Supporting Information

Si–C Bond Cleavage by Hydride Complexes of Rhodium and Iridium: Comparison of Si–C(sp<sup>2</sup>) and Si–C(sp<sup>3</sup>) Activation

Hajime Kameo, Sho Ishii and Hiroshi Nakazawa\*

Department of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

| Contents                                                   |    |
|------------------------------------------------------------|----|
| Synthesis                                                  | 2  |
| Study on the Selectivity of Si-C Bond Activation           | 11 |
| Eyring Plot for the Reaction of <b>2</b> with <b>1</b>     | 14 |
| DFT Calculation for the Si–C <sub>Me</sub> Activation by 2 | 16 |
| X-ray Diffraction Data                                     |    |
| NMR Spectra Data                                           | 24 |
| Cartesian Coordinates                                      | 67 |

## Synthesis

### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>SiMe<sub>2</sub> (1b)

A Schlenk tube was charged with 994 mg of {o-PPh<sub>2</sub>(C<sub>6</sub>H<sub>4</sub>)}Li·Et<sub>2</sub>O (2.91 mmol) and 10 mL of toluene, and the solution was cooled to -78 °C. SiMe<sub>2</sub>Cl<sub>2</sub> (152  $\mu$ L, 1.26 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. The reaction mixture was stirred at 100 °C for 15 h. After the mixture was then allowed to cool to room temperature, the resulting solution was filtered through a Celite pad. Removal of the volatile materials in vacuo gave a white solid. The residue was washed with hexane (5 mL × 3) and dried under vacuum to afford **1b** (635 mg, 1.09 mmol) in 87% yield as a white powder. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  0.91 (s, 6H, SiCH<sub>3</sub>), 6.97–7.14 (m, 16H, H<sub>arom</sub>), 7.17–7.38 (m, 10H, H<sub>arom</sub>), 7.88–7.90 (m, 2H, H<sub>arom</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  2.7, 128.0, 128.2, 129.0, 129.2, 133.4, 135.3, 136.5, 136.6, 138.5, 143.1. <sup>29</sup>Si{<sup>1</sup>H} NMR (79 MHz, CDCl<sub>3</sub>):  $\delta$  –7.1 (t,  $J_{Si-P}$ = 10.7 Hz). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  –11.9 (s). Anal. Calc. for C<sub>38</sub>H<sub>34</sub>P<sub>2</sub>Si: C, 78.59; H, 5.90. Found: C, 78.53; H, 6.04.

## Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>SiEt<sub>2</sub> (1c)

A Schlenk tube was charged with 1.27 g of {o-PPh<sub>2</sub>(C<sub>6</sub>H<sub>4</sub>)}Li·Et<sub>2</sub>O (3.71 mmol) and 10 mL of toluene, and the solution was cooled to -78 °C. SiEt<sub>2</sub>Cl<sub>2</sub> (263  $\mu$ L, 1.76 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. The reaction mixture was stirred at 100 °C for 15 h. After the mixture was then allowed to cool to room temperature, the resulting solution was filtered through a Celite pad. Removal of the volatile materials in vacuo gave a white solid. The residue was washed with hexane (3 mL × 3) and dried under vacuum to afford **1c** (640 mg, 1.05 mmol) in 60% yield as a white powder. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.08 (t,  $J_{H-H}$  = 7.8 Hz, 6H, SiCH<sub>2</sub>CH<sub>3</sub>), 1.95 (q,  $J_{H-H}$  = 7.8 Hz, 4H, SiCH<sub>2</sub>CH<sub>3</sub>), 6.92–6.96 (m, 14H,  $H_{arom}$ ), 7.01–7.05 (m, 2H,  $H_{arom}$ ), 7.08–7.14 (m, 8H,  $H_{arom}$ ), 7.33–7.36 (m, 2H,  $H_{arom}$ ), 8.27–8.29 (m, 2H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  6.8, 7.9, 128.0, 128.1, 128.2, 129.0, 133.4, 135.4, 137.2, 138.7, 143.3, 146.8. <sup>29</sup>Si{<sup>1</sup>H} NMR (79 MHz, CDCl<sub>3</sub>):  $\delta$  –9.2 (t,  $J_{Si-P}$  = 9.2 Hz). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  –13.0 (s). Anal. Calc. for C<sub>40</sub>H<sub>38</sub>P<sub>2</sub>Si: C, 78.92; H, 6.29. Found: C, 78.53; H, 6.04.

### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(Ph)

A Schlenk tube was charged with 681 mg of {o-PPh<sub>2</sub>(C<sub>6</sub>H<sub>4</sub>)}Li·Et<sub>2</sub>O (1.99 mmol) and 12 mL of toluene, and the solution was cooled to -78 °C. SiPhHCl<sub>2</sub> (140  $\mu$ L, 0.951 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. The reaction mixture was stirred at 100 °C for 15 h. After the mixture was then allowed to cool to room temperature, the resulting solution was filtered through a Celite pad. Removal of the volatile materials in vacuo gave a white solid. The residue was washed with hexane (3 mL × 2), and dried under vacuum to afford {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(Ph) (571 mg, 0.908 mmol) in 77% yield as a white powder. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.31 (m, 1H, SiH), 7.06–7.47 (m, 33H, H<sub>arom</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  127.8, 128.1, 128.2, 128.3, 129.2, 129.9, 133.5, 133.7, 134.4, 134.8, 136.3, 137.8, 142.8, 144.4. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$ -12.1 (s). Anal. Calc. for C<sub>42</sub>H<sub>34</sub>P<sub>2</sub>Si: C, 80.23; H, 5.45. Found: C, 80.55; H, 5.78.

#### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(p-tolyl)

A Schlenk tube was charged with 236 mg of  $\{o-PPh_2(C_6H_4)\}$ Li·Et<sub>2</sub>O (0.691 mmol) and 5 mL of toluene, and the solution was cooled to -78 °C. SiHCl<sub>3</sub> (35.0  $\mu$ L, 0.345 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at ambient temperature for 15 h, the resulting solution was filtered through a Celite pad. Removal of the volatile materials in vacuo gave a white solid. The residue was washed with hexane (2 mL × 2), and dried under vacuum to afford crude  $\{o-(Ph_2P)C_6H_4\}_2Si(H)(Cl)$  (197 mg, 0.336 mmol) as a white powder. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C\_6D\_6): \delta = -13.3 ppm (the purity was estimated to  $\approx$  95%). After the white residue was dissolved in toluene (5 mL), the solution was cooled to -78 °C. p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>MgBr (400 µL, 1.0 M in THF, 0.400 mmol) was added slowly to the prepared reaction solution, and then the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at 100 °C for 15 h, the mixture was allowed to cool to room temperature. To quench an excess amount of p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>MgBr, a 0.20 mL portion of H<sub>2</sub>O was added to the mixture at -78 °C. The mixture was allowed to warm to room temperature, and then the solution was stirred at room temperature for 2 h. After removing the volatile materials under vacuum, the residue was dissolved in benzene (20 mL). The resulting solution was filtered through a Celite pad, and removal of the volatile materials in vacuo gave a white solid. The residue was washed with Et<sub>2</sub>O (2 mL  $\times$  3), and dried under vacuum to afford {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(p-tolyl) (185 mg, 0.288 mmol) in 86% yield as a white powder. <sup>1</sup>H NMR (400 MHz,  $C_6D_6$ ):  $\delta 2.07$  (s, 3H, *p*-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>), 6.80 (m, 1H, SiH), 6.94–7.06 (m, 19H,  $H_{arom}$ ), 7.23–7.39 (m, 9H,  $H_{arom}$ ), 7.54–7.56 (m, 2H,  $H_{arom}$ ), 7.65–7.67 (m, 2H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ 21.7, 128.1, 128.2, 128.5, 129.9, 133.5, 133.6, 133.8, 134.4, 136.4, 137.7, 137.8, 139.0, 142.8, 144.4. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  -11.9 (s). Anal. Calc. for C<sub>43</sub>H<sub>36</sub>P<sub>2</sub>Si: C, 80.35; H, 5.65. Found: C, 80.08; H, 5.81.

### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(p-methoxyphenyl)

A Schlenk tube was charged with 150 mg of {o-PPh<sub>2</sub>(C<sub>6</sub>H<sub>4</sub>)}Li·Et<sub>2</sub>O (0.440 mmol) and 5 mL of toluene, and the solution was cooled to -78 °C. SiHCl<sub>3</sub> (22.3  $\mu$ L, 0.220 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at ambient temperature for 15 h, the resulting solution was filtered through a Celite pad. Removal of the volatile materials in vacuo gave a white solid. The residue was washed with hexane (2 mL  $\times$  2), and dried under vacuum to afford crude  $\{o-(Ph_2P)C_6H_4\}_2Si(H)(Cl)$  (126 mg, 0.214 mmol) as a white powder. After the white residue was dissolved in THF (2.5 mL), the solution was cooled to -78 °C. p-(MeO)C<sub>6</sub>H<sub>4</sub>MgBr (514  $\mu$ L, 0.5 M in THF, 0.257 mmol) was added slowly to the prepared reaction solution, and then the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at 60 °C for 20 h, the mixture was allowed to cool to room temperature. To quench an excess amount of p-(MeO)C<sub>6</sub>H<sub>4</sub>MgBr, a 0.20 mL portion of H<sub>2</sub>O was added to the mixture at -78 °C. The mixture was allowed to warm to room temperature, and then the solution was stirred at room temperature for 2 h. After removing the volatile materials under vacuum, the residue was dissolved in benzene (15 mL). The resulting solution was filtered through a Celite pad, and removal of the volatile materials in vacuo gave a white solid. The  $(1.5 \text{ mL} \times 2)$ , and dried residue was washed with Et<sub>2</sub>O under vacuum to afford {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(p-methoxyphenyl) (116 mg, 0.176 mmol) in 82% yield as a white powder. <sup>1</sup>H NMR (400

MHz, CDCl<sub>3</sub>):  $\delta$  3.78 (s, 3H, *p*-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>), 6.25 (m, 1H, Si*H*), 6.74–6.76 (m, 2H, *H*<sub>arom</sub>), 7.04–7.38 (m, 30H, *H*<sub>arom</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  55.2, 128.3, 128.4, 128.5, 130.0, 133.7, 133.8, 134.0, 134.6, 137.8, 138.0, 138.1, 142.9, 143.4, 144.5. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$ -12.1 (s). Anal. Calc. for C<sub>43</sub>H<sub>36</sub>OP<sub>2</sub>Si: C, 78.40; H, 5.51. Found: C, 77.98; H, 5.64.

### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}2Si(H)(p-dimethylaminophenyl)

A Schlenk tube was charged with 188 mg of  $\{o-PPh_2(C_6H_4)\}$ Li-Et<sub>2</sub>O (0.549 mmol) and 5 mL of toluene, and the solution was cooled to -78 °C. SiHCl<sub>3</sub> (27.3  $\mu$ L, 0.2705 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at ambient temperature for 15 h, the resulting solution was filtered through a Celite pad. Removal of the volatile materials in vacuo gave a white solid. The residue was washed with hexane (2 mL  $\times$  2), and dried under vacuum to afford crude {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(Cl) (166 mg, 0.283 mmol) as a white powder. After the white residue was dissolved in toluene (3 mL), the solution was cooled to -78 °C.  $p-(Me_2N)C_6H_4MgBr$  (680  $\mu$ L, 0.5 M in THF, 0.340 mmol) was added slowly to the prepared reaction solution, and then the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at 110 °C for 15 h, the mixture was allowed to cool to room temperature. To quench an excess amount of p-(Me<sub>2</sub>N)C<sub>6</sub>H<sub>4</sub>MgBr, a 0.20 mL portion of H<sub>2</sub>O was added to the mixture at -78 °C. The mixture was allowed to warm to room temperature, and then the solution was stirred at room temperature for 2 h. After removing the volatile materials under vacuum, the residue was dissolved in benzene (15 mL). The resulting solution was filtered through a Celite pad, and removal of the volatile materials in vacuo gave a white solid. The residue was washed with Et<sub>2</sub>O (1.5)mL  $\times$  2), and dried under vacuum to afford {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(p-dimethylaminophenyl) (142 mg, 0.212 mmol) in 75% yield as a white powder. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 2.46 (s, 6H, p-(CH<sub>3</sub>)<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>), 6.50-6.52 (m, 2H, H<sub>arom</sub>), 6.84 (m, 1H, SiH), 6.99-7.08 (m, 16H,  $H_{arom}$ ), 7.25–7.40 (m, 10H,  $H_{arom}$ ), 7.57–7.59 (m, 2H,  $H_{arom}$ ), 7.75–7.76 (m, 2H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  40.4, 128.0, 128.2, 129.7, 133.5, 133.7, 133.8, 134.3, 137.5, 137.8, 138.1, 143.4, 143.9, 144.4, 151.2.  ${}^{31}P{}^{1}H{}$  NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  –12.0 (s). Anal. Calc. for C<sub>44</sub>H<sub>39</sub>NP<sub>2</sub>Si: C, 78.66; H, 5.85; N, 2.08. Found: C, 78.65; H, 6.13; N, 1.90.

### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(p-fluorophenyl)

A Schlenk tube was charged with 131 mg of {o-PPh<sub>2</sub>(C<sub>6</sub>H<sub>4</sub>)}Li·Et<sub>2</sub>O (0.386 mmol) and 2 mL of toluene, and the solution was cooled to -78 °C. SiHCl<sub>3</sub> (19.0  $\mu$ L, 0.192 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at ambient temperature for 15 h, the resulting solution was filtered through a Celite pad. Removal of the volatile materials in vacuo gave a white solid. The residue was washed with hexane (1 mL × 2), and dried under vacuum to afford crude {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(Cl) (109 mg, 0.186 mmol) as a white powder. After the white residue was dissolved in toluene (4 mL), the solution was cooled to -78 °C. p-FC<sub>6</sub>H<sub>4</sub>MgBr (240  $\mu$ L, 0.90 M in THF, 0.223 mmol) was added slowly to the prepared reaction solution, and then the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at 100 °C for 15 h, the mixture was allowed to cool to room temperature. To quench an excess amount of p-FC<sub>6</sub>H<sub>4</sub>MgBr, a 0.20 mL portion of H<sub>2</sub>O was added to the mixture at -78 °C. After the mixture

was allowed to warm to room temperature, the solution was stirred at room temperature for 2 h. After removing the volatile materials under vacuum, the residue was dissolved in benzene (15 mL). The resulting solution was filtered through a Celite pad, and removal of the volatile materials in vacuo gave a white solid. The residue was washed with Et<sub>2</sub>O (2 mL × 3), and dried under vacuum to afford {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(p-fluorophenyl) (97.6 mg, 0.151 mmol) in 81% yield as a white powder. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.30 (m, 1H, SiH), 6.88–6.92 (m, 2H,  $H_{arom}$ ), 7.07–7.41 (m, 30H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  128.2, 128.3, 128.4, 128.5, 130.1, 133.5, 133.7, 133.8, 134.5, 137.5, 137.7, 138.2, 142.3, 144.4. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  –110.4 (s). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$ -12.1 (s). Anal. Calc. for C<sub>42</sub>H<sub>33</sub>FP<sub>2</sub>Si: C, 78.00; H, 5.14. Found: C, 77.58; H, 5.44.

#### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(Ph) (4b)

A Schlenk tube was charged with 479 mg of {o-PPh<sub>2</sub>(C<sub>6</sub>H<sub>4</sub>)}Li·Et<sub>2</sub>O (1.40 mmol) and 7.5 mL of toluene, and the solution was cooled to -78 °C. SiMePhCl<sub>2</sub> (113  $\mu$ L, 0.698 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. The reaction mixture was stirred at 100 °C for 15 h. The mixture was then allowed to cool to room temperature, and the resulting solution was filtered through a Celite pad. Removal of the volatile materials in vacuo gave a white solid. The residue was washed with Et<sub>2</sub>O (2 mL × 2), and dried under vacuum to afford **4b** (282 mg, 0.439 mmol) in 63% yield as a white powder. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.05 (m, 3H, SiCH<sub>3</sub>), 7.01–7.45 (m, 33H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  4.3, 127.7, 128.1, 128.3, 128.9, 129.5, 133.4, 135.8, 138.1, 138.3, 138.4, 138.5, 143.6, 146.0, 146.4. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  –11.3 (s). Anal. Calc. for C<sub>43</sub>H<sub>36</sub>P<sub>2</sub>Si: C, 80.35; H, 5.65. Found: C, 80.40; H, 5.82.

### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(Et) (4c)

A Schlenk tube was charged with 591 mg of {o-PPh<sub>2</sub>(C<sub>6</sub>H<sub>4</sub>)}Li·Et<sub>2</sub>O (1.73 mmol) and 7.5 mL of toluene, and the solution was cooled to -78 °C. SiMeEtCl<sub>2</sub> (110  $\mu$ L, 0.817 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. The reaction mixture was stirred at 100 °C for 15 h. The mixture was then allowed to cool to room temperature, and the resulting solution was filtered through a Celite pad. Removal of the volatile materials in vacuo gave a white solid. The residue was washed with Et<sub>2</sub>O (2 mL × 2), and dried under vacuum to afford **4c** (429 mg, 0.722 mmol) in 88% yield as a white powder. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  0.92 (s, 3H, SiCH<sub>3</sub>), 0.99 (t,  $J_{H-H}$  = 7.8 Hz, 3H, SiCH<sub>2</sub>CH<sub>3</sub>), 1.57 (q,  $J_{H-H}$  = 7.8 Hz, 2H, SiCH<sub>2</sub>CH<sub>3</sub>), 6.98–7.06 (m, 16H,  $H_{arom}$ ), 7.11–7.18 (m, 8H,  $H_{arom}$ ), 7.35–7.38 (m, 2H,  $H_{arom}$ ), 7.91–7.93 (m, 2H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CbCl<sub>3</sub>):  $\delta$  0.12, 8.1, 9.4, 128.0, 128.2, 129.1, 133.3, 133.5, 135.4, 136.8, 138.6, 143.2, 147.5. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  –12.3 (s). Anal. Calc. for C<sub>39</sub>H<sub>36</sub>P<sub>2</sub>Si: C, 78.76; H, 6.10. Found: C, 78.42; H, 6.17.

#### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(p-tolyl) (4d)

A Schlenk tube was charged with 139 mg of  $\{o-PPh_2(C_6H_4)\}$ Li·Et<sub>2</sub>O (0.406 mmol) and 2 mL of toluene, and the solution was cooled to -78 °C. SiMeCl<sub>3</sub> (24.0  $\mu$ L, 0.203 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. The reaction mixture was stirred at 100 °C for 15 h. The mixture was then allowed to cool to room temperature, and the resulting solution was filtered through a Celite

pad. Removal of the volatile materials in vacuo gave a white solid. The residue was washed with hexane (1 mL × 2) and dried under vacuum to afford {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(Cl) (87.7 mg, 0.146 mmol, 72%) in  $\approx$  99% purity (see Figure S19). <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.41 (m, 3H, SiCH<sub>3</sub>), 6.95–7.04 (m, 17H, H<sub>arom</sub>), 7.08–7.15 (m, 7H, H<sub>arom</sub>), 7.32–7.35 (m, 2H, H<sub>arom</sub>), 8.25–8.27 (m, 2H, H<sub>arom</sub>). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  7.6, 128.3, 128.9, 130.4, 133.3, 135.3, 136.9, 137.4, 137.8, 142.7, 145.2. <sup>31</sup>P NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$ –12.7 (s).

A Schlenk tube was filled with 87.7 mg of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(Cl) (0.146 mmol) and 4 mL of toluene, and the solution was cooled to -78 °C. p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>MgBr (219  $\mu$ L, 1.0 M in THF, 0.219 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at 100 °C for 15 h, the mixture was then allowed to cool to room temperature. To quench an excess amount of p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>MgBr, a 0.20 mL portion of H<sub>2</sub>O was added to the mixture at -78 °C. The mixture was allowed to warm to room temperature, and then the solution was stirred at room temperature for 2 h. After removing the volatile materials under vacuum, the residue was dissolved in benzene (15 mL). The resulting solution was filtered through a Celite pad, and removal of the volatile materials in vacuo gave a white solid. The residue was washed with Et<sub>2</sub>O (2 mL × 3), and dried under vacuum to afford **4d** (66.3 mg, 0.101 mmol) in 69% yield as a white powder. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.41 (m, 3H, SiCH<sub>3</sub>), 2.11 (s, 3H, p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>), 6.95–7.06 (m, 16H,  $H_{arom}$ ), 7.16–7.22 (m, 7H,  $H_{arom}$ ), 7.29–7.33 (m, 3H,  $H_{arom}$ ), 7.45–7.48 (m, 2H,  $H_{arom}$ ), 7.53–7.55 (m, 2H,  $H_{arom}$ ), 7.71–7.73 (m, 2H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  4.2, 21.7, 128.0, 128.2, 128.5, 129.4, 133.3, 133.5, 134.9, 135.9, 138.0, 138.4, 138.6, 143.5, 146.1, 146.6. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  –11.2 (s). Anal. Calc. for C<sub>44</sub>H<sub>38</sub>P<sub>2</sub>Si: C, 80.46; H, 5.83. Found: C, 80.33; H, 6.00.

### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(p-methoxyphenyl) (4e)

{o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(Cl) was prepared in a manner similar to that reported in the section "Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(p-tolyl) (4d)." A Schlenk tube was charged with 99.2 mg of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(Cl) (0.165 mmol) and 2 mL of THF, and the solution was cooled to -78 °C. p-(MeO)C<sub>6</sub>H<sub>4</sub>MgBr (396  $\mu$ L, 0.5 M in THF, 0.198 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at 60 °C for 20 h, the mixture was then allowed to cool to room temperature. To quench an excess amount of p-(MeO)C<sub>6</sub>H<sub>4</sub>MgBr, a 0.20 mL portion of H<sub>2</sub>O was added to the mixture at -78 °C. The mixture was allowed to warm to room temperature for 2 h. After removing the volatile materials under vacuum, the residue was dissolved in benzene (15 mL). The resulting solution was filtered through a Celite pad, and removal of the volatile materials in vacuo gave a white solid. The residue was washed with Et<sub>2</sub>O (1.5 mL × 2), and dried under vacuum to afford **4e** (85.9 mg, 0.128 mmol) in 77% yield as a white powder. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.42 (m, 3H, SiCH<sub>3</sub>), 3.30 (s, 3H, p-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>), 6.72–7.75 (m, 2H,  $H_{arom}$ ), 6.99–7.07 (m, 18H,  $H_{arom}$ ), 7.21–7.24 (m, 2H,  $H_{arom}$ ), 7.30–7.34 (m, 4H,  $H_{arom}$ ), 7.46–7.51 (m, 4H,  $H_{arom}$ ), 7.71–7.73 (m, 2H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  4.29, 55.1, 128.1, 128.2, 128.3, 129.5, 133.4, 133.6, 135.9, 137.4, 138.0, 138.1, 138.5, 143.6, 146.3, 146.8. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$ –11.1 (s). Anal. Calc. for C<sub>44</sub>H<sub>38</sub>OP<sub>2</sub>Si: C, 78.55; H, 5.69. Found: C, 78.59; H, 5.66.

#### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}2Si(Me)(p-dimethylaminophenyl) (4f)

{o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}2Si(Me)(Cl) was prepared in a manner similar to that reported in the section "Preparation of  $\{o-(Ph_2P)C_6H_4\}_2Si(Me)(p-tolyl)$  (4d)." A Schlenk tube was charged with 90.3 mg of  $\{o-(Ph_2P)C_6H_4\}_2Si(Me)(Cl)$ (0.150 mmol) and 2.5 mL of toluene, and the solution was cooled to -78 °C. p-(Me<sub>2</sub>N)C<sub>6</sub>H<sub>4</sub>MgBr (360  $\mu$ L, 0.5 M in THF, 0.180 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at 110 °C for 15 h, the mixture was then allowed to cool to room temperature. To quench an excess amount of  $p-(Me_2N)C_6H_4MgBr$ , a 0.20 mL portion of H<sub>2</sub>O was added to the mixture at -78 °C. The mixture was allowed to warm to room temperature, and then the solution was stirred at room temperature for 2 h. After removing the volatile materials under vacuum, the residue was dissolved in benzene (15 mL). The resulting solution was filtered through a Celite pad, and removal of the volatile materials in vacuo gave a white solid. The residue was washed with hexane (1.5 mL  $\times$  2), and dried under vacuum to afford 4f (78.1 mg, 0.114 mmol) in 76% yield as a white powder. <sup>1</sup>H NMR (400 MHz,  $C_6D_6$ ):  $\delta$  1.46 (m, 3H, SiCH<sub>3</sub>), 2.50 (s, 6H, p-(CH<sub>3</sub>)<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>), 6.52–6.54 (m, 2H,  $H_{arom}$ ), 6.98–7.55 (m, 28H,  $H_{arom}$ ), 7.79–7.81 (m, 2H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>): δ4.33, 40.4, 128.1, 128.2, 128.3, 128.5, 129.3, 133.4, 133.6, 134.9, 135.8, 137.0, 138.1, 138.8, 143.5, 147.1.  ${}^{31}P{}^{1}H{}$  NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  -11.1 (s). HRMS (FAB+): [M]<sup>+</sup> Calc. for C45H41NP2Si: 685.2483; Found: 685.2471. Anal. Calc. for C45H41NP2Si: C, 78.80; H, 6.03; N, 2.04. Found: C, 78.52; H, 6.28; N, 2.07.

### Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(p-fluorophenyl) (4g)

{o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(Cl) was prepared in a manner similar to that reported in the section "Preparation of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(p-tolyl) (**4d**)." A Schlenk tube was charged with 78.2 mg of {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(Cl) (0.130 mmol) and 4 mL of toluene, and the solution was cooled to -78 °C. p-FC<sub>6</sub>H<sub>4</sub>MgBr (173  $\mu$ L, 0.9 M in THF, 0.156 mmol) was added slowly to the prepared reaction solution, and the mixture was allowed to warm to room temperature. After the reaction mixture was stirred at 100 °C for 15 h, the mixture was then allowed to cool to room temperature. To quench an excess amount of p-FC<sub>6</sub>H<sub>4</sub>MgBr, a 0.20 mL portion of H<sub>2</sub>O was added to the mixture at -78 °C. The mixture was allowed to warm to room temperature for 2 h. After removing the volatile materials under vacuum, the residue was dissolved in benzene (15 mL). The resulting solution was filtered through a Celite pad, and removal of the volatile materials in vacuo gave a white solid. The residue was washed with Et<sub>2</sub>O (2 mL × 3), and dried under vacuum to afford **4g** in 77% yield as a white powder. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.36 (m, 3H, SiCH<sub>3</sub>), 6.96–7.07 (m, 16H, H<sub>arom</sub>), 7.17–7.20 (m, 7H, H<sub>arom</sub>), 7.26–7.30 (m, 3H, H<sub>arom</sub>), 7.34–7.38 (m, 2H, H<sub>arom</sub>), 7.44–7.47 (m, 2H, H<sub>arom</sub>), 7.60–7.62 (m, 2H, H<sub>arom</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  4.21, 128.2, 128.3, 128.4, 129.6, 133.3, 133.5, 134.2, 135.9, 137.7, 137.9, 138.3, 143.6, 145.6, 146.0. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  –110.6 (s). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  –11.2 (s). Anal. Calc. for C<sub>43</sub>H<sub>35</sub>FP<sub>2</sub>Si: C, 78.16; H, 5.34. Found: C, 77.72; H, 5.68.

# Preparation of {(o-Ph<sub>2</sub>PC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(Me)Si}Rh(CO)(PPh<sub>3</sub>) (3b)

A 50-mL Schlenk tube was charged with **1b** (196 mg, 0.338 mmol), RhH(CO)(PPh<sub>3</sub>)<sub>3</sub> (**2**) (310 mg, 0.338 mmol), and toluene (10 mL), and the reaction mixture was stirred at 50 °C for 8 h. The solvent was then removed under

reduced pressure to give a pale orange solid. The residue was washed with hexane (3 mL × 3) and dried under vacuum to afford 296 mg of **3b** (0.0496 mmol) as an orange powder in 91% yield. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.46 (s, 3H, SiCH<sub>3</sub>), 6.40–6.41 (m, 4H, H<sub>arom</sub>), 6.70–7.10 (m, 30H, H<sub>arom</sub>), 7.18–7.30 (m, 3H, H<sub>arom</sub>), 7.65–7.67 (m, 4H, H<sub>arom</sub>), 7.83–7.85 (m, 2H, H<sub>arom</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  4.5, 127.6, 127.8, 128.3, 128.7, 129.0, 131.0, 132.6, 133.5, 134.6, 137.4, 139.5, 140.5, 149.7, 155.1, 204.3. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  32.3 (dt,  $J_{P-Rh} = 95.5$  Hz,  $J_{P-P} = 34.9$  Hz, *PPh*<sub>3</sub>), 49.2 (dd,  $J_{P-Rh} = 145.0$  Hz,  $J_{P-P} = 34.9$  Hz, *PPh*<sub>2</sub>). IR (KBr): 1897 cm<sup>-1</sup> ( $\nu_{C=0}$ ). Anal. Calc. for C<sub>56</sub>H<sub>46</sub>OP<sub>3</sub>RhSi: C, 70.14; H, 4.84. Found: C, 69.96; H, 5.24.

### Preparation of {(*o*-Ph<sub>2</sub>PC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(Et)Si}Rh(CO)(PPh<sub>3</sub>) (3c)

A 50-mL Schlenk tube was charged with **1c** (174 mg, 0.286 mmol), RhH(CO)(PPh<sub>3</sub>)<sub>3</sub> (**2**) (263 mg, 0.286 mmol), and toluene (7 mL), and the reaction mixture was stirred at 50 °C for 10 h. The solvent was then removed under reduced pressure to give a pale orange solid. The residue was washed with hexane (3 mL × 3) and dried under vacuum to afford 258 mg of **3c** (0.265 mmol) as an orange powder in 93% yield. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.53 (t,  $J_{\text{H-H}}$  = 7.8 Hz, 3H, SiCH<sub>2</sub>CH<sub>3</sub>), 2.02 (q,  $J_{\text{H-H}}$  = 7.8 Hz, 2H, SiCH<sub>2</sub>CH<sub>3</sub>), 6.58–6.59 (m, 4H,  $H_{\text{arom}}$ ), 6.68–6.72 (m, 6H,  $H_{\text{arom}}$ ), 6.78–7.13 (m, 25 H,  $H_{\text{arom}}$ ), 7.31–7.33 (m, 2H,  $H_{\text{arom}}$ ), 7.56–7.57 (m, 4H,  $H_{\text{arom}}$ ), 7.93–7.65 (m, 2H,  $H_{\text{arom}}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  10.0, 13.2, 127.6, 127.9, 128.4, 128.8, 129.0, 131.5, 132.6, 133.4, 134.6, 137.1, 139.8, 141.1, 150.1, 154.4, 203.7. <sup>29</sup>Si{<sup>1</sup>H} NMR (79 MHz, CDCl<sub>3</sub>):  $\delta$  64.3 (m). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  31.2 (dt,  $J_{\text{P-Rh}}$  = 94.2 Hz,  $J_{\text{P-P}}$  = 34.3 Hz, *P*Ph<sub>3</sub>), 49.7 (dd,  $J_{\text{P-Rh}}$  = 145.0 Hz,  $J_{\text{P-P}}$  = 34.3 Hz, *P*Ph<sub>2</sub>). IR (KBr): 1923 cm<sup>-1</sup> ( $v_{\text{C=0}}$ ). Anal. Calc. for C<sub>57</sub>H<sub>48</sub>OP<sub>3</sub>RhSi: C, 70.37; H, 4.97. Found: C, 70.03; H, 5.29.

### Preparation of {(o-Ph<sub>2</sub>PC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(p-tolyl)Si}Rh(CO)(PPh<sub>3</sub>) (3d)

A 50-mL Schlenk tube was charged with {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(p-tolyl) (39.1 mg, 0.0608 mmol), RhH(CO)(PPh<sub>3</sub>)<sub>3</sub> (**2**) (55.9 mg, 0.0608 mmol), and toluene (3 mL), and the reaction mixture was stirred at 80 °C for 5 h. The solvent was then removed under reduced pressure to give a pale orange solid. The residue was washed with hexane (1.5 mL × 3) and dried under vacuum to afford 46.4 mg of **3d** (0.0448 mmol) as an orange powder in 74% yield. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  2.21 (s, 3H, p-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>), 6.44–6.48 (m, 2H,  $H_{arom}$ ), 6.67–7.12 (m, 38H,  $H_{arom}$ ), 7.36–7.38 (m, 2H,  $H_{arom}$ ), 7.64–7.65 (m, 3H,  $H_{arom}$ ), 7.87–7.89 (m, 2H  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  22.3, 127.8, 128.2, 129.0, 129.3, 129.7, 131.5, 132.9, 133.7, 134.1, 134.7, 137.0, 137.2, 137.5, 137.9, 139.7, 140.8, 151.4, 153.7, 204.2. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  32.1 (dt,  $J_{P-Rh} = 94.2$  Hz,  $J_{P-P} = 34.3$  Hz,  $PPh_3$ ), 49.6 (dd,  $J_{P-Rh} = 145.0$  Hz,  $J_{P-P} = 34.3$  Hz,  $PPh_2$ ). IR (KBr): 1924 cm<sup>-1</sup> ( $\nu_{C=0}$ ). Anal. Calc. for C<sub>62</sub>H<sub>50</sub>OP<sub>3</sub>RhSi: C, 71.95; H, 4.87. Found: C, 71.64; H, 5.19.

### Preparation of {(o-Ph<sub>2</sub>PC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(p-methoxyphenyl)Si}Rh(CO)(PPh<sub>3</sub>) (3e)

A 50-mL Schlenk tube was charged with  $\{o-(Ph_2P)C_6H_4\}_2Si(H)(p-methoxyphenyl)$  (44.0 mg, 0.0668 mmol), RhH(CO)(PPh<sub>3</sub>)<sub>3</sub> (**2**) (61.4 mg, 0.0668 mmol), and toluene (3 mL), and the reaction mixture was stirred at 80 °C for 5 h. The solvent was then removed under reduced pressure to give a pale orange solid. The residue was washed with hexane (1.5 mL × 3) and dried under vacuum to afford 55.1 mg of **3e** (0.0524 mmol) as an orange powder in 78% yield. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  3.36 (s, 3H, *p*-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>), 6.42–6.45 (m, 4H, H<sub>arom</sub>), 6.67–7.07 (m, 34H, *H*<sub>arom</sub>), 7.36–7.38 (m, 2H, *H*<sub>arom</sub>), 7.60–7.67 (m, 5H, *H*<sub>arom</sub>), 7.87–7.89 (m, 2H *H*<sub>arom</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  55.4, 127.6, 128.0, 128.7, 129.1, 131.3, 132.7, 133.6, 134.6, 137.2, 138.1, 139.5, 140.6, 151.2, 153.6, 203.6. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  32.0 (dt, *J*<sub>P-Rh</sub>= 95.5 Hz, *J*<sub>P-P</sub>= 33.0 Hz, *P*Ph<sub>3</sub>), 49.5 (dd, *J*<sub>P-Rh</sub>= 146.9 Hz, *J*<sub>P-P</sub>= 33.0 Hz, *P*Ph<sub>2</sub>). IR (KBr): 1924 cm<sup>-1</sup> (*v*<sub>C=O</sub>). Anal. Calc. for C<sub>62</sub>H<sub>50</sub>O<sub>2</sub>P<sub>3</sub>RhSi: C, 70.85; H, 4.80. Found: C, 70.45; H, 4.98.

