Supporting Information

CFA-2 and CFA-3 (Coordination Framework Augsburg University-2 and -3); Novel MOFs Assembled from Trinuclear Cu(I)/Ag(I) Secondary Building Units and 3,3',5,5'-Tetraphenyl-bipyrazolate Ligands

Maciej Grzywa,^{a,b} Christof Geßner,^b Dmytro Denysenko,^a Björn Bredenkötter,^a Fabienne Gschwind,^c Katharina M. Fromm,^c Wojciech Nitek,^d Elias Klemm,^b and Dirk Volkmer^{a*}

^aInstitute of Physics, Chair of Solid State and Materials Chemistry, Augsburg University,

10 Universitätsstrasse 1, 86159 Augsburg, Germany

^bInstitute of Chemical Technology, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55,

70569 Stuttgart, Germany

^cDepartment of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland

^dFaculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland

^{*} Corresponding author. Fax: +49 (0)821 598–5955; Tel: +49 (0)821 598–3006; E-mail: <u>dirk.volkmer@physik.uni-augsburg.de</u>

Fig. S1. View of the asymmetric unit of 1 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

s Table S1. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

ATOM	X	У	Z	U(eq)	
N(1)	8603(1)	322(1)	1144(1)	18(1)	
N(2)	8209(1)	81(1)	1857(1)	19(1)	

N(3)	5368(1)	3114(1)	2013(1)	20(1)
N(4)	6433(1)	3423(1)	2419(1)	20(1)
C(1)	9164(2)	1177(1)	-265(1)	19(1)
C(2)	9582(2)	1610(1)	-910(1)	23(1)
5 C(3)	9396(2)	2467(1)	-975(1)	27(1)
C(4)	8762(2)	2876(1)	-390(1)	28(1)
C(5)	8336(2)	2443(1)	259(1)	24(1)
C(6)	8547(2)	1584(1)	340(1)	17(1)
C(7)	8209(2)	1116(1)	1055(1)	16(1)
10 C(8)	7556(2)	1378(1)	1730(1)	16(1)
C(9)	7595(2)	695(1)	2233(1)	18(1)
C(10)	7130(2)	567(1)	3032(1)	23(1)
C(11)	6358(2)	-123(1)	3181(1)	35(1)
C(12)	6007(3)	-283(1)	3948(1)	44(1)
15 C(13)	6413(2)	244(1)	4569(1)	40(1)
C(14)	7133(2)	942(1)	4420(1)	38(1)
C(15)	7491(2)	1105(1)	3654(1)	29(1)
C(16)	4649(2)	1056(1)	1034(1)	24(1)
C(17)	3659(2)	642(1)	601(1)	26(1)
20 C(18)	2520(2)	1048(1)	365(1)	25(1)
C(19)	2369(2)	1878(1)	569(1)	26(1)
C(20)	3360(2)	2301(1)	998(1)	24(1)
C(21)	4520(2)	1899(1)	1235(1)	19(1)
C(22)	5569(2)	2354(1)	1689(1)	18(1)
25 C(23)	6859(2)	2160(1)	1890(1)	16(1)
C(24)	7347(2)	2844(1)	2346(1)	17(1)

C(25)	8653(2)	2963(1)	2737(1)	19(1)
C(27)	9758(2)	2776(1)	2342(1)	23(1)
C(28)	10978(2)	2923(1)	2711(1)	32(1)
C(29)	11105(2)	3243(1)	3479(1)	35(1)
5 C(30)	10016(2)	3417(1)	3881(1)	31(1)
C(31)	8795(2)	3283(1)	3512(1)	24(1)
S(1A)	12849(1)	5100(1)	1692(1)	22(1)
O(1A)	13231(2)	4203(1)	1675(1)	26(1)
C(33A)	14125(3)	5666(2)	1302(3)	53(1)
10 C(32A)	13102(5)	5424(3)	2701(2)	54(1)
S(1B)	12969(4)	4816(2)	2641(2)	61(1)
O(1B)	13522(8)	4223(5)	2041(5)	26(1)
C(33B)	11465(12)	5052(9)	2190(8)	59(4)
C(32B)	13586(19)	5813(12)	2582(14)	75(7)
15 S(1C)	14459(6)	5661(4)	627(4)	45(1)
O(1C)	13080(12)	5584(7)	741(8)	26(1)
C(32C)	15090(20)	4630(16)	501(14)	40(5)
C(33C)	14450(30)	5930(20)	-424(18)	70(10)

Table S2. Selected bond lengths [A] and angles [deg] for 1.

