Sensitivity of [Ru(phen)₂dppz]²⁺ Light Switch Emission to Ionic Strength, Temperature, and DNA Sequence and Conformation

Andrew W. McKinley, Per Lincoln and Eimer M. Tuite*

SUPPLEMENTARY INFORMATION

Δ		$\tau_L = 773$ (:	±29) ns	τ _s = 132 (±9) ns		
[Ru]/[Nu]	[Nu]/[Ru]	α, / %	f _L / %	α _s / %	f s / %	
0.24	4	86	97	14	3	
0.20	5	80	96	20	4	
0.16	6	76	95	24	5	
0.12	8	60	90	40	10	
0.06	17	57	89	43	11	
0.03	33	41	80	59	20	
0.01	100	21	61	79	39	

TABLE S1. Global SPC analysis for Δ-[Ru(phen)₂dppz]²⁺ with [poly(dA-dT)]₂. [Ru] = 25 μM. 10 mM NaCl/1 mM sodium cacodylate (pH 7); 25 °C: λ_{ex} = 337 nm; λ_{em} = 620 nm. χ^2 = 1.20 for the global fit.

Λ		$\tau_{L} = 297$	(±5) ns	τ _s = 37 (±2) ns	
[Ru]/[Nu]	[Nu]/[Ru]	α, / %	f_ / %	α _s / %	fs / %
0.24	4.2	58	92	42	8
0.20	5.0	60	92	40	8
0.16	6.3	52	90	48	10
0.12	8.0	44	86	56	14
0.06	16.7	31	78	69	22
0.03	33.3	21	68	79	32
0.01	100.0	11	50	<i>89</i>	50

TABLE S2. Global SPC analysis for Λ -[Ru(phen)₂dppz]²⁺ with [poly(dA-dT)]₂. [Ru] = 25 μ M. 10 mM NaCl/1 mM sodium cacodylate (pH 7); 25 °C: λ_{ex} = 337 nm; λ_{em} = 620 nm. χ^2 = 1.20 for the global fit.

Δ	[poly(dA-dT)] ₂				[poly(dA-dT)] ₂ [poly(dG-dC)] ₂			
[Nu]/[Ru]	τ / ns	α _L / %	τ _s / ns	α _s / %	<i>τ⊾</i> / ns	α, / %	τ _s / ns	α _s / %
2	464	57	68	43	174	35	54	65
4	700	67	143	33	241	39	71	61
8	791	62	144	38	260	67	64	33
12.5	756	56	129	44	254	73	61	27
25	739	42	132	58	256	77	76	23
50	737	26	135	74	248	78	67	22
100	727	18	137	82	255	80	90	20
τ _{average} (SD)	742 (30)		137 (6)		252 (7)		72 (10)	

TABLE S3. Time-resolved emission of Δ -[Ru(phen)₂dppz]²⁺ with alternating homo-polynucleotides. [Ru] = 20 μ M; 5 mM phosphate (pH 6.9); 25 °C; λ_{ex} = 440 nm; λ_{em} >540 nm. τ_i = emission lifetime; α_i = pre-exponential factor.

Λ		[poly(d	A-dT)]2			[poly(d	G-dC)]2	
[Nu]/[Ru]	τ / ns	α _L / %	τ _s / ns	α _s / %	<i>τ⊾</i> / ns	α _L / %	τ _s / ns	α _s / %
2	243	47	53	53	116	29	37	71
4	298	57	54	43	108	45	41	55
8	331	35	42	65	136	13	48	87
12.5	352	25	44	75	139	9	42	91
25	325	18	38	82	164	5	40	95
50	327	10	36	90	165	4	41	96
100	329	9	36	91	168	3	39	97
$\tau_{average}$ (SD)	327 (17)		42 (7)		147 (23)		42 (3)	

TABLE S4. Time-resolved emission of Λ -[Ru(phen)₂dppz]²⁺ with alternating homo-polynucleotides. [Ru] = 20 μ M; 5 mM phosphate (pH 6.9); 25 °C; λ_{ex} = 440 nm; λ_{em} >540 nm. τ_i = emission lifetime; α_i = pre-exponential factor.

