Electronic Supplementary Material

A colorimetric detection of ${\rm Pb}^{2+}$ by using sodium thiosulfate and hexadecyl thimethyl ammonium bromide modified gold nanoparticles

Yujie Zhang, ^a Yumin Leng, ^a Lijing Miao, ^a Junwei Xin ^a and Aiguo Wu ^{*a}

^aKey Laboratory of Magnetic Materials and Devices, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China

*Corresponding author. Tel.: +86-574-86685039, Fax: +86-574-86685163, E-mail: <u>aiguo@nimte.ac.cn</u>

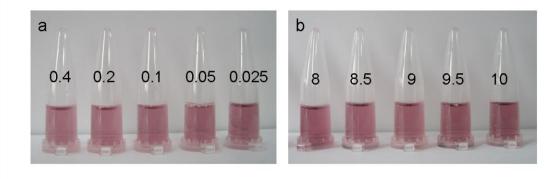


Fig. S1 (a) Effect of the concentration of $Na_2S_2O_3$ on the color of Au NPs solutions in the presence of $10~\mu M~Pb^{2+}$ ([$Na_2S_2O_3$]=0.4, 0.2, 0.1, 0.05, 0.025 M) (b) Effect of pH on the color of Au NPs solutions in the presence of $3~\mu M~Pb^{2+}$ (pH=8, 8.5, 9, 9.5, 10).

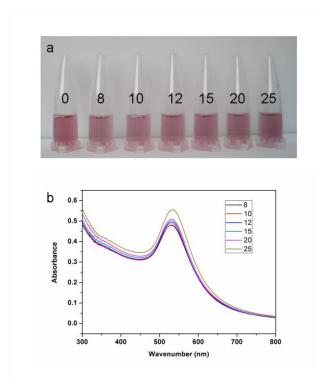


Fig. S2 (a) The corresponding photo images (b) UV-vis absorption spectra of samples with different concentrations of Pb^{2+} (8, 10, 12, 15, 20, 25 μM).

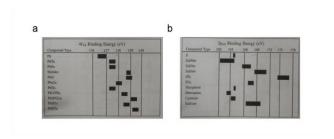


Fig. S3 XPS data of Pb (a) and S (b).

Fig. S4 The photo images of CTAB-Au solutions in the presence of Pb^{2+} with different concentrations (blank, 2 μ M, 4 μ M, sample, 6 μ M, 8 μ M).