### Preparation of {(o-Ph<sub>2</sub>PC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(p-dimethylaminophenyl)Si}Rh(CO)(PPh<sub>3</sub>) (3f)

A 50-mL Schlenk tube was charged with {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(H)(p-dimethylaminophenyl) (36.1 mg, 0.0537 mmol), RhH(CO)(PPh<sub>3</sub>)<sub>3</sub> (**2**) (49.3 mg, 0.0537 mmol), and toluene (3 mL), and the reaction mixture was stirred at 80 °C for 5 h. The solvent was then removed under reduced pressure to give a pale orange solid. The residue was washed with hexane (1.5 mL × 3) and dried under vacuum to afford 50.0 mg of **3f** (0.0470 mmol) as an orange powder in 87% yield. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  2.55 (s, 6H, p-(CH<sub>3</sub>)<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>), 6.41–6.44 (m, 4H,  $H_{arom}$ ), 6.65–7.12 (m, 34H,  $H_{arom}$ ), 7.36–7.38 (m, 2H,  $H_{arom}$ ), 7.63–7.61 (m, 2H  $H_{arom}$ ), 7.69–7.73 (m, 3H,  $H_{arom}$ ), 7.94–7.96 (m, 2H  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  40.4, 127.2, 127.5, 128.3, 128.6, 130.8, 132.3, 133.2, 134.3, 136.9, 137.4, 139.3, 140.4, 150.6, 153.6, 203.1. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  32.2 (dt,  $J_{P-Rh} = 94.2$  Hz,  $J_{P-P} = 33.7$  Hz, *P*Ph<sub>3</sub>), 49.8 (dd,  $J_{P-Rh} = 146.9$  Hz,  $J_{P-P} = 33.7$  Hz, *P*Ph<sub>2</sub>). IR (KBr): 1925 cm<sup>-1</sup> ( $v_{C=0}$ ). Anal. Calc. for C<sub>63</sub>H<sub>53</sub>NOP<sub>3</sub>RhSi: C, 71.12; H, 5.02; N, 1.32. Found: C, 71.35; H, 5.36; N, 1.11

# Preparation of {(o-Ph<sub>2</sub>PC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(p-fluorophenyl)Si}Rh(CO)(PPh<sub>3</sub>) (3g)

A 50-mL Schlenk tube was charged with  $\{o - (Ph_2P)C_6H_4\}_2Si(H)(p-fluorophenyl)$  (43.3 mg, 0.0670 mmol), RhH(CO)(PPh\_3)\_3 (**2**) (61.5 mg, 0.0670 mmol), and toluene (3 mL), and the reaction mixture was stirred at 80 °C. After 5 h, the solvent was removed under reduced pressure to give a pale orange solid. The residue was washed with hexane (2 mL × 3) and dried under vacuum to afford 49.7 mg of **3g** (0.0478 mmol) as an orange powder in 71% yield. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  6.42–6.46 (m, 2H,  $H_{arom}$ ), 6.68–7.09 (m, 39H,  $H_{arom}$ ), 7.35–7.63 (m, 4H,  $H_{arom}$ ), 7.75–7.77 (m, 2H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl\_3):  $\delta$  127.6, 128.1, 128.8, 129.0, 129.2, 131.4, 132.5, 132.7, 133.6, 133.9, 134.6, 137.1, 138.6, 139.3, 139.4, 140.5, 151.4, 153.4, 203.7. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl\_3):  $\delta$  –111.9 (s). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  32.0 (dt,  $J_{P-Rh} = 95.5$  Hz,  $J_{P-P} = 34.3$  Hz, *PP*h<sub>3</sub>), 49.4 (dd,  $J_{P-Rh} = 145.0$  Hz,  $J_{P-P} = 34.3$  Hz, *PP*h<sub>2</sub>). IR (KBr): 1921 cm<sup>-1</sup> ( $v_{C=0}$ ). Anal. Calc. for C<sub>61</sub>H<sub>47</sub>FOP<sub>3</sub>RhSi: C, 70.52; H, 4.56. Found: C, 70.23; H, 4.75.

### Preparation of {(o-Ph<sub>2</sub>PC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(Ph)Si}Ir(CO)(PPh<sub>3</sub>) (6a)

A 50-mL Schlenk tube was charged with **1a** (97.6 mg, 0.138 mmol), IrH(CO)(PPh<sub>3</sub>)<sub>3</sub> (**5**) (140 mg, 0.138 mmol), and toluene (6 mL), and the reaction mixture was stirred at 110 °C. After 60 h, the solvent was removed under reduced pressure to give a pale orange solid. The residue was washed with hexane (2 mL × 3) and dried under vacuum to afford 139 mg of **6a** (0.125 mmol) as an orange powder in 91% yield. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  6.41–6.45 (m, 4H,  $H_{arom}$ ), 6.67–7.05 (m, 30H,  $H_{arom}$ ), 7.29–7.73 (m, 12H,  $H_{arom}$ ), 7.90–7.92 (m, 2H,  $H_{arom}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  127.3, 127.6, 128.0, 128.7, 129.1, 129.4, 131.3, 132.8, 133.7, 134.3, 134.8, 136.8, 137.6, 139.3, 140.4, 141.0, 143.0, 152.8, 190.1. <sup>29</sup>Si{<sup>1</sup>H} NMR (79 MHz, CDCl<sub>3</sub>):  $\delta$  47.5 (dt,  $J_{Si-P}$ = 97.5 Hz,

 $J_{\text{Si-P}} = 10.5 \text{ Hz}$ ). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta 2.6$  (t,  $J_{\text{P-P}} = 25.7 \text{ Hz}$ ,  $PPh_3$ ), 25.5 (d,  $J_{\text{P-P}} = 25.7 \text{ Hz}$ ,  $PPh_2$ ). IR (KBr): 1925 cm<sup>-1</sup> ( $v_{\text{C=0}}$ ). Anal. Calc. for C<sub>61</sub>H<sub>48</sub>IrOP<sub>3</sub>Si: C, 65.99; H, 4.36. Found: C, 66.32; H, 4.74.

### Preparation of {(o-Ph<sub>2</sub>PC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(Me)Si}Ir(CO)(PPh<sub>3</sub>) (6b)

A 50-mL Schlenk tube was charged with **1b** (64.7 mg, 0.111 mmol), IrH(CO)(PPh<sub>3</sub>)<sub>3</sub> (**5**) (112 mg, 0.111 mmol), and toluene (10 mL), and the reaction mixture was stirred at 80 °C. After 14 h, the solvent was removed under reduced pressure to give a pale orange solid. The residue was washed with hexane (2 mL × 3) and dried under vacuum to afford 94.5 mg of **6b** (0.0902 mmol) as an orange powder in 81% yield. **6b-A**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.52 (s, 3H, SiCH<sub>3</sub>), 6.32–7.71 (m, 41H, H<sub>arom</sub>), 7.91–7.93 (m, 2H, H<sub>arom</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  2.3, 127.5, 127.8, 128.8, 130.8, 131.5, 132.5, 133.6, 134.7, 136.9, 139.4, 140.0, 145.7, 150.6, 153.7, 191.4. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  3.0 (t, J<sub>P-P</sub> = 25.7 Hz, PPh<sub>3</sub>), 25.2 (d, J<sub>P-P</sub> = 25.7 Hz, PPh<sub>2</sub>). IR (KBr): 1918 cm<sup>-1</sup> ( $v_{C=0}$ ). **6b-B**: <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  0.41 (s, 3H, SiCH<sub>3</sub>), 6.32–7.71 (m, 41H, H<sub>arom</sub>), 7.97–7.99 (m, 2H, H<sub>arom</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  9.9 (t, J<sub>P-P</sub> = 100.3 Hz, PPh<sub>3</sub>), 36.5 (d, J<sub>P-P</sub> = 100.3 Hz, PPh<sub>2</sub>). IR (KBr): 1959 cm<sup>-1</sup> ( $v_{C=0}$ ). Anal. Calc. for C<sub>56</sub>H<sub>46</sub>IrOP<sub>3</sub>Si: C, 64.17; H, 4.42. Found: C, 64.43; H, 4.82.



### Preparation of {(o-Ph<sub>2</sub>PC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(Et)Si}Ir(CO)(PPh<sub>3</sub>) (6c)

A 50-mL Schlenk tube was charged with **1c** (177 mg, 0.291 mmol), IrH(CO)(PPh<sub>3</sub>)<sub>3</sub> (**5**) (293 mg, 0.291 mmol), and toluene (7 mL), and the reaction mixture was stirred at 100 °C. After 36 h, the solvent was removed under reduced pressure to give a pale orange solid. The residue was washed with hexane (3 mL × 3) and dried under vacuum to afford 294 mg of **6c** (0.277 mmol) as an orange powder in 95% yield. <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.57 (t, *J*<sub>H-H</sub> = 7.8 Hz, 3H, SiCH<sub>2</sub>CH<sub>3</sub>), 2.11 (q, *J*<sub>H-H</sub> = 7.8 Hz, 2H, SiCH<sub>2</sub>CH<sub>3</sub>), 6.54–6.58 (m, 4H, *H*<sub>arom</sub>), 6.65–7.10 (m, 33H, *H*<sub>arom</sub>), 7.28–7.60 (m, 4H, *H*<sub>arom</sub>), 8.00–8.02 (m, 2H, *H*<sub>arom</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  10.0, 11.5, 127.5, 128.1, 128.3, 129.0, 129.3, 131.4, 132.6, 133.4, 134.8, 136.5, 139.6, 140.8, 151.3, 153.6, 191.2. <sup>29</sup>Si{<sup>1</sup>H} NMR (79 MHz, CDCl<sub>3</sub>):  $\delta$  50.0 (dt, *J*<sub>Si-P</sub> = 94.6 Hz, *J*<sub>Si-P</sub> = 9.8 Hz). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.2 (t, *J*<sub>P-P</sub> = 25.7 Hz, *P*Ph<sub>3</sub>), 25.5 (d, *J*<sub>P-P</sub> = 25.7 Hz, *P*Ph<sub>2</sub>). IR (KBr): 1918 cm<sup>-1</sup> (*v*<sub>C=O</sub>). Anal. Calc. for C<sub>57</sub>H<sub>48</sub>IrOP<sub>3</sub>Si: C, 64.45; H, 4.55. Found: C, 64.61; H, 4.86.

# Selectivity determined from the reactions of 2 with {*o*-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(R)

**Reaction of 2 with** {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Ph)(H). An NMR tube was charged with {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Ph)(H) (5.7 mg, 0.0091 mmol), 2 (8.4 mg, 0.0091 mmol), toluene- $d_8$  (0.50 mL), and trimesitylphosphine (7.1 mg) as an internal standard. Reaction was performed at 60 °C for 1 h to afford **3a** quantitatively (within the detection of <sup>31</sup>P NMR spectroscopy).

**Reaction of 2 with** {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(H) (4a). An NMR tube was charged with 4a (5.8 mg, 0.0103 mmol), 2 (9.4 mg, 0.0103 mmol), mesitylene- $d_{12}$  (0.50 mL), and trimesitylphosphine (8.0 mg) as an internal standard. Reaction was performed at 60 °C for 1 h to afford 3b quantitatively (within the detection of <sup>31</sup>P NMR spectroscopy).

**Reaction of 2 with** {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(Ph) (4b). An NMR tube was charged with 4b (10.0 mg, 0.0156 mmol), 2 (14.3 mg, 0.0156 mmol), mesitylene- $d_{12}$  (0.50 mL), and trimesitylphosphine (12 mg) as an internal standard. Reaction was performed at 60 °C for 2 h to afford a 61:39 mixture of 3b and 3a. The experiment was repeated three times, and it was confirmed that the error of the yields was within 1%.

**Reaction of 2 with** {o-(**Ph**<sub>2</sub>**P**)**C**<sub>6</sub>**H**<sub>4</sub>}<sub>2</sub>**Si**(**Me**)(**Et**) (**4c**). An NMR tube was charged with **4c** (9.3 mg, 0.0156 mmol), **2** (14.3 mg, 0.0156 mmol), mesitylene- $d_{12}$  (0.50 mL), and trimesitylphosphine (12 mg) as an internal standard. Reaction was performed at 60 °C for 1 h to afford a 11:89 mixture of **3b** and **3c**. The experiment was repeated three times, and it was confirmed that the error of the yields was within 1%.

