O₂–Rh–P angle. ^{*g*}C–Rh–P angle.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

DFT Calculations

Density functional calculations were performed using ORCA version 2.8 running on multiprocessor servers (lattice) through the WestGrid supercomputing centre. Calculations for the potential energy surface were performed on simplified complexes using IMes N-heterocyclic ligands instead of the bulkier parent ligands used in our experimental work. Previous studies have shown that the nature of the RhO₂ moiety in these complexes is not largely affected by steric bulk in the NHC ligands.¹ Gas phase calculations were performed using the BP86 functional and TZVP basis set (as implemented in ORCA 2.8).⁵ Constrained geometry optimizations were performed with two overall constraints: (*i*) the Rh-(O₂) distance (as referenced by a dummy atom at the midpoint between the two oxygen atoms of the ligand) and (*ii*) the O-O bond distance. Additional constraints are included to ensure that the dummy atom stays at the midpoint of the O-O bond.

An example of an input file for creation of the restricted singlet relaxed surface for $CIRh(IMe)_2O_2$ is shown below.

```
# ** Molecule: RhO2NHC2Cl singlet surface scan rOO=1.26A
# -JOB PARAMETERS-
! UKS BP86 TZVP RI TightSCF SlowConv SCFConv7 OPT
! Smallprint
! grid4 nofinalgrid
# -RELAXED SCAN DETAILS-
%geom
      Scan B 5 32 = 3.00, 1.80, 25 end # scan Rh-DA distance
      Constraints

      { B 32 33 0.63 C }
      # constrain DA-O1 distance

      { B 32 34 0.63 C }
      # constrain DA-O2 distance

      { A 33 32 34 C }
      # constrain 01-DA-O2 angle

       { A 33 32 34 C }
                                          # constrain 01-DA-02 angle
      end
      Modify Internal
                                           # remove C-Rh-C angle (near 180degrees)
       { A 1 5 6 R }
      end
      end
 # -ATOMIC COORDINATES-
  %coords CTyp internal
         Charge 0
         Mult 1
         coords
           N 0 0 0 0.000 0.000
                                                0.000
           C 1 0 0 1.367 0.000
                                                0.000
               2 1 0 1.367 103.980
                                                0.000
           N
               3 2 1 1.390 111.452
           С
                                               -0.200
           C 4 3 2 1.362 106.554
                                              0.415
          Rh 2 3 4 2.090 128.348 -177.617
           C 6 2 3 2.086 178.892 -112.814
           N 7 6 2 1.366
                                  126.801
                                             64.179
           C 8 7 6 1.389
                                  111.459 -176.876
```

S-7

С	9	8	7	1.362	106.527	0.067
Ν	10	9	8	1.390	106.544	-0.268
С	8	7	6	1.462	123.633	4.288
С	11	7	6	1.462	124.054	-1.518
С	3	2	6	1.462	124.164	3.865
С	1	2	6	1.462	124.116	0.346
Н	12	8	7	1.095	109.471	-56.598
Н	12	8	7	1.095	109.471	-176.556
Н	12	8	7	1.095	109.471	63.669
Н	9	8	7	1.085	122.486	180.000
Н	10	9	8	1.085	130.991	180.000
Н	13	11	7	1.095	109.471	-150.011
Н	13	11	7	1.095	109.471	-31.087
Н	13	11	7	1.095	109.471	89.741
Н	14	3	2	1.095	109.471	91.861
Н	14	3	2	1.095	109.471	-29.205
Н	14	3	2	1.095	109.471	-147.638
Н	4	3	2	1.085	122.460	180.000
Н	5	4	3	1.085	130.974	180.000
Н	15	1	2	1.095	109.471	-33.026
Н	15	1	2	1.095	109.471	-152.026
Н	15	1	2	1.095	109.471	87.362
Cl	6	7	8	2.366	88.932	67.820
DA	6	7	8	1.900	90.000	250.000
0	33	6	7	0.680	90.000	90.000
0	33	6	7	0.680	90.000	270.000
end						