20 N(1)-C(7)	1.341(2)	N(1)-N(2)	1.349(2)
N(2)-C(9)	1.352(2)	N(4)-C(24)	1.338(2)
N(4)-N(3)	1.349(2)	N(3)-C(22)	1.356(2)
C(6)-C(5)	1.398(2)	C(6)-C(1)	1.399(2)
C(6)-C(7)	1.478(2)	C(24)-C(23)	1.409(2)
25 C(24)-C(25)	1.475(2)	C(22)-C(23)	1.391(2)

C(22)-C(21)	1.475(2)	C(7)-C(8)	1.424(2)
C(1)-C(2)	1.382(2)	C(25)-C(27)	1.396(3)
C(25)-C(31)	1.396(2)	C(21)-C(20)	1.397(3)
C(21)-C(16)	1.400(2)	C(23)-C(8)	1.480(2)
5 C(8)-C(9)	1.379(2)	C(9)-C(10)	1.471(2)
C(20)-C(19)	1.387(3)	C(16)-C(17)	1.383(3)
C(10)-C(15)	1.384(3)	C(10)-C(11)	1.397(3)
C(27)-C(28)	1.388(3)	C(31)-C(30)	1.386(3)
C(18)-C(17)	1.382(3)	C(18)-C(19)	1.386(3)
¹⁰ C(5)-C(4)	1.389(3)	C(2)-C(3)	1.388(3)
C(3)-C(4)	1.385(3)	C(15)-C(14)	1.387(3)
C(30)-C(29)	1.385(3)	C(29)-C(28)	1.385(3)
C(14)-C(13)	1.378(3)	C(11)-C(12)	1.387(3)
C(13)-C(12)	1.382(3)	S(1A)-O(1A)	1.490(2)
15 S(1A)-C(33A)	1.768(3)	S(1A)-C(32A)	1.773(4)
S(1B)-O(1B)	1.526(9)	S(1B)-C(32B)	1.725(19)
S(1B)-C(33B)	1.726(12)	S(1C)-O(1C)	1.461(15)
S(1C)-C(32C)	1.79(3)	S(1C)-C(33C)	1.82(3)
S(1C)-C(32C)#1	2.04(2)	C(32C)-C(33C)#1	1.03(4)
20 C(32C)-S(1C)#1	2.04(2)	C(33C)-C(32C)#1	1.03(4)
C(7)-N(1)-N(2)	105.08(13)	N(1)-N(2)-C(9)	112.88(13)
C(24)-N(4)-N(3)	105.06(13)	N(4)-N(3)-C(22)	112.78(14)
C(5)-C(6)-C(1)	117.67(16)	C(5)-C(6)-C(7)	122.23(15)
25 C(1)-C(6)-C(7)	120.00(15)	N(4)-C(24)-C(23)	111.07(15)
N(4)-C(24)-C(25)	120.30(15)	C(23)-C(24)-C(25)	128.61(15)

N(3)-C(22)-C(23)	106.06(14)	N(3)-C(22)-C(21)	121.43(15)
C(23)-C(22)-C(21)	132.51(15)	N(1)-C(7)-C(8)	110.43(14)
N(1)-C(7)-C(6)	118.89(15)	C(8)-C(7)-C(6)	130.60(15)
C(2)-C(1)-C(6)	121.38(16)	C(27)-C(25)-C(31)	119.05(16)
s C(27)-C(25)-C(24)	121.42(16)	C(31)-C(25)-C(24)	119.52(16)
C(20)-C(21)-C(16)	118.08(16)	C(20)-C(21)-C(22)	120.52(15)
C(16)-C(21)-C(22)	121.39(16)	C(22)-C(23)-C(24)	105.03(14)
C(22)-C(23)-C(8)	128.24(15)	C(24)-C(23)-C(8)	126.53(15)
C(9)-C(8)-C(7)	105.03(14)	C(9)-C(8)-C(23)	123.54(15)
¹⁰ C(7)-C(8)-C(23)	131.24(15)	N(2)-C(9)-C(8)	106.56(15)
N(2)-C(9)-C(10)	121.29(15)	C(8)-C(9)-C(10)	132.14(15)
C(19)-C(20)-C(21)	120.92(17)	C(17)-C(16)-C(21)	120.57(17)
C(15)-C(10)-C(11)	119.06(17)	C(15)-C(10)-C(9)	120.73(16)
C(11)-C(10)-C(9)	120.16(16)	C(28)-C(27)-C(25)	120.40(17)
15 C(30)-C(31)-C(25)	120.27(18)	C(17)-C(18)-C(19)	119.32(17)
C(4)-C(5)-C(6)	120.68(17)	C(1)-C(2)-C(3)	120.48(17)
C(18)-C(17)-C(16)	120.82(17)	C(4)-C(3)-C(2)	118.85(17)
C(10)-C(15)-C(14)	120.30(18)	C(18)-C(19)-C(20)	120.27(17)
C(3)-C(4)-C(5)	120.91(17)	C(29)-C(30)-C(31)	120.21(18)
20 C(30)-C(29)-C(28)	120.10(19)	C(29)-C(28)-C(27)	119.95(19)
C(13)-C(14)-C(15)	120.37(19)	C(12)-C(11)-C(10)	120.24(19)
C(14)-C(13)-C(12)	119.89(19)	C(13)-C(12)-C(11)	120.0(2)
O(1A)-S(1A)-C(33A)	106.27(15)	O(1A)-S(1A)-C(32A)	106.22(18)
C(33A)-S(1A)-C(32A)	98.0(2)	O(1B)-S(1B)-C(32B)	112.3(9)
25 O(1B)-S(1B)-C(33B)	102.6(6)	C(32B)-S(1B)-C(33B)	95.7(8)
O(1C)-S(1C)-C(32C)	107.7(9)	O(1C)-S(1C)-C(33C)	102.0(11)

