Supplementary Information

Photo-isomerisation of alkenyl complexes of platinum(II): structural, spectroscopic, kinetic, and computational investigations

Carmen R. Barone,^a Cecilia Coletti,^c Ruth J. McQuitty,^b Nicola J. Farrer,^b Giuseppe Lorusso,^a Luciana Maresca,^{*a} Alessandro Marrone,^c Giovanni Natile,^a Concetta Pacifico,^a Simon Parsons,^d Nazzareno Re,^c Peter J. Sadler,^b and Fraser J. White.^d

^a Dipartimento di Chimica, Università degli Studi "Aldo Moro" di Bari, Via E. Orabona 4, I-70125
Bari, Italy. E-mail: <u>luciana.maresca@uniba.it</u>
^b Department of Chemistry, University of Warwick, Coventry CV4 7AL, U. K.
^c Dipartimento di Farmacia, Università degli Studi "Gabriele d'Annunzio", Via dei Vestini 31, I-06100 Chieti, Italy.

^dSchool of Chemistry, The University of Edinburgh, King's Building, West Mains Road, Scotland, EH9 3JJ, U. K.

Figure S1. UV-Vis absorption spectrum of 87 μ M compound (*E*)-**2a** (solid line) and of 79 μ M (*E*)-**2b** (dotted line) in CDCl₃.

Figure S2. Photo-isomerisation of (*E*)-**2a** ($\lambda = 351$ nm). Top: plot of percentage of Z isomer (%Z) *versus* time of irradiation (s). Bottom: plot of $-\ln\{([Z]_{PSS}-[Z]_t)/[Z]_{PSS}\}$ against time (s).

Figure S3. The three independent molecules in the asymmetric unit of compound (E)-2a. The ellipsoids enclose 50% probability.

Figure S4. The single molecule in the asymmetric unit of compound (*E*)-**2b**. The ellipsoids enclose 30% probability.

Figure S5. The single molecule in the asymmetric unit of compound (*E*)-2c. The ellipsoids enclose 30% probability.

Figure S6. Experimental and calculated UV-Vis spectrum for (*E*)-2a.

Figure S7. HOMO and LUMO orbitals involved in the $\pi \rightarrow \pi^*$ transition at 277 nm (S₃) for (*E*)-2a.

Figure S8. Energy profile for the ground and the four lowest singlet excited state surface of (*E*)-2a, as a function of the dihedral angle ϕ around the C=C alkenyl double bond. (S₀ —, S₁ —, S₂ —, S₃ —, S₄ —)

Table S1. Crystallographic data

	(<i>E</i>)-2a	(Z)-2a	(E)- 2b	(<i>E</i>)-2c
Chemical formula	$C_{14}H_{23}ClN_2Pt$	C ₁₄ H ₂₃ ClN ₂ Pt	C ₁₅ H ₂₅ ClN ₂ OPt	$C_{14}H_{22}ClN_3O_2Pt$
M _r	449.88	449.88	479.91	494.88
Crystal system, space group	Orthorhombic, <i>Pbca</i>	Monoclinic, $P2_1/n$	Orthorhombic, $P2_12_12_1$	Monoclinic, C2/c
a, b, c (Å)	21.7511 (17), 11.4643 (9), 37.772 (3)	7.9854 (4), 20.2676 (10), 9.6517 (5)	10.0881 (6), 12.1859 (6), 13.5748 (6)	27.2807 (7), 8.1215 (2), 15.6844 (4)
α, β, γ (°)	90, 90, 90	90, 97.931 (3), 90	90, 90, 90	90, 97.426(2), 90
$V(\text{\AA}^3)$	9418.8 (13)	1547.14 (14)	1668.79 (15)	3445.89 (15)
Ζ	24	4	4	8
μ (mm ⁻¹)	9.10	9.23	8.57	8.31
T(K)	150	150	150	293
Crystal size (mm)	$0.90 \times 0.30 \times 0.14$	0.50 × 0.44 × 0.27	0.48 × 0.34 × 0.15	$\begin{array}{c} 0.17 \times 0.12 \times \\ 0.03 \end{array}$
Absorption correction	Integration + multiscan XPREP + SADABS	Multi-scan SADABS	Multi-scan SADABS	Multi-scan SADABS
T_{\min}, T_{\max}	0.020, 0.291	0.031, 0.080	0.14, 0.28	0.721, 1.00
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	135583, 11993, 10157	14968, 4319, 3576	19914, 4104, 3923	32586, 4290, 3364
No. of parameters	487	163	182	194
No. of restraints	0	0	0	0
R _{int}	0.065	0.047	0.034	0.061
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.681	0.714	0.680	0.668
$R[F^2 > 2\Box\sigma(F^2)],$ wR(F ²), S	0.031, 0.069, 1.08	0.053, 0.131, 1.13	0.018, 0.039, 1.00	0.047, 0.123, 1.02
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	3.18, -1.14	4.70, -3.49	1.35, -0.90	7.76, -0.870
Flack parameter*	-	-	-0.009 (6)	-

* H. D. Flack, Acta Cryst. A, 1983, 39, 876-881.