**Reaction of 2 with** {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(p-tolyl) (4d). An NMR tube was charged with 4d (10.2 mg, 0.0156 mmol), 2 (14.3 mg, 0.0156 mmol), mesitylene- $d_{12}$  (0.50 mL), and trimesitylphosphine (12 mg) as an internal standard. Reaction was performed at 60 °C for 2 h to afford a 56:44 mixture of 3b and 3d. The experiment was repeated three times, and it was confirmed that the error of the yields was within 1%.

**Reaction of 2 with** {o-(**Ph**<sub>2</sub>**P**)**C**<sub>6</sub>**H**<sub>4</sub>}<sub>2</sub>**Si**(**Me**)(p-methoxyphenyl) (4e). An NMR tube was charged with 4e (10.5 mg, 0.0156 mmol), 2 (14.3 mg, 0.0156 mmol), mesitylene- $d_{12}$  (0.50 mL), and trimesitylphosphine (12.1 mg) as an internal standard. Reaction was performed at 60 °C for 2 h to afford a 50:50 mixture of 3b and 3e. The experiment was repeated three times, and it was confirmed that the error of the yields was within 1%.

**Reaction of 2 with**  $\{o-(Ph_2P)C_6H_4\}_2Si(Me)(p-dimethylaminophenyl)$  (4f). An NMR tube was charged with 4f (10.7 mg, 0.0156 mmol), 2 (14.3 mg, 0.0156 mmol), mesitylene- $d_{12}$  (0.50 mL), and trimesitylphosphine (12.1 mg) as an internal standard. Reaction was performed at 60 °C for 2 h to afford a 38:62 mixture of **3b** and **3f**. The experiment was repeated three times, and it was confirmed that the error of the yields was within 1%.

**Reaction of 2 with** {o-(Ph<sub>2</sub>P)C<sub>6</sub>H<sub>4</sub>}<sub>2</sub>Si(Me)(p-fluorophenyl) (4g). An NMR tube was charged with 4g (10.3 mg, 0.0156 mmol), 2 (14.3 mg, 0.0156 mmol), mesitylene- $d_{12}$  (0.50 mL), and trimesitylphosphine (12 mg) as an internal standard. Reaction was performed at 60 °C for 2 h to afford a 66:34 mixture of 3b and 3g. The experiment was repeated three times, and it was confirmed that the error of the yields was within 2%.

### Selectivity data determined from the reactions of RhH(CO)(PPh<sub>3</sub>)<sub>3</sub> (2) with 4b

A 50-mL Schlenk tube was charged with **4b** (60.0 mg, 0.0934 mmol), RhH(CO)(PPh<sub>3</sub>)<sub>3</sub> (**2**) (85.8 mg, 0.0934 mmol), mesitylene- $d_{12}$  (3.0 mL), and trimesitylphosphine (72.6 mg) as an internal standard. The solution was divided up evenly into six NMR sample tubes. The reactions were performed under appropriate conditions (see below). The experiment was repeated three times, and it was confirmed that the error of the yields was within 2%.

|       |                | Yield <sup>a</sup> of Si–Ph | Yield <sup>a</sup> of Si-Me |
|-------|----------------|-----------------------------|-----------------------------|
| entry | conditions     | activation product          | activation product          |
| 1     | 40 °C, 12 h    | 72(2)% ( <b>3b</b> )        | 28(2)% ( <b>3a</b> )        |
| 2     | 60 °C, 2 h     | 61(1)% ( <b>3b</b> )        | 39(1)% ( <b>3a</b> )        |
| 3     | 80 °C, 30 min  | 54(1)% ( <b>3b</b> )        | 46(1)% ( <b>3a</b> )        |
| 4     | 100 °C, 10 min | 50(1)% ( <b>3b</b> )        | 50(1)% ( <b>3a</b> )        |
| 5     | 130 °C, 5 min  | 46(2)% ( <b>3b</b> )        | 54(2)% ( <b>3a</b> )        |
| 6     | 160 °C, 5 min  | 41(1)% ( <b>3b</b> )        | 59(1)% ( <b>3a</b> )        |

**Table S1**Selectivity data determined from the reactions of 2 with 4b

<sup>*a*</sup>Determined by <sup>31</sup>P NMR spectroscopy.

### Selectivity data determined from the reactions of IrH(CO)(PPh<sub>3</sub>)<sub>3</sub> (5) with 4b

A 50-mL Schlenk tube was charged with **4b** (50.0 mg, 0.0778 mmol),  $IrH(CO)(PPh_3)_3$  (**5**) (78.4 mg, 0.0778 mmol), mesitylene- $d_{12}$  (2.5 mL), and trimesitylphosphine (60.4 mg) as an internal standard. The solution was divided up evenly into five NMR sample tubes. The reactions were performed under appropriate conditions (see below). The experiment was repeated three times, and it was confirmed that the error of the yields was within 2%.

|       |             | Yield <sup>a</sup> of Si-Ph | Yield <sup>a</sup> of Si–Me |
|-------|-------------|-----------------------------|-----------------------------|
| entry | conditions  | activation product          | activation product          |
| 1     | 60 °C, 48 h | 44(1)% ( <b>6b</b> )        | 56(1)% ( <b>6a</b> )        |
| 2     | 80 °C, 24 h | 37(2)% ( <b>6b</b> )        | 63(2)% ( <b>6a</b> )        |
| 3     | 100 °C, 6 h | 32(1)% ( <b>6b</b> )        | 68(1)% ( <b>6a</b> )        |
| 4     | 130 °C, 1 h | 27(1)% ( <b>6b</b> )        | 73(1)% ( <b>6a</b> )        |
| 5     | 160 °C, 1 h | 22(1)% ( <b>6b</b> )        | 78(1)% ( <b>6a</b> )        |

**Table S2**Selectivity data determined from the reactions of 5 with 4b

<sup>*a*</sup>Determined by <sup>31</sup>P NMR spectroscopy.

### Selectivity data determined from the reactions of RhH(CO)(PPh<sub>3</sub>)<sub>3</sub> (2) with 4c

A 50-mL Schlenk tube was charged with 4c (37.0 mg, 0.0622 mmol), RhH(CO)(PPh<sub>3</sub>)<sub>3</sub> (2) (57.2 mg, 0.0622 mmol), mesitylene- $d_{12}$  (2.0 mL), and trimesitylphosphine (48.4 mg) as an internal standard. The solution was divided up evenly into four NMR sample tubes. The reactions were performed under appropriate conditions (see below). The experiment was repeated three times, and it was confirmed that the error of the yields was within 1%.

|       | •             |                             |                             |
|-------|---------------|-----------------------------|-----------------------------|
|       |               | Yield <sup>a</sup> of Si-Et | Yield <sup>a</sup> of Si–Me |
| entry | conditions    | activation product          | activation product          |
| 1     | 40 °C, 10 h   | 11(1)% ( <b>3b</b> )        | 89(1)% ( <b>3c</b> )        |
| 2     | 60 °C, 1 h    | 11(1)% ( <b>3b</b> )        | 89(1)% ( <b>3c</b> )        |
| 3     | 80 °C, 30 min | 12(1)% ( <b>3b</b> )        | 88(1)% ( <b>3c</b> )        |
| 4     | 160 °C, 5 min | 13(1)% ( <b>3b</b> )        | 87(1)% ( <b>3c</b> )        |

**Table S3**Selectivity data determined from the reactions of 2 with 4c

<sup>*a*</sup>Determined by <sup>31</sup>P NMR spectroscopy.

Eyring plot for the reaction of 2 with 1a. A Schlenk tube was charged with 2 (24.0 mg, 0.0261 mmol), 1a (92.1 mg, 0.131 mmol), toluene- $d_8(1.6 \text{ mL})$ , and trimesitylphosphine (30.4 mg) as an internal standard. The solution was divided up evenly into four NMR sample tubes and the reactions were performed under appropriate temperature (50, 60, 70, and 80 °C). The reactions were monitored by <sup>31</sup>P NMR spectroscopy. The rate constants were calculated on the basis of the time conversion of [2]:  $k = 1.61 \times 10^{-4}$  (50 °C);  $3.76 \times 10^{-4}$  (60 °C);  $9.82 \times 10^{-4}$  (70 °C);  $1.90 \times 10^{-3}$  (80 °C) (Table S4). The temperature dependence of the rate constants yielded the following activation parameters (Eyring plot was shown in Figure S1):  $\Delta H^{\ddagger} = 18.3 \pm 0.7$  kcal mol<sup>-1</sup> and  $\Delta S^{\ddagger} = -19.3 \pm 2.1$  cal mol<sup>-1</sup>K<sup>-1</sup>.

| Table S4   | k at various temperature |  |
|------------|--------------------------|--|
| temp. (°C) | $k (s^{-1})$             |  |
| 50         | $1.61 \times 10^{-4}$    |  |
| 60         | $3.76 \times 10^{-4}$    |  |
| 70         | $9.82 	imes 10^{-4}$     |  |
| 80         | $1.90 \times 10^{-3}$    |  |



Figure S1 Eyring plot

Eyring plot for the reaction of 2 with 1b. A Schlenk tube was charged with 1b (75.8 mg, 0.131 mmol), toluene- $d_8(1.6 \text{ mL})$ , and trimesitylphosphine (30.4 mg) as an internal standard. The solution was divided up evenly into four NMR sample tubes. After the sample was evacuated at  $-78 \,^{\circ}$ C, 2 (6.0 mg, 0.00653 mmol) was introduced into each tube. The reactions were performed at appropriate temperature (0, 10, 20, and 30 °C). The reactions were monitored by <sup>31</sup>P NMR spectroscopy. The rate constants were calculated on the basis of the time conversion of [2]:  $k = 7.18 \times 10^{-5}$  (0 °C);  $2.30 \times 10^{-4}$  (10 °C);  $7.05 \times 10^{-4}$  (20 °C);  $2.55 \times 10^{-3}$  (30 °C) (Table S5). The temperature dependence of the rate constants yielded the following activation parameters (Eyring plot was shown in Figure S2):  $\Delta H^{\ddagger} = 18.8 \pm 0.8 \text{ kcal mol}^{-1}$  and  $\Delta S^{\ddagger} = -8.5 \pm 2.8 \text{ cal mol}^{-1} \text{K}^{-1}$ .

**Table S5**k at various temperature

| temp. (°C) | $k (s^{-1})$         |  |
|------------|----------------------|--|
| 0          | $7.18 	imes 10^{-5}$ |  |
| 10         | $2.30 	imes 10^{-4}$ |  |
| 20         | $7.05 	imes 10^{-4}$ |  |
| 30         | $2.55\times10^{-3}$  |  |



Figure S2 Eyring plot

### DFT calculation for the Si-C<sub>Me</sub> activation by Rh(H)(CO)(PPh<sub>3</sub>)<sub>3</sub> (2).

To get more insight into the mechanistic information on the  $Si-C(sp^3)$  activation by  $Rh(H)(CO)(PPh_3)_3$  (2), we performed density functional theory (DFT) calculations using model compounds {*o*-(H<sub>2</sub>P)- $(C_6H_4)_2Si(Me)_2Rh(H)(CO)$  (1A), where the phenyl groups were replaced by hydrogens (Scheme S1). The calculations were carried out at B3PW91<sup>1</sup> level in conjunction with the Stuttgart/Dresden ECP<sup>2</sup> and associated with triple- $\zeta$  SDD basis sets for Rh. For C, H, O, P, and Si, 6-311G(d,p) basis sets were employed. All calculations were performed by utilizing the Gaussian09 program.<sup>3</sup> Frequency calculations at the same level were performed on optimized structures to ensure that minima exhibit only positive frequency and that transition states exhibit only one imaginary frequency. The intrinsic reaction coordinate (IRC) calculations<sup>4</sup> were also performed to unambiguously connect the transition states with the reactants and the products. The molecular structures were drawn by using the *GaussView version 4.1.2* program.<sup>5</sup> Cartesian Coordinates were shown in Table S18-S24.



**Scheme S1** Computed reaction profiles for the oxidative addition of C–H (in blue) and Si– $C_{Me}$  (in red) bonds. Relative energies (at 298.15 K) are given in kcal/mol.

