Electronic Supplementary Information for

Nuclease and anti-proliferative activities of copper(II) complexes of N₃O tripodal ligands involving a sterically hindered phenolate

Nathalie Berthet, Véronique Frachet-Martel, Fabien Michel, Christian Philouze, Sylvain Hamman, Xavier Ronot, and Fabrice Thomas

Fig. S1 Evolution of the UV-Vis spectra as a function of pH of a 0.23 mM solution of **3** in a water:DMF 90:10 mixture ([NaClO₄] = 0.1 M): T = 298 K, l = 1.000 cm. Arrows indicate spectral changes upon increase of the pH from 3.63 to 7.77.

Fig. S2 Evolution of the UV-Vis spectra as a function of pH of a 0.3 mM solution of **4** in a water:DMF 90:10 mixture ([NaClO₄] = 0.1 M): T = 298 K, l = 1.000 cm. Arrows indicate spectral changes upon increase of the pH from 3.38 to 7.64.

Fig. S3 Evolution of the UV-Vis spectra as a function of pH of a 0.23 mM solution of **6** in a water:DMF 90:10 mixture ([NaClO₄] = 0.1 M): T = 298 K, l = 1.000 cm. Arrows indicate spectral changes upon increase of the pH from 3.85 to 8.18.

Fig. S4 Cyclic voltammetry curve of a 0.5 mM solution (+ 0.1 M NaClO₄) of **1** in a water:DMF 90:10 mixture at pH 3.7. Scan rate = 0.1 V/s. Potential are given *vs.* the SCE reference.

Fig. S5 Cyclic voltammetry curve of a 0.5 mM solution (+ 0.1 M NaClO₄) of **2** in a water:DMF 90:10 mixture at pH 3.7. Scan rate = 0.1 V/s. Potential are given *vs.* the SCE reference.

Fig. S6 Cyclic voltammetry curve of a 0.5 mM solution (+ 0.1 M NaClO₄) of **3** in a water:DMF 90:10 mixture at pH 3.3. Scan rate = 0.1 V/s (solid line: anodic scan, dotted line: cathodic scan). Potential are given *vs.* the SCE reference.

Fig. S7 Cyclic voltammetry curve of a 0.5 mM solution (+ 0.1 M NaClO₄) of **4** in a water:DMF 90:10 mixture at pH 3.5. Scan rate = 0.1 V/s. Potential are given *vs.* the SCE reference.

Fig. S8 Cyclic voltammetry curve of a 0.5 mM solution (+ 0.1 M NaClO₄) of **4** in a water:DMF 90:10 mixture at pH 7.3. Scan rate = 0.1 V/s. Potential are given *vs.* the SCE reference.

Fig. S9 Cyclic voltammetry curve of a 0.5 mM solution (+ 0.1 M NaClO₄) of **5** in a water:DMF 90:10 mixture at pH 3.5. Scan rate = 0.1 V/s. Potential are given *vs.* the SCE reference.

Fig. S10 Cyclic voltammetry curve of a 0.5 mM solution (+ 0.05 M Tris buffer containing 0.02 M NaCl) of **5** in a water:DMF 90:10 mixture at pH = 7.3. Scan rate = 0.1 V/s. Potential are given *vs.* the SCE reference.

Fig. S11 Cyclic voltammetry curve of a 0.5 mM solution (+ 0.1 M NaClO₄) of **6** in a water:DMF 90:10 mixture at pH 3.5. Scan rate = 0.1 V/s. Potential are given *vs.* the SCE reference.

Fig. S12 Cyclic voltammetry curve of a 0.5 mM solution (+ 0.1 M NaClO₄) of **6** in a water:DMF 90:10 mixture at pH 7.3. Scan rate = 0.1 V/s (solid line: anodic scan, dotted line: cathodic scan). Potential are given *vs*. the SCE reference.

Fig. S13 Plot of [DNA]/(ϵ_a - ϵ_f) as a function of [DNA] for 1

Fig. S14 Plot of [DNA]/ $(\epsilon_a - \epsilon_f)$ as a function of [DNA] for 3

Fig. S15 ESI-MS spectra of $\mathbf{1}^{2+}$ in water:DMF 90:10 medium: experimental spectrum (top) and simulation by considering the formula $C_{20}H_{20}CuN_3O_2$ (($\mathbf{1}^{2+})_{0.5}$, bottom).

Fig. S16 ESI-MS spectra of 2^+ in water:DMF 90:10 medium: experimental spectrum (top) and simulation by considering the formula $C_{24}H_{28}CuN_3O_2$ (2^+ -H-CH₃CN-ClO₄, bottom).

Fig. S17 ESI-MS spectra of $\mathbf{3}^+$ in water:DMF 90:10 medium: experimental spectrum (top) and simulation by considering the formula $C_{24}H_{28}CuN_3O_2$ ($\mathbf{3}^+$ -H-CH₃CN-ClO₄, bottom).

Fig. S18 ESI-MS spectra of 4^+ in water:DMF 90:10 medium: experimental spectrum (top) and simulation by considering the formula $C_{25}H_{30}CuN_3O_2$ (4^+ -H-CH₃CN-ClO₄, bottom).

Fig. S19 ESI-MS spectra of 5^+ in water:DMF 90:10 medium: experimental spectrum (top) and simulation by considering the formula $C_{24}H_{27}CuFN_3O$ (5^+ -H-CH₃CN-ClO₄, bottom).

Fig. S20 ESI-MS spectra of 6^+ in water:DMF 90:10 medium: experimental spectrum (top) and simulations by considering the formula $C_{24}H_{27}CuFN_3O$ (6^+ -DMF, bottom) and $C_{24}H_{28}CuFN_3O$ (6^+ +H-DMF, center).*

*: Presence of the copper(I) form of the complex results from reduction of 6^+ in the gas phase. This is confirmed by the UV/Vis spectra of the sample before and after ESI-MS experiment, which systematically show the phenolate-to-copper(II) charge transfer band. This attests that reduction does not occur in solution, but in the gas phase. It is noteworthy that it is only in the case of 6^+ that a significant amount of Cu(I) species is produced in the gas phase. This fact correlates nicely with the solution reduction potential of 6^+ , which is the highest in the series. Such behaviour has been previously reported for some copper complexes (see L. Gianelli, V. Amendola, L. Fabbrizzi, P. Pallavicini, G. G. Mellerio, *Rapid Commun. Mass Spectrom.* **2001**, *15*, 2347).

Fig. S21 X-Band EPR spectrum of 0.5 mM solutions of 6^+ generated *in situ* in DMF. The black line represents the experimental spectrum, the red line a simulation using parameters given in the text. T = 100 K, microwave frequency 9.44 GHz, power 10 mW, modulation frequency 100 KHz, amplitude 0.3 mT.

Fig. S22 UV-Vis titration of a 0.83 mM solution of 6L in DMF by $Cu(ClO_4)_2 \cdot 6 H_2O$. Blue line: Before addition of copper; Red line: After 1 molar equivalent of copper added; Green line: After 1.5 molar equivalent of copper added. T = 298 K, l = 1.000 cm.

Figure S23 Ratio of nicked circular (red) and supercoiled (black) form of DNA as a function of time from agarose gel electrophoresis (and best fit using the rate constants given in the text). Supercoiled ϕ X174 DNA (20 μ M base pairs) was incubated for different times at 37°C with 300 μ M of the copper complexes in a phosphate buffer 10 mM pH 7.2 (+ 10 % DMF): (a) **4**⁺, (b) **5**⁺, (c) **6**⁺.