	(<i>E</i>)-2a (exp.)	B3LYP	BH-HLYP	PBE	PBE0
Pt1-N1	2.068(4)- 2.074(4) -2.072(4)	2.148	2.130	2.128	2.107
Pt1-N2	2.164(4)-2.185(4)- 2.180(4)	2.274	2.241	2.254	2.222
Pt1-Cl1	2.298(1)- 2.305(1)- 2.302(1)	2.313	2.302	2.298	2.284
Pt1-C8	1.984(4)-1.983(5)-1.977(4)	1.992	1.989	1.978	1.974
C8-C7	1.315(7)- 1.322(7) -1.330(6)	1.340	1.328	1.352	1.339
C7-C1	1.479(6)-1.481(7)- 1.475(6)	1.472	1.469	1.470	1.467
N1-Pt1-N2	84.8(2) - 84.4(2) - 84.5(2)	83.28	83.44	83.82	84.03
C8-Pt1-Cl1	90.4(1) - 92.2(1) -91.7(1)	90.16	89.77	90.60	90.17
N2-Pt1-Cl1	92.5(2) - 91.8(1) - 93.0(1)	91.96	92.00	91.52	91.85
C8-Pt1-N1	92.4(2) - 91.9(2) - 90.8(2)	94.59	94.76	94.04	93.96
C7-C8-Pt1	127.4(4) - 131.7(4) - 128.1(4)	127.34	127.43	127.40	127.13
C8-C7-C1	127.5(5) -124.4(5) - 127.1(4)	127.30	127.21	127.31	127.06
Α	49.7 - 86.1 - 89.8	78.0	82.2	77.0	78.2
В	25.8 - 5.8 - 23.2	9.5	30.6	4.0	10.2

Table S2. Comparison of the experimental and calculated (with B3LYP, BH-HLYP, PBE and PBE0 functionals) main geometrical parameters for complex (E)-**2a**.

Table S3. Pt…H_{ortho} distances and Mulliken atomic charges on Pt, Cl and H_{ortho} in CHCl₃ solution of (*E*) and (*Z*)-**2a-2d**. For (*Z*)-**2c** and (*Z*)-**2d** the relative energies of the two possible conformers **A** and **B** in Chart 2 are reported. Distances in Ångstrom, energies in kJ mol⁻¹.

Complex	Conf	Distance	Energy	Charges		
		Pt…H _{ortho}		Pt	Cl	Hortho
(E)- 2a		-	-	0.152	-0.326	0.138
(Z)-2a		2.738	-	0.143	-0.319	0.157
(E)- 2b			-	0.147	-0.329	0.142
(Z)-2b		2.779	-	0.140	-0.321	0.160
(E)-2c			-	0.169	-0.320	0.180 / 0.155
(Z)-2c	A	2.461	0.0	0.101	-0.293	0.226 / 0.159
	В	2.715	2.9	0.119	-0.302	0.195 / 0.179
(E)- 2d			-	0.155	-0.326	0.137 / 0.120
(Z)-2d	A	2.633	0.2	0.076	-0.298	0.197 / 0.134
	В	2.764	0.0	0.089	-0.298	0.175 / 0.197

Complex	Conf	Donor NBO	Acceptor NBO	E(2)
		π(Pt-Cl)	$\sigma^*(C-H_{ortho})$	3.1
(Z)-2a		d_{z^2} (Pt)	$\sigma^*(C-H_{ortho})$	4.3
		l.p. (Cl)	$\sigma^*(C-H_{ortho})$	2.9
(Z)- 2b		d_{z^2} (Pt)	$\sigma^*(C-H_{ortho})$	4.1
	Α	l.p. (Cl)	$\sigma^*(C-H_{ortho})$	3.0
(Z)-2c		$\pi(Pt-Cl)$	$\sigma^*(C-H_{ortho})$	3.3
	Α	d_{z^2} (Pt)	$\sigma^*(C-H_{ortho})$	13.9
(Z)-2c		$\pi(Pt-Cl)$	$\sigma^*(C-H_{ortho})$	3.9
	В	d_{z^2} (Pt)	$\sigma^*(C-H_{ortho})$	5.9
		l.p. (Cl)	$\sigma^*(C-H_{ortho})$	3.9
(Z)-2d		$\pi(Pt-Cl)$	$\sigma^*(C-H_{ortho})$	3.3
	Α	d_{z^2} (Pt)	$\sigma^*(C-H_{ortho})$	7.3
(Z)-2d		π(Pt-Cl)	$\sigma^*(C-H_{ortho})$	2.8
	В	d_{z^2} (Pt)	$\sigma^*(C-H_{ortho})$	4.3
		l.p. (Cl)	$\sigma^*(C-H_{ortho})$	2.5