Once 16 electron complex **1A** featuring a square planar geometry was formed, the kinetic barrier to the  $\sigma$  C–H complex **1B** is highly accessible ( $\Delta G_{298}^{\ddagger} = 1.6$  kcal/mol). Not only C–H but also Si–C<sub>Me</sub> activation reactions potentially occur via the  $\sigma$ C–H complex **1B**. The transition state for Si–C<sub>Me</sub> cleavage TS(**2**) is lower in energy than the corresponding one for C–H cleavage TS(**3**) by 3.4 kcal/mol, strongly supporting that the Si–C<sub>Me</sub> cleavage is accessible without the C–H cleavage.

- (a) A. D. Becke, *Phys. Rev.*, 1988, A38, 3098; (b) A. D. Becke, *J. Chem. Phys.*, 1993, 98, 5648; (c) J. P. Perdew, Y. Wang, *Phys. Rev.*, 1992, B45, 13244.
- 2 D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta*, 1990, 77, 123.
- Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,; Jr., J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 4 C. Gonzalez, H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154.
- 5 R. II. Dennington, T. Keith, J. Millam, GaussView, Version 4.1, Semichem, Inc., Shawnee Mission, KS, 2007.

Result of X-ray diffraction study of 3a



Figure S3. Molecular structure of 3a (40% probability).

|--|

| (a) Crystal data (b) Intensity measurements             |                                                     |                        |                          |                      |                           |                        |
|---------------------------------------------------------|-----------------------------------------------------|------------------------|--------------------------|----------------------|---------------------------|------------------------|
| Empirical formula                                       | C <sub>61</sub> H <sub>48</sub> OP <sub>3</sub> RhS | Si                     | Diffractometer           |                      | Rigaku/MSC Mercury CCD    |                        |
| Formula weight                                          | 1021.95                                             |                        | Radiation                |                      | $MoK\alpha$ ( $\lambda =$ | 0.71069 Å)             |
| Crystal description                                     | Prism                                               |                        | Monochrometer            | •                    | Graphite                  |                        |
| Crystal color                                           | Pale Yellow                                         |                        | $2\theta \max(^{\circ})$ |                      | 55                        |                        |
| Crystal size (mm)                                       | 0.25 	imes 0.05 	imes 0                             | 0.03                   | Reflections coll         | ected                | 37223                     |                        |
| Crystalizing solution                                   | Et <sub>2</sub> O (23 °C)                           |                        | Independent ref          | lections             | 11027 ( $R_{int}$ =       | = 0.063)               |
| Crystal system                                          | Monoclinic                                          |                        | Reflections obse         | erved (> $2\sigma$ ) | 7400                      |                        |
| Space group                                             | $P2_1/c$ (#14)                                      |                        | Abs. correction          | type                 | Multi-scan                |                        |
| <i>a</i> (Å)                                            | 11.1258(7)                                          |                        | Abs. transmission        | on                   | 0.705 (min.)              | , 0.985 (max.)         |
| <i>b</i> (Å)                                            | 16.2240(10)                                         |                        | (c) Refinement           | (CrystalStructu      | re 3.8)                   |                        |
| <i>c</i> (Å)                                            | 27.441(2)                                           |                        | $R_1 (I > 2\sigma(I))$   |                      | 0.0582                    |                        |
| $\beta$ (°)                                             | 99.718(3)                                           |                        | $wR_2 (I > 2\sigma(I))$  |                      | 0.1771                    |                        |
| Volume ( $Å^3$ )                                        | 4882.2(6)                                           |                        | Data                     |                      | 11027                     |                        |
| Z value                                                 | 4                                                   |                        | Restraints               |                      | 0                         |                        |
| $D_{calc}$ (g/cm <sup>3</sup> )                         | 1.389                                               |                        | Parameters               |                      | 652                       |                        |
| Mesurement temp. (K)                                    | 200                                                 |                        | Goodness of fit          | on $F^2$             | 1.002                     |                        |
| $\mu$ (MoK $\alpha$ ) (mm <sup>-1</sup> )               | 0.515                                               |                        | Largest diff. pea        | ak and hole          | 1.73 and -1.              | $05 \text{ e.Å}^{-3}$  |
|                                                         |                                                     |                        |                          |                      |                           |                        |
| Table S7 Selected bond                                  | lengths (Å) and                                     | angles (°)             |                          |                      |                           |                        |
| Dh1 D1 2 2790(12)                                       |                                                     | 2.2504(11)             | Dh1 D2                   | 2 2045(11)           | Dh1 C:1                   | 2 2521(11)             |
| <b>RIII-FI</b> $2.3760(12)$<br><b>Ph1 C1</b> $1.870(4)$ | C1 O1                                               | 2.3394(11)<br>1 150(5) | Sil C2                   | 2.3943(11)           | S:1 C9                    | 2.5551(11)<br>1 999(4) |
| $R_{11} - C_1 = 1.879(4)$                               | 01-01                                               | 1.130(3)               | 511-02                   | 1.003(4)             | 511-Co                    | 1.000(4)               |
| 511-020 1.880(4)                                        |                                                     |                        |                          |                      |                           |                        |
| P1-Rh1-P2 1                                             | 17 92(4)                                            | P1-Rh1-P3              | 99 00(4)                 | P2-Rh1               | -P3                       | 102 79(4)              |
| P1-Rh1-C1 1'                                            | 25 41(14)                                           | P2-Rh1-C1              | 111 31(14)               | P3-Rh1               | -C1                       | 91.60(14)              |
| P1-Rh1-Si1                                              | 0.10(4)                                             | P2-Rh1-Si1             | 80.65(4)                 | P3-Rh1               | -Sil                      | 176.40(4)              |
| C1-Rh1-Si1 8                                            | 5.13(14)                                            | Rh1-C1-O1              | 177.1(3)                 | Rh1-Si               | 1-C2                      | 120.85(15)             |
| Rh1-Si1-C8 10                                           | 08.67(14)                                           | Rh1-Si1-C26            | 108.83(15)               | 61                   |                           |                        |

Result of X-ray diffraction study of 3b



Figure S4. Molecular structure of 3b (40% probability).

|                           | 0 1         |                                                 |                                          |                                |                          |                       |                          |  |
|---------------------------|-------------|-------------------------------------------------|------------------------------------------|--------------------------------|--------------------------|-----------------------|--------------------------|--|
| (a) Crystal data          |             |                                                 |                                          | (b) Intensity measurements     |                          |                       |                          |  |
| Empirical fo              | rmula       | $C_{56}H_{46}OP_3Rh$                            | $C_{56}H_{46}OP_3RhSi \cdot 2(CH_2Cl_2)$ |                                | Diffractometer           |                       | Rigaku/MSC Mercury CCD   |  |
| Formula wei               | ght         | 1128.69                                         |                                          | Radiation                      |                          | $MoK\alpha(\lambda =$ | = 0.71069 Å)             |  |
| Crystal descr             | ription     | Prism                                           |                                          | Monochromete                   | er                       | Graphite              |                          |  |
| Crystal color             |             | Pale Yellow                                     |                                          | $2\theta \max(^{\circ})$       |                          | 55                    |                          |  |
| Crystal size              | (mm)        | 0.35 	imes 0.25 	imes                           | 0.15                                     | Reflections col                | lected                   | 20790                 |                          |  |
| Crystalizing              | solution    | CH <sub>2</sub> Cl <sub>2</sub> , <i>n</i> -hex | (23 °C)                                  | Independent re                 | flections                | 11765 ( $R_{int}$     | = 0.0277)                |  |
| Crystal syste             | m           | Triclinic                                       |                                          | Reflections obs                | served (> $2\sigma$ )    | 10988                 |                          |  |
| Space group               |             | P-1 (#2)                                        |                                          | Abs. correction                | i type                   | Multi-scan            |                          |  |
| a (Å)                     |             | 12.0136(7)                                      |                                          | Abs. transmissi                | ion                      | 0.7962 (mi            | n.), 0.9046 (max.)       |  |
| <i>b</i> (Å)              |             | 12.8856(5)                                      |                                          | (c) Refinement                 | (Shelxl-97)              |                       |                          |  |
| <i>c</i> (Å)              |             | 17.6972(11)                                     |                                          | $R_1 (I > 2\sigma(I))$         |                          | 0.0428                |                          |  |
| $\alpha$ (°)              |             | 94.380(3)                                       |                                          | $wR_2 (I > 2\sigma(I))$        |                          | 0.1037                |                          |  |
| $\beta$ (°) 105.563       |             | 105.563(3)                                      | 105.563(3)                               |                                | $R_1$ (all data)         |                       |                          |  |
| $\gamma$ (°) 90.17        |             | 90.173(2)                                       |                                          | $wR_2$ (all data)              |                          | 0.1062                |                          |  |
| Volume ( $Å^3$ ) 263      |             | 2630.6(2)                                       |                                          | Data / Restraints / Parameters |                          | 11765 / 0 /           | 11765 / 0 / 620          |  |
| Z value 2                 |             | 2                                               | 2                                        |                                | Goodness of fit on $F^2$ |                       |                          |  |
| $D_{calc} (g/cm^3)$ 1.425 |             | 1.425                                           |                                          | Largest diff. pe               | ak and hole              | 0.893 and -           | –0.928 e.Å <sup>–3</sup> |  |
| Mesurement temp. (K) 200  |             | 200                                             |                                          |                                |                          |                       |                          |  |
| $\mu$ (MoK $\alpha$ ) (1  | $nm^{-1}$ ) | 0.682                                           |                                          |                                |                          |                       |                          |  |
|                           |             |                                                 |                                          |                                |                          |                       |                          |  |
| Table S0 Sc               | lacted band | longths (Å) and                                 | d angles (°)                             |                                |                          |                       |                          |  |
| DL1 D1                    |             | DL1 D2                                          | $\frac{1}{2} \frac{1}{2501(c)}$          | D1 1 D2                        | 2 2074(6)                | DI-1 C:1              | 2.2(01(7))               |  |
| KIII-PI<br>Dh1 C1         | 2.3001(0)   | C1 O1                                           | 2.5591(0)                                | Sil C2                         | 2.3974(0)                | S:1 C9                | 2.3001(7)                |  |
| Sil C26                   | 1.809(3)    | CI-01                                           | 1.130(3)                                 | 511-C2                         | 1.883(4)                 | 511-Co                | 1.000(4)                 |  |
| 511-020                   | 1.880(4)    |                                                 |                                          |                                |                          |                       |                          |  |
| P1-Rh1-P2                 | 1           | 08.65(2)                                        | P1-Rh1-P3                                | 98.22(2)                       | P2-Rh1                   | -P3                   | 99.53(2)                 |  |
| P1-Rh1-C1                 | 1           | 19.83(8)                                        | P2-Rh1-C1                                | 125.71(8)                      | P3-Rh1                   | -C1                   | 96.45(8)                 |  |
| P1-Rh1-Si1                | 8           | 1.91(2)                                         | P2-Rh1-Si1                               | 80.86(2)                       | P3-Rh1                   | -Sil                  | 179.53(2)                |  |
| C1-Rh1-Si1                | 8           | 3.09(8)                                         | Rh1-C1-O1                                | 177.1(3)                       | Rh1-Si                   | 1-C2                  | 120.85(15)               |  |
| Rh1-Si1-C8                | 1           | 08.67(14)                                       | Rh1-Si1-C26                              | 108 83(15)                     | )                        |                       | ` '                      |  |

Table S8. Crystallographic data for 3b.

