Supplementary data to accompany:

Monomer, dimer or cyclic helicate? Coordination diversity with hard-soft $\boldsymbol{P}, \boldsymbol{N}$-donor ligands?

Edwin C. Constable,* Nik Hostettler, Catherine E. Housecroft,* Niamh Murray, Jonas Schönle, Umut Soydaner, Roché M. Walliser and Jennifer A. Zampese

Figure S1a. ESI MS of an MeOH solution of [Cu(1)][PF6] showing $m / z 748.2$ assigned to $[\mathrm{Cu}(\mathbf{1})]^{+}$. The peak envelope at $\mathrm{m} / \mathrm{z} 797.1$ is assigned to $[\mathrm{Cu}(1)(\mathrm{MeOH})(\mathrm{OH})]^{+}$, oxidation occurring in the mass spectrometer.

Fig. 1b ESI MS of a solution of $[\mathrm{Cu}(1)]\left[\mathrm{PF}_{6}\right]$ in a $1: 1$ mixture of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; peak assignments: $m / z 740.2[\mathbf{1}+20+\mathrm{Na}]^{+}, 756.2[\mathbf{1}+20+\mathrm{K}]^{+}, 748.2[\mathrm{Cu}(\mathbf{1})]^{+}$, $770.1[\mathrm{Cu}(\mathbf{1})-\mathrm{H}+\mathrm{Na}]^{+}$. The peak at $m / z 792.1$ is tentatively assigned to $[\mathrm{Cu}(\mathbf{1})-$ $2 \mathrm{H}+2 \mathrm{Na}]^{+}$.

Figure S2. ESI MS of an MeCN solution of $[\mathrm{Cu}(2)]\left[\mathrm{PF}_{6}\right]: m / z 747.2$ corresponds to $[\mathrm{Cu}(2)]^{+}$and $m / z 763.1$ to $[\mathrm{Cu}(2+0)]^{+}$.

Figure S3 ESI MS of a MeOH solution of $[\mathrm{Cu}(3)]\left[\mathrm{PF}_{6}\right]: m / z 715.2$ corresponds to $[\mathrm{Cu}(3)]^{+}$.

Crystallographic data for $\mathbf{2}\left\{\left[\mathrm{Cu}_{2}(3)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}\right\} \cdot \mathrm{C}_{5} \mathrm{H}_{12} \cdot \mathbf{5} \mathrm{H}_{2} \mathrm{O}$

$\mathrm{C}_{181} \mathrm{H}_{158} \mathrm{Cu}_{4} \mathrm{~F}_{24} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{P}_{12}, M=3607.02$, yellow block, monoclinic, space group $P 2_{1} / c, a=12.9676(14), \quad b=47.180(5), c=18.0286(15) \AA \AA, \beta=128.169(5)^{\circ}, U=$ $8671.8(15) \AA^{3}, Z=2, D_{c}=1.378 \mathrm{Mg} \mathrm{m}^{-3}, \mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=0.677 \mathrm{~mm}^{-1}, T=123 \mathrm{~K}$. Total 70538 reflections, 19083 unique, $R_{\text {int }}=0.0600$. Refinement of 12947 reflections (1119 parameters) with $I>2 \sigma(I)$ converged at final $R 1=0.0831(R 1$ all data $=$ $0.1296), w R 2=0.2258(w R 2$ all data $=0.2623)$, gof $=1.160$. CCDC 907594 .

C9A

Fig. S4 The structure of the $\left[\mathrm{Cu}_{2}(3)_{2}\right]^{2+}$ cation in $2\left\{\left[\mathrm{Cu}_{2}(3)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}\right\} \cdot \mathrm{C}_{5} \mathrm{H}_{12} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (ellipsoids plotted at 40\% probability level and H atoms omitted). Selected bond parameters: $\mathrm{Cu} 1-\mathrm{N} 1 \mathrm{~A}=2.119(3), \mathrm{Cu} 1-\mathrm{N} 1 \mathrm{~B}=2.120(4), \mathrm{Cu} 1-\mathrm{P} 1 \mathrm{~A}=2.2441(9)$, $\mathrm{Cu} 1-\mathrm{P} 1 \mathrm{~B}=2.2442(9), \mathrm{Cu} 2-\mathrm{N} 2 \mathrm{~A}=2.089(3), \mathrm{Cu} 2-\mathrm{N} 2 \mathrm{~B}=2.138(3), \mathrm{Cu} 2-\mathrm{P} 2 \mathrm{~B}=$ 2.2332(9), Cu2-P2A = 2.2531(9) Å; N1A-Cu1-N1B = 140.15(12), N1A-Cu1-P1A = 83.36(8), N1B-Cu1-P1A = 114.38(9), N1A-Cu1-P1B = 115.00(8), N1B-Cu1-P1B = 83.28(8), $\mathrm{P} 1 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{P} 1 \mathrm{~B}=127.51(4), \mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 2-\mathrm{N} 2 \mathrm{~B}=140.74(12), \mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 2-\mathrm{P} 2 \mathrm{~B}$ $=119.53(9), \mathrm{N} 2 \mathrm{~B}-\mathrm{Cu} 2-\mathrm{P} 2 \mathrm{~B}=81.96(8), \mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 2-\mathrm{P} 2 \mathrm{~A}=83.69(8), \mathrm{N} 2 \mathrm{~B}-\mathrm{Cu} 2-\mathrm{P} 2 \mathrm{~A}=$ 110.29(8), P2B-Cu2-P2A = 127.07(4).

