Electronic Supporting Information

Anionic sulfonated and carboxylated PPI dendrimers with EDA core: synthesis and characterization as selective metal complexing agents Sandra García-Gallego,^[a] Michela Cangiotti,^[b] Luigi Fiorani,^[b] Alberto Fattori,^[b] M^a Ángeles Muñoz-Fernández,^{*[c]} Rafael Gomez,^{*[a]} M^a Francesca Ottaviani^{*[b]} and F. Javier de la Mata.^{*[a]}

- [a] S. García-Gallego, Dr. R. Gómez, Dr. F. J. De la Mata Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares (Spain). Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain. E-mail: javier.delamata@uah.es
- [b] Dr. M. Cangiotti, L. Fiorani, A. Fattori, Dr. M. F. OttavianiDepartment of Earth, Life and Environment Sciences, 61029 Urbino (Italy).E-mail: maria.ottaviani@uniurb.it
- [c] Dr. M. A. Muñoz-Fernández
 Laboratorio de Inmunobiología Molecular, Hospital General Universitario
 Gregorio Marañón, Madrid (Spain). Networking Research Center on
 Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
 E-mail: mmunoz.hgugm@salud.madrid.org

Table of Contents

Page Number

• EPR spectra

Figure S1. Experimental EPR spectra of carboxylate dendrimers 11, 13 and 15 at 298 K, with increasing
copper concentration
Figure S2. Comparative experimental EPR spectra at room and low temperature of carboxylate 11, 13
and 15 and sulfonate 7, 8 and 9 dendrimers, with increasing copper concentration
Figure S3. Experimental EPR spectra of carboxylate dendrimers 11, 13 and 15, at 298 K and 150 K, with
increasing copper concentration
Figure S4. Experimental and computed EPR spectra of carboxylate dendrimer G3C (15), at 298 K and
150 K
Figure S5. Experimental and computed EPR spectra of carboxylate dendrimers G1C (11) and G3C (15),
at 298 K
Figure S6. II Signal in experimental and computed EPR spectra of carboxylate dendrimer G2C (13) at
298 and 150 K
Figure S7. Experimental EPR spectra of sulfonate dendrimers 11, 13 and 15, at 298 K and 150 K, at
increasing copper concentration

• NMR spectra

Figure S8. ¹ H- NMR spectrum of EDA- <i>dendr</i> -(SO ₃ Na) ₈ (7) in D ₂ O	
Figure S9. ¹³ C NMR spectrum of EDA- <i>dendr</i> - $(SO_3Na)_8$ (7) in D ₂ O	S8
Figure S10. ¹ H- ¹³ C-{HMQC} NMR spectrum of EDA- <i>dendr</i> -(SO ₃ Na) ₈ (7) in D_2O	S9
Figure S11. NOESY ¹ H-NMR spectrum of EDA- <i>dendr</i> -(SO ₃ Na) ₈ (7) in D ₂ O	
Figure S12. ¹ H NMR spectrum of EDA- <i>dendr</i> -(SO ₃ Na) ₁₆ (8) in D ₂ O	S10
Figure S13. ¹³ C NMR spectrum of EDA- <i>dendr</i> - $(SO_3Na)_{16}$ (8) in D ₂ O	S10
Figure S14. TOCSY NMR spectrum of EDA- <i>dendr</i> -(SO ₃ Na) ₁₆ (8) in D ₂ O	S10
Figure S15. ¹ H NMR spectrum of EDA- <i>dendr</i> -(SO ₃ Na) ₃₂ (9) in D ₂ O	S11
Figure S16. ¹ H- ¹³ C-{HMQC} NMR spectrum of EDA- <i>dendr</i> -(SO ₃ Na) ₃₂ (9) in D ₂ O	S11
Figure S17. ¹ H NMR spectrum of EDA- <i>dendr</i> -(CO ₂ Me) ₈ (10) in CDCl ₃ .	S12
Figure S18. ¹³ C NMR spectrum of EDA- <i>dendr</i> - $(CO_2Me)_8$ (10) in CDCl ₃	S12
Figure S19. ¹ H- ¹³ C-{HMQC} NMR spectrum of EDA- <i>dendr</i> -(CO_2Me) ₈ (10) in CDCl ₃	S13
Figure S20. NOESY ¹ H-NMR spectrum of EDA- <i>dendr</i> -(CO ₂ Me) ₈ (10) in CDCl ₃	S13

Figure S21. ¹ H NMR spectrum of EDA- <i>dendr</i> -(CO ₂ Na) ₈ (11) in D ₂ O	.S14
Figure S22. ¹³ C NMR spectrum of EDA- <i>dendr</i> -(CO_2Na) ₈ (11) in D ₂ O	S14
Figure S23. ¹ H- ¹³ C-{HSQC} NMR spectrum of EDA- <i>dendr</i> -(CO_2Na) ₈ (11) in D ₂ O	S14
Figure S24. TOCSY ¹ H-NMR spectrum of EDA- <i>dendr</i> -(CO ₂ Na) ₈ (11) in D ₂ O	S15
Figure S25. ROESY NMR spectrum of EDA- <i>dendr</i> -(CO ₂ Na) ₈ (11) in D ₂ O	.S15
Figure S26. ¹ H NMR spectrum of EDA- <i>dendr</i> - $(CO_2Me)_{16}$ (12) in CDCl ₃	.S16
Figure S27. ¹³ C NMR spectrum of EDA- <i>dendr</i> - $(CO_2Me)_{16}$ (12) in CDCl ₃	.S16
Figure S28. ¹ H NMR spectrum of EDA- <i>dendr</i> -(CO ₂ Na) ₁₆ (13) in D ₂ O	.816
Figure S29. ¹ H NMR spectrum of EDA- <i>dendr</i> -(CO ₂ Me) ₃₂ (14) in CDCl ₃	S17
Figure S30. ¹ H NMR spectrum of EDA- <i>dendr</i> -(CO ₂ Na) ₃₂ (15) in D ₂ O	.S17