P/D = 50						
[NaCl]/mM	τ ₁ / ns	α1/%	τ ₂ / ns	α2 / %	I/Io	pred I(τ)/I ₀
0	776	23	138	77	1.00	1.00
7	825	24	143	76	1.01	1.06
13	791	26	133	74	1.10	1.07
27	809	28	138	72	1.16	1.15
50	801	31	136	69	1.22	1.21
82	837	33	143	67	1.30	1.29
146	829	37	143	63	1.37	1.38
208	827	44	134	56	1.27	1.54
549	814	50	135	50	1.06	1.67
1222	796	58	137	42	0.64	1.82
	811 (19)		138 (4)			

P/D = 6

[NaCl]/mM	τ ₁ / ns	α1/%	τ ₂ / ns	α2 / %	I/Io	pred I(τ)/I₀
0	860	64	171	36	-	1.00
7	885	64	194	36	-	1.04
13	876	65	178	35	-	1.03
26	869	67	171	33	-	1.04
49	880	68	187	32	-	1.08
82	852	71	156	29	-	1.06
145	873	69	172	31	-	1.07
207	859	73	171	27	-	1.09
547	841	72	188	28	-	1.07
1219	832	71	175	29	-	1.04
	863 (17)		176 (11)			

TABLE S5: Effect of added NaCl on the emission lifetimes of Δ -[Ru(phen)₂dppz]²⁺ with [poly(dA-dT)]₂. [Ru] = 20 μ M; 5 mM phosphate (pH 6.9); 25 °C; λ_{ex} = 440 nm; λ_{em} >540 nm. τ_i = emission lifetime; α_i = pre-exponential factor.

P/D = 50						
[MgCl ₂]/mM	τ ₁ / ns	α1/%	τ ₂ / ns	α₂ / %	I/Io	pred I(τ)/I₀
0.000	799	17	141	141	1.00	1.00
0.005	693	21	126	126	1.00	0.97
0.013	751	19	140	140	0.95	1.03
0.024	694	19	124	124	0.95	0.93
0.05	749	19	124	124	0.94	0.96
0.07	712	21	122	122	0.95	0.99
0.14	718	24	122	122	0.96	1.06
1.35	742	38	136	136	1.25	1.46
2.32	758	40	112	112	1.34	1.49
4.70	824	39	146	146	1.36	1.63
9.86	743	44	113	113	1.39	1.56
22.6	753	42	106	106	1.39	1.52
	745 (39)		126 (13)			

P/D = 6

[MgCl ₂]/mM	τ ₁ / ns	α1/%	τ ₂ / ns	α2 / %	I/I ₀	pred I(τ)/I ₀
0.0	831	65	155	35	-	1.00
0.3	851	70	176	30	-	1.09
0.5	846	70	152	30	-	1.07
1.1	896	67	198	33	-	1.11
1.8	878	70	181	30	-	1.12
3.1	883	68	186	32	-	1.11
5.2	876	70	177	30	-	1.12
10.4	915	69	200	31	-	1.16
20.5	884	69	196	31	-	1.13
49.7	878	68	207	32	-	1.11
94.7	917	67	181	33	-	1.12
173.0	821	71	151	29	-	1.05
294.9	802	71	146	29	-	1.02
404.6	817	68	197	32	-	1.04
	863 (17)		179 (20)			

TABLE S6: Effect of added MgCl₂ on the emission lifetimes of Δ -[Ru(phen)₂dppz]²⁺ with [poly(dA-dT)]₂. [Ru] = 20 μ M; 5 mM phosphate (pH 6.9); 25 °C; λ_{ex} = 440 nm; λ_{em} >540 nm. τ_i = emission lifetime; α_i = pre-exponential factor.

		Δ-[Ru(phe	n) ₂ dppz] ²⁺			Λ-[Ru(phe	n) ₂ dppz] ²⁺	
T/°C	τ ₁ / ns	α1/%	τ ₂ / ns	α2/%	τ ₁ / ns	α1/%	τ ₂ / ns	α2 / %
14	274	70	80	30	483	1	41	99
26	241	77	61	23	145	1	42	99
32	243	66	82	34	138	1	41	99
42	223	60	79	40	155	1	45	99
52	178	67	63	33	144	1	41	99
65	130	69	29	31	111	2	37	98

TABLE S7: Effect of temperature on the emission lifetimes of Δ - and Λ -[Ru(phen)₂dppz]²⁺ with [poly(dG-dC)]₂. [Nu]/[Ru] = 50; [Ru] = 5 μ M; 5 mM phosphate (pH 6.9); λ_{ex} = 440 nm; λ_{em} >540 nm.