C(32C)-S(1C)-C(33C)	94.6(14)	O(1C)-S(1C)-C(32C)#1	113.3(9)
C(32C)-S(1C)-C(32C)#1	64.5(12)	C(33C)-S(1C)-C(32C)#1	30.4(11)
C(33C)#1-C(32C)-S(1C)	173(3)	C(33C)#1-C(32C)-S(1C)#1	63(2)
S(1C)-C(32C)-S(1C)#1	115.5(12)	C(32C)#1-C(33C)-S(1C)	87(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+3,-y+1,-z

5

Fig. S2. View of the asymmetric unit of CFA-2 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

5 ATOM	X	У	Z	U(eq)
Cu(1)	766(1)	3804(1)	-215(1)	33(1)
Cu(2)	1285(1)	3237(1)	551(1)	32(1)
Cu(3)	1499(1)	4257(1)	388(1)	34(1)
N(1)	536(1)	3286(1)	-9(1)	32(1)
10 N(2)	791(1)	3028(1)	259(1)	33(1)
N(3)	1736(1)	3499(1)	873(1)	34(1)
N(4)	1753(1)	3944(1)	862(1)	35(1)
N(5)	1289(1)	4543(1)	-124(1)	37(1)
N(6)	1015(1)	4321(1)	-408(1)	37(1)
15 C(1)	162(1)	3074(1)	-89(1)	30(1)
C(2)	170(1)	2666(1)	125(1)	30(1)
C(3)	574(1)	2656(1)	346(1)	29(1)
C(4)	778(1)	2349(1)	669(1)	31(1)
C(5)	913(1)	1937(1)	545(1)	41(1)
20 C(6)	1133(1)	1681(1)	856(1)	47(1)
C(7)	1225(1)	1834(1)	1286(1)	45(1)
C(8)	1089(1)	2240(1)	1415(1)	41(1)
C(9)	865(1)	2498(1)	1111(1)	36(1)
C(10)	-196(1)	3282(1)	-341(1)	37(1)
25 C(11)	-447(1)	3048(1)	-653(1)	48(1)
C(12)	-797(1)	3245(1)	-865(1)	66(1)
C(13)	-901(1)	3670(1)	-772(1)	70(1)

Table S3. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A² x 10^3) for **CFA-2**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(14)	-660(1)	3903(1)	-469(1)	60(1)
C(15)	-307(1)	3711(1)	-251(1)	44(1)
C(16)	2015(1)	3362(1)	1197(1)	32(1)
C(17)	2219(1)	3719(1)	1395(1)	33(1)
5 C(18)	2041(1)	4080(1)	1176(1)	35(1)
C(19)	2084(1)	2901(1)	1309(1)	38(1)
C(20)	2154(1)	2593(1)	971(1)	49(1)
C(21)	2257(1)	2169(1)	1088(1)	62(1)
C(22)	2288(1)	2049(1)	1539(1)	65(1)
¹⁰ C23)	2210(1)	2349(1)	1878(1)	58(1)
C(24)	2109(1)	2770(1)	1763(1)	45(1)
C(25)	2121(1)	4544(1)	1247(1)	49(1)
C(26)	2546(1)	4698(1)	1292(1)	69(1)
C(27)	2619(2)	5139(1)	1367(2)	108(2)
15 C(28)	2271(2)	5421(1)	1395(2)	126(2)
C(29)	1863(2)	5273(1)	1350(2)	112(2)
C(30)	1782(1)	4832(1)	1275(1)	74(1)
C(31)	1404(1)	4915(1)	-336(1)	35(1)
C(32)	1204(1)	4934(1)	-762(1)	33(1)
20 C(33)	965(1)	4552(1)	-793(1)	35(1)
C(34)	1702(1)	5229(1)	-129(1)	42(1)
C(35)	2097(1)	5101(1)	54(1)	63(1)
C(36)	2375(1)	5410(1)	233(1)	92(1)
C(37)	2275(2)	5834(1)	221(2)	102(1)
25 C(38)	1883(1)	5969(1)	41(1)	82(1)
C(39)	1601(1)	5666(1)	-134(1)	57(1)

1.397(3)
1.474(3)
1.395(3)
1.469(3)
1.468(3)
1.389(3)
1.391(3)
1.389(4)
1.376(5)
1.375(5)
1.378(4)
1.374(4)
1.402(4)
1.397(5)
1.384(8)
1.344(8)
1.400(5)
1.394(3)
1.468(3)
1