end

Ene	ergy	r _{oo} (pm)									
(eV)		126	128	130	132	134	136	138	140	142	144
	80	0.621	0.506	0.413	0.341	0.285	0.246	0.221	0.208	0.207	0.215
	85	0.432	0.325	0.241	0.176	0.128	0.097	0.078	0.073	0.078	0.094
	90	0.324	0.224	0.147	0.089	0.048	0.022	0.010	0.011	0.022	0.043
	95	0.267	0.185	0.114	0.062	0.022	0.006	0.000	0.006	0.022	0.048
	00	0.243	0.194	0.128	0.064	0.031	0.035	0.031	0.043	0.064	0.094
	05	0.251	0.237	0.176	0.092	0.076	0.098	0.077	0.114	0.138	0.172
	10	0.384	0.307	0.250	0.212	0.130	0.184	0.142	0.208	0.201	0.272
г кног (рт)	15	0.346	0.301	0.279	0.263	0.268	0.288	0.297	0.318	0.349	0.326
	20	0.388	0.406	0.290	0.246	0.275	0.288	0.301	0.439	0.387	0.426
	25	0.332	0.306	0.297	0.303	0.322	0.357	0.393	0.431	0.476	0.530
	30	0.258	0.232	0.224	0.231	0.251	0.288	0.324	0.357	0.435	0.635
	35	0.214	0.188	0.179	0.186	0.207	0.244	0.280	0.336	0.392	0.741
	40	0.198	0.171	0.160	0.169	0.189	0.225	0.262	0.318	0.374	0.528
	45	0.205	0.178	0.167	0.175	0.194	0.230	0.267	0.322	0.378	0.542
	50	0.231	0.203	0.194	0.200	0.219	0.256	0.292	0.341	0.400	0.583
	55	0.272	0.245	0.236	0.242	0.261	0.250	0.334	0.383	0.439	0.628
	60	0.325	0.299	0.290	0.296	0.316	0.347	0.389	0.439	0.495	0.562
	65	0.387	0.361	0.353	0.360	0.380	0.412	0.454	0.505	0.561	0.624
	70	0.455	0.430	0.422	0.430	0.452	0.484	0.527	0.578	0.635	0.699
	75	0.525	0.502	0.496	0.505	0.527	0.561	0.605	0.656	0.714	0.779

Bonding energies obtained from the above surface scans yield the following table of relative energies:

80	0.597	0.575	0.570	0.580	0.604	0.639	0.684	0.735	0.795	0.861
85	0.669	0.648	0.644	0.656	0.681	0.717	0.762	0.815	0.876	0.942
90	0.738	0.719	0.717	0.730	0.756	0.793	0.839	0.894	0.956	1.024
95	0.805	0.787	0.786	0.800	0.828	0.867	0.916	0.976	1.034	1.103
00	0.868	0.852	0.853	0.868	0.897	0.938	0.995	1.050	1.109	1.179

The two minima in the potential energy surface correspond to the following structures:

References:

- 1. J. M. Praetorius, D. P. Allen, R. Wang, J. D. Webb, F. Grein, P. Kennepohl and C. M. Crudden, *J. Am. Chem. Soc.*, 2008, **130**, 3724-3725.
- 2. O. V. Zenkina, E. C. Keske, R. Wang and C. M. Crudden, Angew. Chem., Int. Ed., 2011, 50, 8100-8104.
- 3. J. Cipot-Wechsler, D. Covelli, J. M. Praetorius, N. Hearns, O. V. Zenkina, E. C. Keske, R. Wang, P. Kennepohl and C. M. Crudden, *Organometallics, In Press*, 2012.
- 4. X.-Y. Yu, B. O. Patrick and B. R. James, *Organometallics*, 2006, **25**, 4870-4877.
- 5. F. Neese, F. Wennmohs, U. Becker, D. Ganyushin, A. Hansen, D.G. Liakos, C. Kollmar, S. Kossmann, T. Petrenko, C. Reimann, C. Riplinger, K. Sivalingam, E. Valeev, B. Wezisla, ORCA 2.8. http://www.thch.uni-bonn.de/tc/orca/ 2010.