Result of X-ray diffraction study of 3c



Figure S5. Molecular structure of 3c (40% probability).

| (a) Crystal d                   | ata           |                                     |                | (b) Intensity me         | easurements          |                           |                                  |  |
|---------------------------------|---------------|-------------------------------------|----------------|--------------------------|----------------------|---------------------------|----------------------------------|--|
| Empirical fo                    | rmula         | C57H48OP3Rh                         | Si             | Diffractometer           | Diffractometer       |                           | Rigaku/MSC Mercury CCD           |  |
| Formula wei                     | ght           | 972.92                              |                | Radiation                |                      | $MoK\alpha$ ( $\lambda$ = | = 0.71069 Å)                     |  |
| Crystal descr                   | ription       | Prism                               |                | Monochromete             | r                    | Graphite                  |                                  |  |
| Crystal color                   | r             | Yellow                              |                | $2\theta \max(^{\circ})$ |                      | 55                        |                                  |  |
| Crystal size                    | (mm)          | $0.20\times0.15\times$              | 0.15           | Reflections coll         | lected               | 18534                     |                                  |  |
| Crystalizing                    | solution      | Et <sub>2</sub> O, <i>n</i> -pentar | ne (23 °C)     | Independent ref          | lections             | 10572 (R <sub>int</sub>   | = 0.028)                         |  |
| Crystal syste                   | em            | Triclinic                           |                | Reflections obs          | erved (> $2\sigma$ ) | 9576                      |                                  |  |
| Space group                     |               | P-1 (#2)                            |                | Abs. correction          | type                 | Multi-scan                |                                  |  |
| a (Å)                           |               | 12.272(3)                           |                | Abs. transmissi          | on                   | 0.738 (min.               | ), 0.924 (max.)                  |  |
| <i>b</i> (Å)                    |               | 12.984(3)                           |                | (c) Refinement           | (CrystalStructu      | re 3.8)                   |                                  |  |
| <i>c</i> (Å)                    |               | 16.181(4)                           |                | $R_1 (I > 2\sigma(I))$   |                      | 0.0369                    |                                  |  |
| α (°)                           |               | 80.866(6)                           |                | $wR_2 (I > 2\sigma(I))$  |                      | 0.1118                    |                                  |  |
| β(°)                            |               | 85.510(6)                           |                | Data                     |                      | 10572                     |                                  |  |
| γ(°)                            |               | 68.890(5)                           |                | Restraints               |                      | 0                         |                                  |  |
| Volume ( $Å^3$ )                | 1             | 2374.1(9)                           |                | Parameters               |                      | 616                       |                                  |  |
| Z value                         |               | 2                                   |                | Goodness of fit          | on $F^2$             | 1.004                     |                                  |  |
| $D_{calc}$ (g/cm <sup>3</sup> ) | 1             | 1.361                               |                | Largest diff. pe         | ak and hole          | 1.10 and -0               | $0.89 \text{ e.}\text{\AA}^{-3}$ |  |
| Mesurement temp. (K) 200        |               | 200                                 |                |                          |                      |                           |                                  |  |
| $\mu$ (MoK $\alpha$ ) (1        | $mm^{-1}$ )   | 0.525                               |                |                          |                      |                           |                                  |  |
|                                 |               |                                     |                |                          |                      |                           |                                  |  |
| Table S11. S                    | Selected bond | d lengths (Å) ar                    | nd angles (°). |                          |                      |                           |                                  |  |
| Rh1-P1                          | 2.3569(5)     | Rh1-P2                              | 2,3625(5)      | Rh1-P3                   | 2,3851(5)            | Rh1-Si1                   | 2,3548(5)                        |  |
| Rh1-C1                          | 1.8645(18)    | C1-O1                               | 1.155(2)       | Si1-C2                   | 1.891(2)             | Si1-C4                    | 1.892(2)                         |  |
| Si1-C22                         | 1.902(2)      |                                     |                |                          |                      |                           |                                  |  |
|                                 |               |                                     |                |                          |                      |                           |                                  |  |
| P1-Rh1-P2                       | 11            | 17.469(17)                          | P1-Rh1-P3      | 98.235(18)               | P2-Rh1               | -P3                       | 100.417(19)                      |  |
| P1-Rh1-C1                       | 11            | 19.91(7)                            | P2-Rh1-C1      | 119.15(8)                | P3-Rh1               | -C1                       | 90.07(7)                         |  |
| P1-Rh1-Si1                      | 83            | 3.154(19)                           | P2-Rh1-Si1     | 83.84(2)                 | P3-Rh1               | -Sil                      | 174.163(17)                      |  |
| C1-Rh1-Si1                      | 84            | 4.34(7)                             | Rh1-C1-O1      | 178.57(19)               | Rh1-Si               | 1-C2                      | 121.59(7)                        |  |
| Rh1-Si1-C4                      | 10            | )9.49(7)                            | Rh1-Si1-C22    | 108.86(7)                |                      |                           |                                  |  |

Result of X-ray diffraction study of 6a



Figure S6. Molecular structure of 6a (40% probability).

| Table S12. ( | Crystallog | raphic | data | for | <b>6a</b> . |
|--------------|------------|--------|------|-----|-------------|
|--------------|------------|--------|------|-----|-------------|

| (a) Crystal da                            | ata          |                                          |               | (b) Intensity me                    | easurements      |                                                     |            |
|-------------------------------------------|--------------|------------------------------------------|---------------|-------------------------------------|------------------|-----------------------------------------------------|------------|
| Empirical formula                         |              | $C_{61}H_{48}IrOP_3Si \cdot 1/2(Et_2O)$  |               | Diffractometer                      |                  | Rigaku/MSC Mercury CCD                              |            |
| Formula weight                            |              | 1131.80                                  |               | Radiation                           |                  | $MoK\alpha$ ( $\lambda = 0.71069$ Å)                |            |
| Crystal descu                             | ription      | Prism                                    |               | Monochrometer                       |                  | Graphite                                            |            |
| Crystal color                             | •            | Pale Yellow                              |               | $2\theta \max(^{\circ})$            |                  | 55                                                  |            |
| Crystal size (                            | (mm)         | 0.20	imes 0.08	imes 0.08                 |               | Reflections collected               |                  | 40576                                               |            |
| Crystalizing                              | solution     | Et <sub>2</sub> O (23 °C)                |               | Independent reflections             |                  | 11649 ( $R_{int} = 0.049$ )                         |            |
| Crystal syste                             | m            | Monoclinic                               |               | Reflections observed (> $2\sigma$ ) |                  | 9581                                                |            |
| Space group                               |              | <i>P</i> 2 <sub>1</sub> / <i>n</i> (#14) |               | Abs. correction type                |                  | Multi-scan                                          |            |
| a (Å)                                     |              | 12.039(2)                                |               | Abs. transmission                   |                  | 0.606 (min.), 0.800 (max.)                          |            |
| b (Å)                                     |              | 20.100(4)                                |               | (c) Refinement                      | (CrystalStructur | re 3.8)                                             |            |
| <i>c</i> (Å)                              |              | 21.779(5)                                |               | $R_1 (I > 2\sigma(I))$              |                  | 0.0417                                              |            |
| β(°)                                      |              | 104.258(2)                               |               | $wR_2 (I > 2\sigma(I))$             |                  | 0.0940                                              |            |
| Volume ( $Å^3$ )                          |              | 5107.8(18)                               |               | Data                                |                  | 11649                                               |            |
| Z value                                   |              | 4                                        |               | Restraints                          |                  | 0                                                   |            |
| $D_{calc}$ (g/cm <sup>3</sup> )           |              | 1.472                                    |               | Parameters                          |                  | 683                                                 |            |
| Mesurement temp. (K)                      |              | 200                                      |               | Goodness of fit on $F^2$            |                  | 1.013                                               |            |
| $\mu$ (MoK $\alpha$ ) (mm <sup>-1</sup> ) |              | 2.782                                    |               | Largest diff. peak and hole         |                  | $1.96 \text{ and} - 1.63 \text{ e.}\text{\AA}^{-3}$ |            |
|                                           |              |                                          |               |                                     |                  |                                                     |            |
| Table S13. S                              | Selected bon | d lengths (Å) ar                         | d angles (°). |                                     |                  |                                                     |            |
| Ir1-P1                                    | 2,3253(9)    | Ir1-P2                                   | 2.3253(11)    | Ir1-P3                              | 2.3638(12)       | Ir1-Si1                                             | 2.3857(14) |
| Ir1-C1                                    | 1.792(7)     | C1-01                                    | 1.219(9)      | Si1-C2                              | 1.879(5)         | Si1-C8                                              | 1.899(4)   |
| Si1-C26                                   | 1.896(4)     |                                          |               |                                     |                  |                                                     |            |
|                                           |              |                                          |               |                                     |                  |                                                     |            |
| P1-Ir1-P2                                 | 10           | 06.84(3)                                 | P1- Ir1-P3    | 102.46(4)                           | P2- Ir1-         | -P3                                                 | 99.28(4)   |
| P1- Ir1-C1                                | 11           | 17.9(2)                                  | P2-Rh1-C1     | 128.3(2)                            | P3- Ir1-         | -C1                                                 | 95.1(2)    |
| P1- Ir1-Si1                               | 8            | 1.40(4)                                  | P2- Ir1-Si1   | 80.48(4)                            | P3- Ir1-         | -Si1                                                | 175.98(4)  |
| C1- Ir1-Si1                               | 82           | 2.0(2)                                   | Ir1-C1-O1     | 178.6(6)                            | Ir1-Si1-         | -C2                                                 | 121.22(17) |
| Ir1-Si1-C8                                | 10           | 06.93(16)                                | Ir1-Si1-C26   | 107.25(15)                          |                  |                                                     |            |

Result of X-ray diffraction study of 6b



Figure S7. Molecular structure of 6b (40% probability).

| (a) Crystal d                             | ata          |                                                            |                | (b) Intensity m                       | easurements |                                      |            |
|-------------------------------------------|--------------|------------------------------------------------------------|----------------|---------------------------------------|-------------|--------------------------------------|------------|
| Empirical formula                         |              | $C_{56}H_{46}IrOP_3Si \cdot 2(CH_2Cl_2)$                   |                | Diffractometer                        |             | Rigaku/MSC Mercury CCD               |            |
| Formula weight                            |              | 1218.07                                                    |                | Radiation                             |             | $MoK\alpha$ ( $\lambda = 0.71069$ Å) |            |
| Crystal desc                              | ription      | Platelet                                                   |                | Monochromete                          | r           | Graphite                             |            |
| Crystal color                             | r            | Colorless                                                  |                | $2\theta \max(^{\circ})$              |             | 55                                   |            |
| Crystal size                              | (mm)         | 0.35 	imes 0.25 	imes 0.20                                 |                | Reflections collected                 |             | 20788                                |            |
| Crystalizing                              | solution     | CH <sub>2</sub> Cl <sub>2</sub> , <i>n</i> -hexane (23 °C) |                | Independent reflections               |             | 11792 ( $R_{\rm int} = 0.026$ )      |            |
| Crystal syste                             | em           | Triclinic                                                  |                | Reflections observed (> $2\sigma$ )   |             | 11271                                |            |
| Space group                               |              | <i>P</i> -1 (#2)                                           |                | Abs. correction type                  |             | Multi-scan                           |            |
| a (Å)                                     |              | 12.020(2)                                                  |                | Abs. transmission                     |             | 0.419 (min.), 0.559 (max.)           |            |
| b (Å)                                     |              | 12.852(3)                                                  |                | (c) Refinement (CrystalStructure 3.8) |             |                                      |            |
| <i>c</i> (Å)                              |              | 17.695(3)                                                  |                | $\overline{R_1(I > 2\sigma(I))}$      |             | 0.0315                               |            |
| $\alpha$ (°)                              |              | 85.644(4)                                                  |                | $wR_2 (I > 2\sigma(I))$               |             | 0.0930                               |            |
| $\beta$ (°)                               |              | 74.360(4)                                                  |                | Data                                  |             | 11792                                |            |
| $\gamma(^{\circ})$                        |              | 90.106(5)                                                  |                | Restraints                            |             | 0                                    |            |
| Volume ( $Å^3$ )                          | )            | 2623.8(9)                                                  |                | Parameters                            |             | 663                                  |            |
| Z value                                   |              | 2                                                          |                | Goodness of fit on $F^2$              |             | 1.013                                |            |
| $D_{calc}$ (g/cm <sup>3</sup> )           |              | 1.542                                                      |                | Largest diff. peak and hole           |             | 2.35 and $-1.24 \text{ e.Å}^{-3}$    |            |
| Mesurement temp. (K)                      |              | 200                                                        |                |                                       |             |                                      |            |
| $\mu$ (MoK $\alpha$ ) (mm <sup>-1</sup> ) |              | 2.909                                                      |                |                                       |             |                                      |            |
|                                           |              |                                                            |                |                                       |             |                                      |            |
| Table S15. S                              | Selected bon | d lengths (Å) a                                            | nd angles (°). |                                       |             |                                      |            |
| Ir1-P1                                    | 2.3382(7)    | Ir1-P2                                                     | 2.3370(6)      | Ir1-P3                                | 2.3811(8)   | Ir1-Si1                              | 2,3805(9)  |
| Ir1-C1                                    | 1.857(2)     | C1-01                                                      | 1.165(3)       | Si1-C2                                | 1.884(3)    | Si1-C3                               | 1.893(3)   |
| Si1-C21                                   | 1.895(2)     | 01 01                                                      | 11100(0)       | 511 02                                | 1.00 (0)    | 511 00                               | 110/0(0)   |
| 511 021                                   | 1.070(2)     |                                                            |                |                                       |             |                                      |            |
| P1-Ir1-P2                                 | 1            | 08.57(2)                                                   | P1- Ir1-P3     | 99.35(2)                              | P2- Ir1     | -P3                                  | 98.06(2)   |
| P1- Ir1-C1 12                             |              | 26.19(9)                                                   | P2-Rh1-C1      | 120.08(9)                             | P3- Ir1     | -C1                                  | 95.45(10)  |
| P1- Ir1-Si1                               | 8            | 1.01(2)                                                    | P2- Ir1-Si1    | 81.84(2)                              | P3- Ir1     | -Si1                                 | 179.64(2)  |
| C1- Ir1-Si1                               | 84           | 4.31(10)                                                   | Ir1-C1-O1      | 175.2(2)                              | Ir1-Si1     | -C2                                  | 122.01(13) |
| Ir1-Si1-C3                                | 10           | 07.97(12)                                                  | Ir1-Si1-C21    | 106.70(11)                            |             |                                      |            |