C(3)-C(4)	1.478(3)	C(32)-C(33)	1.391(3)	
C(4)-C(5)	1.388(3)	C(32)-C(17)#3	1.469(3)	
C(4)-C(9)	1.398(3)	C(33)-C(40)	1.482(3)	
C(5)-C(6)	1.383(3)	C(34)-C(39)	1.383(4)	
5 C(6)-C(7)	1.378(4)	C(34)-C(35)	1.386(4)	
C(7)-C(8)	1.374(4)	C(35)-C(36)	1.385(5)	
C(8)-C(9)	1.379(3)	C(11)-C(12)	1.387(4)	
C(10)-C(15)	1.391(3)	C(12)-C(13)	1.376(5)	
C(10)-C(11)	1.396(3)	C(13)-C(14)	1.364(5)	
¹⁰ C(14)-C(15)	1.393(4)	C(36)-C(37)	1.344(6)	
C(37)-C(38)	1.383(6)	C(41)-C(42)	1.380(4)	
C(38)-C(39)	1.375(4)	C(42)-C(43)	1.390(5)	
C(40)-C(41)	1.380(4)	C(43)-C(44)	1.357(5)	
C(40)-C(45)	1.384(4)	C(44)-C(45)	1.395(4)	

N(1)-Cu(1)-N(6)	177.78(8)	C(13)-C(14)-C(15)	120.0(3)
N(3)-Cu(2)-N(2)	173.04(8)	C(10)-C(15)-C(14)	120.8(2)
N(5)-Cu(3)-N(4)	174.02(8)	N(3)-C(16)-C(17)	109.45(17)
C(1)-N(1)-N(2)	108.02(15)	N(3)-C(16)-C(19)	123.37(18)
20 C(1)-N(1)-Cu(1)	133.64(13)	C(17)-C(16)-C(19)	127.18(18)
N(2)-N(1)-Cu(1)	118.15(12)	C(16)-C(17)-C(18)	105.09(17)
C(3)-N(2)-N(1)	108.63(15)	C(16)-C(17)-C(32)#2	125.96(18)
C(3)-N(2)-Cu(2)	127.73(14)	C(18)-C(17)-C(32)#2	128.83(19)
N(1)-N(2)-Cu(2)	122.10(12)	N(4)-C(18)-C(17)	109.04(18)
25 C(16)-N(3)-N(4)	107.70(16)	N(4)-C(18)-C(25)	120.71(18)
C(16)-N(3)-Cu(2)	134.13(14)	C(17)-C(18)-C(25)	130.25(19)

N(4)-N(3)-Cu(2)	116.72(12)	C(20)-C(19)-C(24)	118.4(2)
C(18)-N(4)-N(3)	108.72(16)	C(20)-C(19)-C(16)	121.6(2)
C(18)-N(4)-Cu(3)	128.71(14)	C(24)-C(19)-C(16)	119.9(2)
N(3)-N(4)-Cu(3)	121.24(13)	C(21)-C(20)-C(19)	120.2(3)
s C(31)-N(5)-N(6)	107.98(16)	C(22)-C(21)-C(20)	120.3(3)
C(31)-N(5)-Cu(3)	132.95(15)	C(23)-C(22)-C(21)	120.1(2)
N(6)-N(5)-Cu(3)	117.97(13)	C(22)-C(23)-C(24)	119.7(3)
C(33)-N(6)-N(5)	108.29(16)	C(23)-C(24)-C(19)	121.3(3)
C(33)-N(6)-Cu(1)	131.66(15)	C(30)-C(25)-C(26)	119.2(3)
¹⁰ N(5)-N(6)-Cu(1)	119.99(13)	C(30)-C(25)-C(18)	120.8(3)
N(1)-C(1)-C(2)	110.00(17)	C(26)-C(25)-C(18)	119.9(2)
N(1)-C(1)-C(10)	121.18(17)	C(27)-C(26)-C(25)	119.7(4)
C(2)-C(1)-C(10)	128.67(18)	C(28)-C(27)-C(26)	119.7(4)
C(1)-C(2)-C(3)	103.97(17)	C(29)-C(28)-C(27)	120.5(3)
15 C(1)-C(2)-C(2)#1	127.9(2)	C(28)-C(29)-C(30)	120.8(4)
C(3)-C(2)-C(2)#1	128.1(2)	C(25)-C(30)-C(29)	120.0(4)
N(2)-C(3)-C(2)	109.37(17)	N(5)-C(31)-C(32)	109.34(18)
N(2)-C(3)-C(4)	116.96(17)	N(5)-C(31)-C(34)	122.44(18)
C(2)-C(3)-C(4)	133.41(18)	C(32)-C(31)-C(34)	128.21(18)
20 C(5)-C(4)-C(9)	119.07(19)	C(33)-C(32)-C(31)	104.85(17)
C(5)-C(4)-C(3)	123.01(18)	C(33)-C(32)-C(17)#3	126.07(19)
C(9)-C(4)-C(3)	117.76(18)	C(31)-C(32)-C(17)#3	129.05(19)
C(6)-C(5)-C(4)	119.9(2)	N(6)-C(33)-C(32)	109.54(18)
C(7)-C(6)-C(5)	120.6(2)	N(6)-C(33)-C(40)	121.77(19)
25 C(8)-C(7)-C(6)	120.1(2)	C(32)-C(33)-C(40)	128.66(18)
C(7)-C(8)-C(9)	120.0(2)	C(39)-C(34)-C(35)	118.7(2)