DNA Type	Relative I _f (%)
[poly(dT)]-[poly(dA)]•[poly(dT)]	197
[poly(dA)]•[poly(dT)]	147
[poly(dA-dT)]•[poly(dA-dT)]	100
C. perfringens (30% GC)	117
T4 DNA (35% GC)	76
calf thymus (42% GC)	72
<i>E. coli</i> (50% GC)	69
[poly(dA-dC)]•[poly(dG-dT)]	59
poly(dA-dG)]•[poly(dC-dT)]	38
M. lysodeikticus (72% GC)	46
[poly(dG-dC)]•[poly(dG-dC)]	17
[poly(dG)]•[poly(dC)]	14

TABLE S8. Emission intensity of Δ -[Ru(phen)₂dppz]²⁺ with various nucleic acids at low binding ratio, relative to that with [poly(dA-dT)]₂. [Ru] = 20 μ M; [Nu]/[Ru] = 50; 5 mM phosphate (pH 6.9); 25 °C; λ_{ex} = 440 nm; λ_{ex} = 615 nm.

Nucleic Acid	λ _{max}	Molar Extinction Coefficient per base (M ⁻¹ cm ⁻¹)
[poly(dA)]•[poly(dT)]	260	6,000
[poly(dA-dT)]•[poly(dA-dT)]	262	6,700
[poly(dG-dC)]•[poly(dG-dC)]	254	8,400
[poly(dG)]•[poly(dC)]	253	7,400
[poly(dI-dC)]•[poly(dI-dC)]	251	6,900
[poly(dI)]●[poly(dC)]	245	5,300
[poly(dA-dC)]•[poly(dG-dT)]	258	6,500
poly(dA-dG)]•[poly(dC-dT)]	260	5,700
[poly(dA)]	257	8,600
[poly(dT)]	264	8,520
[poly(rA)]●[poly(rU)]	254	6,300
[poly(rA)]	257	9,800
calf thymus (45% GC)	260	6,400
C. perfringens (27% GC)	260	6,200
<i>E. coli</i> (50% GC)	260	6,565
M. lysodeikticus (72% GC)	260	6,950
T2 DNA (35% GC)	260	6,600
T4 DNA (35% GC)	260	6,600

TABLE S9. Extinction Coefficients of Nucleic Acids.

REFERENCES: GE Healthcare Catalogue Edn 1 2008/2009, Technical Appendix; Wells, R. D. et al. J. Mol. Biol. 54, 465-497 (1970); G. Felsenfeld and S. Z. Hirschmann, J. Mol. Biol. 13, 407-427 (1965); R. C. Warner J. Biol. Chem. 229, 711-724 (1957); J. T. O. Kirk Biochem. J. 105,673 (1967); W. Muller and D. M. Crothers, Eur. J. Biochem. 54, 267-277 (1975).

FIGURE S1. Effect of ionic strength on the emission intensity of Δ -[Ru(phen)₂dppz]²⁺ bound to [poly(dA-dT)]₂. Aliquots of [Ru(phen)₂dppz]²⁺ were added to [poly(dA-dT)]₂ (10 μ M) in 5 mM phosphate (pH 6.9) buffer and equilibrated for 10 min before the emission intensity was recorded with λ_{ex} = 440 nm/ λ_{em} = 615 nm (25 °C).

FIGURE S2: Steady-state emission of Δ - and Λ -[Ru(phen)₂dppz]²⁺ with T4- and CT-DNA as a function of binding ratio. Aliquots of [Ru(phen)₂dppz]²⁺ were added to DNA (7.5 μ M) in 5 mM phosphate (pH 6.9) buffer and equilibrated for 10 min before the emission intensity was recorded with λ_{ex} =480 nm/ λ_{em} = 618 nm (30 °C). Emission increases as the complex is added until it plateaus when binding sites saturate close to 0.20-0.25 ruthenium complexes per nucleotide.

FIGURE S3: Cartoons depicting potential intercalation geometries for Δ -[Ru(phen)₂dppz]²⁺ bound to duplex [poly(dA)]•[poly(dT)], and triplex [poly(dT)]*[poly(dA)]•[poly(dT)]. (a) Symmetric and (b) canted intercalation with duplex, and (c) symmetric and (d) canted intercalation with triplex. The twist angle at the AT step is shown as 36 °C in all cases for simplicity.