Table S4. Natural bond analysis: summary of second order perturbation theory analysis of Fock matrix in NBO basis. l.p. = lone pair. E(2) = energy contribution (kJ mol⁻¹) to non-Lewis delocalization.

Energy	Intensity×100	Electronic tran	sitions	
309 nm	2.04	$H \rightarrow L+1$	\mathbf{S}_1	$(\pi \rightarrow d_{x2-y2}^{*})$
290 nm	0,02	H-1 → L+1	S_2	$(p_z(Cl) + d_{yz} \rightarrow d_{x2-y2}^*)$
286 nm	1.36	H-2 → L+1	S ₃	$(d_{z2} \rightarrow d_{x2-y2}^*)$
277 nm	41.2	$H \rightarrow L$	\mathbf{S}_4	$(\pi \rightarrow \pi^*)$
265 nm	0.53	H-4(3) → L+1	S_5	$(d_{xz} (p_x(Cl)+d_{xy}) \rightarrow d_{x2-y2}^*)$
260 nm	19.4	$H \rightarrow L+2$	S_6	$(\pi \rightarrow \pi^*_{\text{phen}})$
257 nm	0.47	H-1 → L	S_7	$(p_z(Cl) + d_{yz} \rightarrow \pi^*)$
254 nm	0.65	H-2 → L	S_8	$(d_{z2} \rightarrow \pi^*)$
244 nm	0.31	$H \rightarrow L+3$	S_9	$(\pi \rightarrow \sigma^*_{CH(tmeda)})$
241 nm	5.71	H-3 → L	${f S}_{10}$	$(p_x(Cl)+d_{xy} \rightarrow \pi^*)$
		H-4 \rightarrow L+1		$(d_{xz} (p_x(Cl)+d_{xy}) \rightarrow d_{x2-y2}^*)$
237 nm	0.66	$H \rightarrow L+4$	S ₁₁	$(\pi \rightarrow \sigma^*_{CN(tmeda)})$
236 nm	0.98	H-3 → L	S_{12}	$(p_x(Cl)+d_{xy} \rightarrow \pi^*)$
		H-3 → L +1	H-4 → L	$(p_x(Cl)+d_{xy} \rightarrow d_{x^2-y^2})$
				$d_{xz} (p_x(Cl) + d_{xy}) \rightarrow \pi^*)$
227 nm	0.30	H-1 → L+3	S ₁₃	$(p_z(Cl) + d_{yz} \rightarrow \sigma^*_{CH(tmeda)})$
225 nm	3.54	H-4 → L	S_{14}	$d_{xz} (p_x(Cl)+d_{xy}) \rightarrow \pi^*)$
222 nm	1.23	H-1 → L+4	S ₁₅	$(p_z(Cl) + d_{yz} \rightarrow \sigma^*_{CN(tmeda)})$
221 nm	1.81	H-2 → L+3	S ₁₆	$(d_{z2} \rightarrow \sigma^*_{CH(tmeda)})$
		H-1 → L+4		$(p_z(Cl) + d_{yz} \rightarrow \sigma^*_{CN(tmeda)})$
217 nm	8.30	H-5 → L	S ₁₇	$(\pi_{arom} \rightarrow \pi^*)$
216 nm	0.11	H-1→ L+2	S ₁₈	$(p_z(Cl) + d_{yz} \rightarrow \pi^*_{phen})$
214 nm	2.23	H-2 \rightarrow L+4	S ₁₉	$(d_{z2} \rightarrow \sigma^*_{CH(tmeda)})$
212 nm	2.21	H-2 \rightarrow L+2	S ₂₀	$(d_{z2} \rightarrow \pi^*_{phen})$

Table S5. Energies and nature of the contributing molecular orbitals for the twenty lowest transitions of (E)-2a.