C(8)-C(9)-C(4)	120.4(2)	C(39)-C(34)-C(31)	119.8(2)
C(15)-C(10)-C(11)	118.5(2)	C(35)-C(34)-C(31)	121.4(2)
C(15)-C(10)-C(1)	120.2(2)	C(36)-C(35)-C(34)	119.7(3)
C(11)-C(10)-C(1)	121.2(2)	C(37)-C(36)-C(35)	121.0(3)
⁵ C(12)-C(11)-C(10)	119.9(3)	C(36)-C(37)-C(38)	120.3(3)
C(13)-C(12)-C(11)	120.7(3)	C(14)-C(13)-C(12)	120.2(3)
C(39)-C(38)-C(37)	119.4(3)	C(42)-C(41)-C(40)	121.1(3)
C(38)-C(39)-C(34)	120.9(3)	C(41)-C(42)-C(43)	119.3(3)
C(41)-C(40)-C(45)	119.0(2)	C(44)-C(43)-C(42)	120.2(3)
¹⁰ C(41)-C(40)-C(33)	121.1(2)	C(43)-C(44)-C(45)	120.5(3)
C(45)-C(40)-C(33)	119.9(2)	C(40)-C(45)-C(44)	119.9(3)

Symmetry transformations used to generate equivalent atoms:

15

#1 -x+0,-y+1/2,z+0; #2 -y+3/4,x+1/4,z+1/4; #3 y-1/4,-x+3/4,z-1/4

Fig. S3. View of the asymmetric unit of CFA-3 showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

ATOM	X	У	Z	U(eq)
Ag(1)	7649(1)	1905(1)	9973(1)	37(1)
Ag(2)	6599(1)	2853(1)	9482(1)	38(1)
10 Ag(3)	8702(1)	2850(1)	10384(1)	40(1)
Ag(4)	3064(1)	664(1)	6103(1)	42(1)
Ag(5)	2714(1)	1532(1)	4914(1)	42(1)
Ag(6)	2196(1)	664(1)	3723(1)	40(1)
N(1)	6033(3)	2311(1)	8930(3)	30(1)
15 N(2)	6389(3)	1932(1)	9156(3)	31(1)
N(3)	7225(3)	3399(1)	9934(3)	35(1)
N(4)	8075(3)	3404(1)	9982(3)	35(1)
N(5)	8913(3)	1936(2)	10771(3)	34(1)
N(6)	9295(3)	2313(2)	10937(3)	35(1)
20 N(7)	3518(3)	1514(2)	6171(3)	37(1)
N(8)	3407(4)	1222(1)	6731(3)	38(1)

s Table S5. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for CFA-3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

N(9)	2787(4)	139(1)	5344(3)	37(1)
N(10)	2331(3)	145(1)	4488(3)	36(1)
N(11)	1974(3)	1233(1)	3090(3)	33(1)
N(12)	1905(3)	1526(1)	3668(3)	34(1)
5 C(1)	5281(4)	2265(2)	8327(4)	29(1)
C(2)	5138(4)	1848(2)	8133(4)	28(1)
C(3)	5859(4)	1654(2)	8672(4)	29(1)
C(4)	6067(4)	1212(2)	8743(4)	37(2)
C(5)	6311(5)	1018(2)	9528(5)	58(2)
10 C(6)	6453(6)	600(3)	9578(7)	77(3)
C(7)	6397(7)	377(2)	8843(7)	82(3)
C(8)	6170(6)	571(2)	8061(6)	70(3)
C(9)	6003(5)	986(2)	8007(5)	48(2)
C(10)	4734(4)	2623(2)	7967(4)	31(2)
15 C(11)	3896(5)	2647(2)	7987(5)	47(2)
C(12)	3405(5)	2986(3)	7650(5)	61(2)
C(13)	3737(6)	3294(2)	7286(6)	64(3)
C(14)	4557(6)	3274(2)	7263(5)	60(2)
C(15)	5071(5)	2942(2)	7600(4)	42(2)
20 C(16)	4421(4)	1657(2)	7464(4)	28(1)
C(17)	4121(4)	1775(2)	6598(4)	32(1)
C(18)	3947(4)	1308(2)	7522(4)	32(2)
C(19)	3926(4)	1074(2)	8289(4)	38(2)
C(20)	3879(5)	1283(2)	9010(5)	54(2)
25 C(21)	3832(7)	1075(3)	9732(6)	80(3)
C(22)	3838(8)	660(3)	9746(6)	91(4)
C(23)	3905(8)	447(3)	9039(7)	99(4)
C(24)	3957(6)	653(2)	8313(5)	63(2)
C(25)	4376(4)	2119(2)	6156(4)	36(2)
30 C(26)	3785(5)	2403(2)	5708(4)	43(2)
C(27)	4040(6)	2731(2)	5300(5)	57(2)
C(28)	4862(7)	2774(2)	5328(5)	62(2)
C(29)	5482(6)	2500(3)	5778(5)	60(2)
C(30)	5235(5)	2170(2)	6183(5)	48(2)
35 C(31)	9464(4)	1663(2)	11264(4)	30(1)
C(32)	10203(4)	1858(2)	11740(4)	29(1)
C(33)	10069(4)	2271(2)	11521(4)	32(2)