• UV-Vis spectra

Figure S31. UV-Vis spectra of copper titration of dendrimer EDA- <i>dendr</i> -(CO ₂ Na) ₁₆ (13)	518
Figure S32. UV-Vis spectra of copper titration of dendrimer EDA- <i>dendr</i> -(CO ₂ Na) ₃₂ (15)	518

• Potentiometric titration study

• EPR spectra

Figure S1. Experimental EPR spectra of carboxylate dendrimers 11, 13 and 15 at 298 K, with increasing copper concentration (0.0025-0.015 M).

Figure S2. Comparative experimental EPR spectra at room and low temperature of carboxylate 11, 13 and 15 and sulfonate 7, 8 and 9 dendrimers, with increasing copper concentration (0.0025-0.015 M).

Figure S3. Experimental EPR spectra of carboxylate dendrimers **11**, **13** and **15**, at 298 K (left) and 150 K (right), with increasing copper concentration (0.025-0.15M).

Figure S4. Experimental (black) and computed (grey) EPR spectra of carboxylate dendrimer G3C (**15**), at 298 K (left) and 150 K (right).

Figure S5. Experimental (black) and computed (grey) EPR spectra of carboxylate dendrimers G1C (11) and G3C (15), at 298 K.

Figure S6. *II Signal* in experimental (black) and computed (grey) EPR spectra of carboxylate dendrimer G2C (**13**) at 298 and 150 K.

Figure S7. Experimental EPR spectra of sulfonate dendrimers 7, 8 and 9, at 298 K (left) and 150 K (right), at increasing copper concentration (0.025-0.15M).

• NMR spectra

Figure S8. ¹H NMR spectrum of EDA-dendr-(SO3Na)8 (7) in D₂O.

Figure S9. ¹³C NMR spectrum of EDA-dendr-(SO3Na)₈ (7) in D₂O.

Figure S10. ¹H-¹³C-{HMQC} NMR spectrum of EDA-dendr-(SO3Na)₈ (7) in D₂O.

Figure S11. NOESY ¹H-NMR spectrum of EDA-dendr-(SO3Na)₈ (7) in D₂O.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Figure S12. ¹H NMR spectrum of EDA-dendr-(SO₃Na)₁₆ (8) in D₂O.

Figure S13. ¹³C NMR spectrum of EDA-*dendr*- $(SO_3Na)_{16}$ (8) in D₂O.

Figure S14. TOCSY NMR spectrum of EDA-dendr-(SO₃Na)₁₆ (8) in D₂O.

Figure S15. ¹H NMR spectrum of EDA-dendr-(SO₃Na)₃₂ (9) in D₂O.

Figure S16. ^{1}H - ^{13}C -{HMQC} NMR spectrum of EDA-*dendr*-(SO₃Na)₃₂ (9) in D₂O...

D) EDA-dendr-(CO₂Me)₈ (10)

Figure S17. ¹H NMR spectrum of EDA-dendr-(CO₂Me)₈ (10) in CDCl₃.

Figure S18. ¹³C NMR spectrum of EDA-*dendr*-(CO₂Me)₈ (10) in CDCl₃.

Figure S20. NOESY ¹H-NMR spectrum of EDA-dendr-(CO₂Me)₈ (10) in CDCl₃.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

E) EDA-*dendr*-(CO₂Na)₈ (11)

Figure S21. ¹H NMR spectrum of EDA-dendr-(CO₂Na)₈ (11) in D₂O.

Figure S22. ¹³C NMR spectrum of EDA-*dendr*-(CO₂Na)₈ (11) in D₂O.

Figure S23. ¹H-¹³C-{HSQC} NMR spectrum of EDA-dendr-(CO₂Na)₈ (11) in D₂O

Figure S24. TOCSY ¹H-NMR spectrum of EDA-dendr-(CO₂Na)₈ (11) in D₂O.

Figure S25. ROESY NMR spectrum of EDA-dendr-(CO₂Na)₈ (11) in D₂O.

Figure S26. ¹H NMR spectrum of EDA-*dendr*-(CO₂Me)₁₆ (12) in CDCl₃.

Figure S27. ¹³C NMR spectrum of EDA-dendr-(CO₂Me)₁₆ (12) in CDCl₃.

G) EDA-dendr-(CO2Na)16 (13)

Figure S28. ¹H NMR spectrum of EDA-dendr-(CO₂Na)₁₆ (13) in D₂O.

H) EDA-*dendr*-(CO₂Me)₃₂ (14)

Figure S29. ¹H NMR spectrum of EDA-dendr-(CO₂Me)₃₂ (14) in CDCl₃.

I) EDA-dendr-(CO₂Na)₃₂ (15)

Figure S30. ¹H NMR spectrum of EDA-dendr-(CO₂Na)₃₂ (15) in D₂O.

• UV-Vis spectra

Figure S31. UV-Vis spectrum of copper titration of dendrimer EDA-dendr-(CO₂Na)₁₆ (13).

Figure S32. UV-Vis spectrum of copper titration of dendrimer EDA-dendr-(CO₂Na)₃₂ (15).

Figure S33. Experimental titration curves (left) and theoretical macrospecies distribution and pK_a calculation of each chemical group (right) of first generation dendrimers. A) EDA-*dendr*-(SO₃Na)₈ (7).
B) EDA-*dendr*-(CO₂Na)₈ (11).