Synthesis and structures of tridentate ketoiminate zinc complexes bearing trifluoromethyl substituents that act as L-lactide ring opening polymerization initiators

Nomaan M. Rezayee^a, Kimberly A. Gerling^a, Arnold L. Rheingold^b, Joseph M. Fritsch^{*a}

^aDepartment of Chemistry, Pepperdine University ^bDepartment of Chemistry, University of California, San Diego

Table of contents

SI Figures 1-10. ¹ H, ¹³ C, and ¹⁹ F NMR spectra of ketoimines 1 - 8	2-21
SI Figures 11-16. ¹ H, ¹³ C, and ¹⁹ F NMR spectra of zinc phenoxide complexes $1a - 6a$	22-33
SI Figures 17. ¹ H, ¹³ C, and ¹⁹ F NMR spectra of zinc amide complex 2b	34-35
SI Figure 18. ORTEP diagram of 2a	36
SI Figure 19. ¹ H NMR spectrum of isolated PLLA	37
SI Figure 20. { ¹ H} ¹ H NMR spectrum of isolated PLLA	38
SI Figure 21. Linear relationship between M_n and monomer/initiator ratio	39
SI Figure 22. PLA M_n versus percentage conversion	39
SI Figure 23. GPC-ELSD chromatograms of PLA isolated from double feed	40

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Supporting Information

¹⁹F NMR spectrum of **3**

SI Figure 4. NMR spectra of compound 3'.

¹H NMR spectrum of **3'**

220 200 180 160 140 120 100 80 60 40 Chemical Shift (ppm)

20 0

¹⁹F NMR spectrum of **3'**

SI Figure 5. NMR spectra of compound 4.

¹⁹F NMR spectrum of **4'**

SI Figure 8. NMR spectra of compound 6.

¹⁹F NMR spectrum of **6**

SI Figure 14. NMR spectra of compound 4a.

¹⁹F NMR spectrum of **5a**

SI Figure 16. NMR spectra of compound 6a.

¹⁹F NMR spectrum of **6a**

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

SI Figure 18. ORTEP diagram of the molecular structure of **2a** with thermal ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity.

Data on isolated Poly-lactic acid

SI Figure 19. 1H NMR spectrum of isolated PLLA from [L-lac]:[1a]=500 to 1, Table 4 entry 4

SI Figure 20. {1H}1H NMR spectrum of isolated PLLA from [L-lac]:[**1a**]=500 to 1, Table 4 entry 4

Inset from above {1H}1H NMR spectrum

SI Figure 21. Linear relationship observed between M_n and monomer/initiator ratio of PLA produced from the ROP of L-lactide by 1a in CH₂Cl₂.

SI Figure 22. PLA M_n versus percentage conversion for the ring opening polymerization of L-Lactide by 1a; [L-lactide]/[1a]₀ = 100, CDCl₃, ambient temperature. PDI values are provided in parentheses.

SI Figure 23. Chromatograms of polymeric materials isolated in double feed experiment with **1a**. Chromatogram of isolated PLLA after treatment of **1a** with 250 mg of L-lactide and 3 h of reaction time (solid line, M_n = 17.9 kDa, PDI= 1.27) and chromatogram of isolated PLLA after second addition of 250 mg of L-lactide and 3 additional hours of reaction time (dashed line, M_n = 30.1 kDa, PDI= 1.24).