C(34)	9223(4)	1228(2)	11279(4)	37(2)
C(35)	9343(5)	1029(2)	12068(5)	52(2)
C(36)	9119(7)	622(3)	12091(7)	77(3)
C(37)	8778(8)	415(3)	11334(8)	93(4)
5 C(38)	8661(7)	600(3)	10566(7)	85(3)
C(39)	8864(6)	1008(2)	10532(5)	60(2)
C(40)	10946(4)	1672(2)	12395(4)	30(1)
C(41)	11399(4)	1319(2)	12319(4)	33(2)
C(42)	11385(4)	1087(2)	11544(4)	38(2)
10 C(43)	11251(8)	671(2)	11473(6)	81(3)
C(44)	11270(10)	465(3)	10724(8)	117(5)
C(45)	11411(9)	675(4)	10051(7)	103(4)
C(46)	11476(8)	1082(3)	10098(6)	86(3)
C(47)	11473(6)	1283(3)	10844(5)	66(2)
15 C(48)	10619(4)	2633(2)	11834(4)	39(2)
C(49)	10315(5)	2953(2)	12199(5)	56(2)
C(50)	10834(7)	3293(2)	12512(7)	81(3)
C(51)	11659(6)	3311(3)	12439(7)	82(3)
C(52)	11959(5)	2986(3)	12091(6)	72(3)
20 C(53)	11451(5)	2649(2)	11779(5)	53(2)
C(54)	8334(4)	3795(2)	10022(4)	30(1)
C(55)	7652(4)	4051(2)	10022(4)	31(1)
C(56)	6956(4)	3790(2)	9968(4)	32(2)
C(57)	9219(4)	3905(2)	10028(4)	39(2)
25 C(60)	10862(6)	4125(3)	10023(6)	78(3)
C(63)	7614(4)	4499(2)	10042(4)	31(2)
C(64)	6078(4)	3894(2)	9939(4)	34(2)
C(65)	5380(5)	3721(3)	9353(6)	64(2)
C(66)	4559(5)	3838(3)	9311(7)	81(3)
30 C(67)	4437(6)	4144(3)	9827(7)	81(3)
C(68)	5111(6)	4323(3)	10399(7)	76(3)
C(69)	5940(5)	4201(3)	10462(5)	59(2)
C(70)	1284(4)	1791(2)	3252(4)	34(2)
C(71)	1036(5)	2139(2)	3701(4)	38(2)
35 C(72)	194(5)	2190(2)	3700(5)	52(2)
C(73)	-47(6)	2520(3)	4100(6)	66(2)
C(74)	560(7)	2804(3)	4532(6)	73(3)

C(75)	1392(7)	2760(3)	4542(6)	73(3)
C(76)	1644(5)	2426(2)	4130(5)	56(2)
C(77)	2825(4)	-248(2)	5630(4)	29(1)
C(78)	3314(5)	-365(2)	6518(4)	43(2)
5 C(79)	4169(6)	-302(3)	6815(6)	85(3)
C(80)	4626(8)	-435(4)	7666(8)	117(5)
C(81)	4224(10)	-617(4)	8165(7)	104(5)
C(82)	3401(12)	-673(5)	7881(8)	140(6)
C(83)	2925(8)	-549(4)	7047(7)	109(5)
10 C(84)	2087(4)	-241(2)	4250(4)	31(1)
C(85)	1601(5)	-344(2)	3350(5)	47(2)
C(88)	709(9)	-571(4)	1683(8)	104(4)
C(86A)	750(8)	-474(4)	3183(8)	79(4)
C(87A)	318(10)	-573(5)	2321(10)	103(6)
15 C(89A)	1552(13)	-451(6)	1911(8)	110(6)
C(90A)	2003(8)	-328(4)	2743(7)	70(4)
C(86B)	920(19)	-146(10)	2800(20)	48(9)
C(87B)	480(20)	-236(12)	1960(20)	59(11)
C(89B)	1370(30)	-788(15)	2020(30)	75(13)
20 C(90B)	1870(20)	-671(11)	2870(20)	47(9)
C(58A)	9359(6)	4268(3)	9631(7)	60(3)
C(59A)	10183(7)	4385(3)	9645(8)	75(4)
C(61A)	10732(7)	3776(4)	10376(11)	100(6)
C(62A)	9925(6)	3663(3)	10372(8)	72(4)
25 C(58B)	9580(50)	4240(20)	10470(40)	100(30)
C(59B)	10410(50)	4350(20)	10520(40)	90(20)
C(61B)	10470(40)	3747(16)	9720(30)	45(14)
C(62B)	9640(30)	3677(15)	9690(30)	43(14)

Table S6. Selected bond lengths [A] and angles [deg] for CFA-3.

