Comparative study of structure, thermal stability and dielectric property for a ferroelectric MOF $[Sr(\mu-BDC)(DMF)]_{\infty}$ with its solvent-free framework

Ping-Chun Guo^{a, b} Zhenyu Chu^a Xiao-Ming Ren^{*a, b} Wei-Hua Ning,^{a, b} Wanqin Jin^{*a} ^aState Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P.R. China

^bCollege of Science, Nanjing University of Technology, Nanjing 210009, P. R. China

Tel.: +86 25 58139476

Fax: +86 25 58139481

E-mail: <u>xmren@njut.edu.cn</u> (X.M.R.) and <u>wqjin@njut.edu.cn</u> (W.Q.J.)

Gas adsorption of 3

Figure S1a is the N₂ adsorption-desorption isotherms of **3** at 77 K under the low pressure (under 1 atm), which shows a reversible and hysteretic type- Π isotherm character. The Brunauer-Emment-Teller (BET) apparent surface areas were calculated as 5.9 m²·g⁻¹ which is too small and the averaged pore width was calculated as ~50 Å (ref. Figure S1b). However, the single crystal structure studies revealed that the diameter for the maximum trigonal channel in **1** is 3.4 Å when the DMF molecules therein are removed. Thus, the pores with averaged width ~50 Å should be the clearance gaps between adjacent particles.

Figure S1 (a) The isotherm for the adsorption and desorption of N_2 on activated 3 at 77 K and (b) pore size distribution.

Figure S2 Bond distances in BDC²⁻ and DMF moieties obtained from (a) X-ray single crystal structure analysis at 293 K and (b) crystal structure optimization using the *Materials Studio* program.