Electronic Supplementary Information

New insight into the role of a base in the mechanism of imine transfer hydrogenation on a Ru(II) half-sandwich complex

Marek Kuzma,*^a Jiří Václavík,^b Petr Novák,^a Jan Přech,^b Jakub Januščák,^b Jaroslav Červený,^a Jan Pecháček,^b Petr Šot,^b Beáta Vilhanová,^b Václav Matoušek,^b Iryna I. Goncharova,^c Marie Urbanová,^d and Petr Kačer^b

^a Laboratory of Molecular Structure Characterization, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague 4, Czech Republic. ^b Department of Organic Technology, Institute of Chemical Technology, Technická 5, 166 28, Prague 6, Czech Republic (ICT

Prague)

^c Department of Analytical Chemistry, ICT Prague

^d Department of Physics and Measurements, ICT Prague

Contents:

- 1. NMR spectrum of **1** and ${}^{1}J_{C-H}$ coupling constants of *p*-cymene
- 2. ESI⁺-FT-ICR MS spectra
- 3. Additional assignment of VCD signal
- 4. FT-IR spectra within $4000-2000 \text{ cm}^{-1}$

1) <u>NMR data</u>

Fig. S1 ¹H spectrum of [RuCl(η^6 -*p*-cymene)TsDPEN] (1) in CD₃CN showing the aromatic signals of *p*-cymene.

Table S1 Direct ${}^{1}J_{C-H}$ coupling constants of aromatic C–Hs in *p*-cymene.

¹ Ј _{С-Н} [Нz]	
RuCl(p-cym)TsDPEN] ^a	RuH(p-cym)TsDPEN] ^a
176	169
175	171
175	172
179	171
a	

 p^{a} *p*-cym = η^{6} -*p*-cymene.

2) <u>ESI⁺-FT-ICR MS spectra</u>

2.1 Additional measurement with TEA

Fig. S2 ESI⁺-FT-ICR MS spectrum of **1** in presence of HCOOH and TEA after a 1000-fold dilution with CH_3CN .

2.1 Measurement with diisopropylethylamine

Fig. S3 Details of ESI⁺-FT-ICR MS spectrum of **1** in presence of HCOOH and diisopropylethylamine.

2.2 Measurement with 1,4-diazabicyclo[2.2.2]octane (DABCO)

Fig. S4 Details of ESI⁺-FT-ICR MS spectrum of **1** in presence of HCOOH and 1,4-diazabicyclo[2.2.2]octane (DABCO).

3) Additional assignment of VCD signal

This spectral assignment complements the main text of the article and relates to Fig. 4. In the IR absorption spectrum within 1550–1750 cm⁻¹, vibrations of the formate anion, formic acid and protonated piperidine emerged when the HCOOH/base mixture was added to **1** in DMSO-*d*₆. The broad bands were a result of an ongoing reaction in the mixture during which the amount of formic acid, formate anion and protonated species were changing. In the IR absorption spectrum of **1**, the bands in the range of 1610–1430 cm⁻¹ were assigned to the C=C vibrations of the aromatic rings. The corresponding signals were also present in VCD spectra within 1550–1430 cm⁻¹. In the samples containing **1** together with the HCOOH/TEA and HCOOH/piperidine mixtures, no significant changes of these bands were observed.

An absorption band at 1385 cm⁻¹ in the spectrum of **1** was assigned to a combined deformation vibration of CH₃ groups. The increase of the signal upon the addition of the HCOOH/base mixture was accompanied by a new band which appeared at 1329 cm⁻¹ and 1333 cm⁻¹ for piperidine and TEA, respectively, representing deformation vibrations of the CH₂ and CH₃ groups of the bases.

4) <u>FT-IR spectra within 4000–2000 cm⁻¹</u>

Fig. S5 FT-IR spectra of 1 and 1 + HCOOH/TEA.