Ag(1)-N(5)	2.087(5)	C(34)-C(35)	1.401(10)
Ag(1)-N(2)	2.093(5)	C(35)-C(36)	1.385(11)
35 Ag(2)-N(1)	2.079(5)	C(36)-C(37)	1.369(14)
Ag(2)-N(3)	2.080(5)	C(37)-C(38)	1.349(14)
Ag(2)-Ag(3)	3.3087(7)	C(38)-C(39)	1.383(11)
Ag(3)-N(6)	2.079(5)	C(40)-C(70)#2	1.393(8)

Ag(3)-N(4)	2.091(5)	C(40)-C(41)	1.397(8)
Ag(4)-N(9)	2.085(5)	C(41)-N(11)#2	1.354(7)
Ag(4)-N(8)	2.089(5)	C(41)-C(42)	1.465(9)
Ag(5)-N(12)	2.062(5)	C(42)-C(47)	1.351(10)
₅ Ag(5)-N(7)	2.075(5)	C(42)-C(43)	1.380(10)
Ag(6)-N(10)	2.080(5)	C(43)-C(44)	1.400(13)
Ag(6)-N(11)	2.106(5)	C(44)-C(45)	1.367(16)
N(1)-C(1)	1.332(7)	C(45)-C(46)	1.337(14)
N(1)-N(2)	1.373(7)	C(46)-C(47)	1.382(12)
¹⁰ N(2)-C(3)	1.339(7)	C(48)-C(49)	1.371(10)
N(3)-C(56)	1.361(7)	C(48)-C(53)	1.390(10)
N(3)-N(4)	1.369(7)	C(49)-C(50)	1.401(11)
N(4)-C(54)	1.343(7)	C(50)-C(51)	1.389(14)
N(5)-C(31)	1.350(7)	C(51)-C(52)	1.365(13)
15 N(5)-N(6)	1.374(7)	C(52)-C(53)	1.383(11)
N(6)-C(33)	1.342(7)	C(54)-C(55)	1.395(8)
N(7)-C(17)	1.333(7)	C(54)-C(57)	1.487(9)
N(7)-N(8)	1.368(7)	C(55)-C(56)	1.403(9)
N(8)-C(18)	1.354(7)	C(55)-C(63)	1.470(8)
20 N(9)-C(77)	1.346(7)	C(56)-C(64)	1.462(9)
N(9)-N(10)	1.368(7)	C(57)-C(62B)	1.25(5)
N(10)-C(84)	1.347(7)	C(57)-C(58B)	1.34(9)
N(11)-C(41)#1	1.354(7)	C(57)-C(62A)	1.375(11)
N(11)-N(12)	1.373(7)	C(57)-C(58A)	1.403(11)
25 N(12)-C(70)	1.353(7)	C(60)-C(61A)	1.325(15)
C(1)-C(2)	1.405(8)	C(60)-C(59A)	1.386(14)
C(1)-C(10)	1.486(8)	C(60)-C(61B)	1.41(5)
C(2)-C(3)	1.394(8)	C(60)-C(59B)	1.44(8)
C(2)-C(16)	1.479(7)	C(63)-C(77)#3	1.388(8)
30 C(3)-C(4)	1.483(8)	C(63)-C(84)#3	1.397(8)
C(4)-C(5)	1.373(10)	C(64)-C(65)	1.372(9)
C(4)-C(9)	1.385(10)	C(64)-C(69)	1.378(10)
C(5)-C(6)	1.387(11)	C(65)-C(66)	1.376(11)
C(6)-C(7)	1.380(14)	C(66)-C(67)	1.360(13)
35 C(7)-C(8)	1.370(13)	C(67)-C(68)	1.345(12)
C(8)-C(9)	1.382(10)	C(68)-C(69)	1.387(12)
C(10)-C(11)	1.383(10)	C(70)-C(40)#1	1.393(8)

C(10)-C(15)	1.394(9)	C(70)-C(71)	1.476(9)
C(11)-C(12)	1.383(10)	C(71)-C(72)	1.385(11)
C(12)-C(13)	1.362(12)	C(71)-C(76)	1.392(10)
C(13)-C(14)	1.353(12)	C(72)-C(73)	1.379(11)
₅ C(14)-C(15)	1.385(10)	C(73)-C(74)	1.388(13)
C(16)-C(18)	1.399(8)	C(74)-C(75)	1.361(14)
C(16)-C(17)	1.401(8)	C(75)-C(76)	1.408(11)
C(17)-C(25)	1.461(9)	C(77)-C(63)#4	1.388(8)
C(18)-C(19)	1.472(9)	C(77)-C(78)	1.477(9)
¹⁰ C(19)-C(20)	1.381(10)	C(78)-C(79)	1.351(11)
C(19)-C(24)	1.382(9)	C(78)-C(83)	1.353(12)
C(20)-C(21)	1.379(11)	C(79)-C(80)	1.431(14)
C(21)-C(22)	1.361(13)	C(80)-C(81)	1.328(18)
C(22)-C(23)	1.377(15)	C(81)-C(82)	1.298(19)
15 C(23)-C(24)	1.384(12)	C(82)-C(83)	1.408(15)
C(25)-C(26)	1.380(9)	C(84)-C(63)#4	1.397(8)
C(25)-C(30)	1.401(10)	C(84)-C(85)	1.480(9)
C(26)-C(27)	1.392(10)	C(85)-C(90A)	1.340(14)
C(27)-C(28)	1.338(12)	C(85)-C(86B)	1.36(3)
20 C(28)-C(29)	1.387(12)	C(85)-C(86A)	1.401(14)
C(29)-C(30)	1.387(11)	C(85)-C(90B)	1.47(4)
C(31)-C(32)	1.381(8)	C(88)-C(89B)	1.27(5)
C(31)-C(34)	1.480(8)	C(88)-C(87B)	1.28(4)
C(32)-C(33)	1.397(8)	C(88)-C(87A)	1.37(2)
25 C(32)-C(40)	1.486(8)	C(88)-C(89A)	1.37(2)
C(33)-C(48)	1.484(8)	C(86A)-C(87A)	1.406(18)
C(34)-C(39)	1.383(9)	C(89A)-C(90A)	1.394(17)
C(86B)-C(87B)	1.38(5)	C(61A)-C(62A)	1.368(14)
C(89B)-C(90B)	1.44(6)	C(58B)-C(59B)	1.38(10)
³⁰ C(58A)-C(59A)	1.394(14)	C(61B)-C(62B)	1.36(7)
N(5)-Ag(1)-N(2)	174.66(19)	C(31)-N(5)-Ag(1)	134.2(4)
N(1)-Ag(2)-N(3)	174.1(2)	N(6)-N(5)-Ag(1)	118.3(3)
N(1)-Ag(2)-Ag(3)	117.20(14)	C(33)-N(6)-N(5)	108.9(5)
³⁵ N(3)-Ag(2)-Ag(3)	60.65(14)	C(33)-N(6)-Ag(3)	127.8(4)
N(6)-Ag(3)-N(4)	172.5(2)	N(5)-N(6)-Ag(3)	123.3(3)
N(6)-Ag(3)-Ag(2)	118.90(14)	C(17)-N(7)-N(8)	109.0(5)

N(4)-	Ag(3)-Ag(2)	60.78(14)	C(17)-N(7)-Ag(5)	130.3(4)
N(9)-	Ag(4)-N(8)	172.1(2)	N(8)-N(7)-Ag(5)	120.4(4)
N(12))-Ag(5)-N(7)	177.66(19)	C(18)-N(8)-N(7)	108.1(5)
N(10))-Ag(6)-N(11)	170.9(2)	C(18)-N(8)-Ag(4)	130.4(4)
5 C(1)-	N(1)-N(2)	108.6(4)	N(7)-N(8)-Ag(4)	110.8(4)
C(1)-	N(1)-Ag(2)	127.4(4)	C(77)-N(9)-N(10)	108.6(5)
N(2)-	N(1)-Ag(2)	124.0(3)	C(77)-N(9)-Ag(4)	126.3(4)
C(3)-	N(2)-N(1)	108.0(4)	N(10)-N(9)-Ag(4)	123.2(4)
C(3)-	N(2)-Ag(1)	133.3(4)	C(84)-N(10)-N(9)	107.8(5)
10 N(1)-	N(2)-Ag(1)	117.8(3)	C(84)-N(10)-Ag(6)	128.7(4)
C(56))-N(3)-N(4)	108.6(5)	N(9)-N(10)-Ag(6)	123.2(4)
C(56))-N(3)-Ag(2)	133.8(4)	C(41)#1-N(11)-N(12)	108.1(5)
N(4)-	N(3)-Ag(2)	114.6(4)	C(41)#1-N(11)-Ag(6)	127.5(4)
C(54))-N(4)-N(3)	108.4(5)	N(12)-N(11)-Ag(6)	108.8(4)
15 C(54))-N(4)-Ag(3)	134.0(4)	C(70)-N(12)-N(11)	108.0(5)
N(3)-	N(4)-Ag(3)	113.5(4)	C(70)-N(12)-Ag(5)	130.5(4)
C(31))-N(5)-N(6)	107.1(5)	N(11)-N(12)-Ag(5)	121.3(4)

Symmetry transformations used to generate equivalent atoms:

²⁰ #1 x-1,y,z-1; #2 x+1,y,z+1; #3 -x+1,y+1/2,-z+3/2; #4 -x+1,y-1/2,-z+3/2

Fig. S4. Single crystal of CFA-2 after solvent removal.

Fig. S5. VTXRPD plots of CFA-3 under air.

Fig. S6. Comparison of XRPD patterns for CFA-2 model and CFA-2 sample after removal of the solvent.

Fig. S7. XRPD patterns of CFA-2: black line – calculated pattern, red – CFA-2 oxidized by oxygen in NMP, green – reduced by heating in DMF at 120 °C during 3-4 hours.

Fig. S8. IR spectra for 1 (black), 2 (red) and 3 (green).

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2013
```


Fig. S10. ¹³C NMR spectrum CDCl₃/MeOH– d_4 4:1 for 1.