Result of X-ray diffraction study of 6c



Figure S8. Molecular structure of 6c (40% probability).

| Table S16. | Crystal | lographic | data | for | 6c |
|------------|---------|-----------|------|-----|----|
|------------|---------|-----------|------|-----|----|

| (a) Crystal data                          | (b) Intensity measurements                   |               |                                     |               |                                              |            |  |
|-------------------------------------------|----------------------------------------------|---------------|-------------------------------------|---------------|----------------------------------------------|------------|--|
| Empirical formula                         | $C_{57}H_{48}IrO_1P_3Si, 0.5(C_4H_{10}O)$    |               | Diffractometer                      |               | Rigaku/MSC Mercury CCD                       |            |  |
| Formula weight                            | 1099.21                                      |               | Radiation                           |               | $MoK\alpha (\lambda = 0.71069 \text{ Å})$    |            |  |
| Crystal description                       | Platelet                                     | Platelet      |                                     | Monochrometer |                                              | Graphite   |  |
| Crystal color                             | Colorless                                    |               | $2\theta \max(^{\circ})$            |               | 55                                           |            |  |
| Crystal size (mm)                         | 0.25 	imes 0.12 	imes 0.03                   |               | Reflections collected               |               | 38992                                        |            |  |
| Crystalizing solution                     | Et <sub>2</sub> O, <i>n</i> -pentane (23 °C) |               | Independent reflections             |               | 11200 ( $R_{\rm int} = 0.0492$ )             |            |  |
| Crystal system                            | Monoclinic                                   |               | Reflections observed (> $2\sigma$ ) |               | 10356                                        |            |  |
| Space group                               | $P2_1/n$ (#14)                               |               | Abs. correction type                |               | Multi-scan                                   |            |  |
| a (Å)                                     | 12.104(3)                                    |               | Abs. transmission                   |               | 0.5331 (min.), 0.9186 (max.)                 |            |  |
| <i>b</i> (Å)                              | 21.128(5)                                    |               | (c) Refinement (Shelx1-97)          |               |                                              |            |  |
| <i>c</i> (Å)                              | 19.248(5)                                    |               | $\overline{R_1(I > 2\sigma(I))}$    |               | 0.0482                                       |            |  |
| $\beta$ (°)                               | 91.887(3)                                    |               | $wR_2 (I > 2\sigma(I))$             |               | 0.0904                                       |            |  |
| Volume ( $Å^3$ )                          | 4920(2)                                      |               | $R_1$ (all data)                    |               | 0.0555                                       |            |  |
| Z value                                   | 4                                            |               | $wR_2$ (all data)                   |               | 0.0927                                       |            |  |
| $D_{calc}$ (g/cm <sup>3</sup> )           | 1.484                                        |               | Data / Restraints / Parameters      |               | 11200 / 0 / 6212                             |            |  |
| Mesurement temp. (K)                      | 200                                          |               | Goodness of fit on $F^2$            |               | 1.230                                        |            |  |
| $\mu$ (MoK $\alpha$ ) (mm <sup>-1</sup> ) | 2.878                                        |               | Largest diff. peak and hole         |               | $1.446 \text{ and} - 1.203 \text{ e.Å}^{-3}$ |            |  |
|                                           |                                              |               |                                     |               |                                              |            |  |
| Table S17 Selected bor                    | d longths (Å) a                              | nd angles (°) |                                     |               |                                              |            |  |
|                                           | $L_1 D2$                                     |               | L 1 D2                              | 2 2702(11)    | L.1 C'1                                      | 0.29(9(12) |  |
| III-PI = 2.352/(II)                       | ) If $1-P_2$                                 | 2.3273(11)    | IFI-P3                              | 2.3793(11)    | IF1-511                                      | 2.3808(12) |  |
| 11-C1 = 1.8/1(5)                          | CI-01                                        | 1.140(0)      | 511-C2                              | 1.892(5)      | 511-C4                                       | 1.897(4)   |  |
| S11-C22 1.891(5)                          |                                              |               |                                     |               |                                              |            |  |
| P1-Ir1-P2 1                               | 19 10(4)                                     | P1- Ir1-P3    | 98 99(4)                            | P2- Ir1       | -P3                                          | 98 02(4)   |  |
| P1- Ir1-C1 1                              | 18.93(15)                                    | P2-Rh1-C1     | 118,99(16)                          | P3- Ir1       | -C1                                          | 90.19(15)  |  |
| P1- Ir1-Si1                               | 2 07(4) P2- Ir1-Si1                          |               | 83.38(4) P3- Ir1                    |               | 1-Si1 177.48(4)                              |            |  |
| C1- Ir1-Si1                               | 7.30(15)                                     | Ir1-C1-O1     | 178.6(5)                            | Ir1-Si1       | -C2                                          | 122.22(16) |  |
| Ir1 Si1 C4                                | 08.49(14)                                    | Ir1 Si1 C22   | 108 30(14)                          | 011           |                                              | (-~)       |  |

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

**Figure S9.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2SiPh_2$  (1a).







**Figure S10.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2SiMe_2$  (1b).





Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

**Figure S11.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2SiEt_2$  (1c).





**Figure S12.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(H)(Ph)$ .







**Figure S13.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(H)(p-tolyl)$ .



 $^{13}C{}^{1}H{}$ 





**Figure S14.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(H)(p-methoxyphenyl)$ .





**SFigure 15.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(H)(p-dimethylaminophenyl).$ 





**Figure S16.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(H)(p-fluorophenyl)$ .



 ${}^{13}C{}^{1}H{}$ 


20

10

0



-10 δ / ppm -20

-30

-40

Figure S17. NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(Me)(Ph)$  (4b).





**Figure S18.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(Me)(Et)$  (4c).



Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

 ${}^{13}C{}^{1}H{}$ 



 ${}^{31}P{}^{1}H{}$ 



Figure S19. NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(Me)(Cl)$ .



 $^{13}C{}^{1}H{}$ 





**Figure S20.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(Me)(p-tolyl)$  (4d).





 ${}^{31}P{}^{1}H{}$ 



Figure S21. NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(Me)(p-methoxyphenyl)$  (4e).





Figure S22. NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(Me)(p-dimethylaminophenyl)$  (4f).







**Figure S23.** NMR spectra of  $\{o-(Ph_2P)C_6H_4\}_2Si(Me)(p-fluorophenyl)$  (**4g**).





Figure S24. NMR spectra of  $\{(o-Ph_2PC_6H_4)_2(Ph)Si\}Rh(CO)(PPh_3)$  (3a).





Figure S25. NMR spectra of  $\{(o-Ph_2PC_6H_4)_2(Me)Si\}Rh(CO)(PPh_3)$  (3b).









Figure S26. NMR spectra of  $\{(o-Ph_2PC_6H_4)_2(Et)Si\}Rh(CO)(PPh_3)$  (3c).







Figure S27. NMR spectra of  $\{(o-Ph_2PC_6H_4)_2(p-tolyl)Si\}Rh(CO)(PPh_3)$  (3d).













Figure S29. NMR spectra of {(*o*-Ph<sub>2</sub>PC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(*p*-dimethylaminophenyl)Si}Rh(CO)(PPh<sub>3</sub>) (3f).





**Figure S30.** NMR spectra of  $\{(o-Ph_2PC_6H_4)_2(p-fluorophenyl)Si\}Rh(CO)(PPh_3)$  (**3g**).



 ${}^{19}\mathrm{F}\{{}^{1}\mathrm{H}\}$ 













 ${}^{13}C{}^{1}H{}$ 





Figure S33. NMR spectra of  $\{(o-Ph_2PC_6H_4)_2(Et)Si\}Ir(CO)(PPh_3)$  (6c).







```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2013
```



Table S18.Cartesian coordinate of 1A.

|    | Х         | Y         | Z        |
|----|-----------|-----------|----------|
| Si | 0.389179  | 0.188617  | 0.45373  |
| С  | 1.188180  | 1.131107  | 1.91232  |
| С  | 2.199760  | 0.421375  | 2.57900  |
| С  | 0.939763  | 2.449705  | 2.34696  |
| С  | 2.946034  | 0.973360  | 3.61310  |
| Н  | 2.424330  | -0.596905 | 2.27879  |
| С  | 1.691527  | 3.002168  | 3.38964  |
| С  | 2.692739  | 2.275273  | 4.02002  |
| Н  | 3.721926  | 0.387084  | 4.09442  |
| Н  | 1.491023  | 4.017743  | 3.71630  |
| Н  | 3.264825  | 2.725279  | 4.82465  |
| С  | 1.646397  | 0.323942  | -0.97472 |
| С  | 2.600593  | -0.705280 | -1.02920 |
| С  | 1.791026  | 1.383330  | -1.89758 |
| С  | 3.667204  | -0.693303 | -1.92011 |
| Н  | 2.514998  | -1.548463 | -0.35208 |
| С  | 2.872576  | 1.393699  | -2.78581 |
| С  | 3.811995  | 0.370780  | -2.79741 |
| Н  | 4.381452  | -1.510245 | -1.92226 |
| Н  | 2.981986  | 2.214079  | -3.48837 |
| Н  | 4.642842  | 0.406024  | -3.49430 |
| С  | -1.376163 | 0.656607  | -0.00212 |
| Н  | -1.705329 | -0.010054 | -0.80714 |
| Н  | -2.033025 | 0.476739  | 0.85567  |
| Н  | -1.526676 | 1.686622  | -0.33386 |
| С  | 0.248855  | -1.625509 | 0.96060  |
| Н  | -0.484193 | -1.707050 | 1.76956  |
| Н  | -0.123267 | -2.217758 | 0.11847  |
| Н  | 1.170462  | -2.092566 | 1.31294  |
| Rh | -0.513869 | 4.235904  | -0.64205 |
| Н  | -0.773460 | 4.792525  | -2.11885 |
| С  | -1.536321 | 5.728278  | -0.24177 |
| 0  | -2.166482 | 6.672944  | -0.07673 |
| Р  | 0.581314  | 2.773526  | -2.07840 |
| Η  | 1.278612  | 3.463224  | -3.09304 |
| Η  | -0.366084 | 2.134362  | -2.91665 |
| Р  | -0.332783 | 3.529517  | 1.57170  |
| Η  | -1.511821 | 2.912073  | 2.06741  |
| Н  | -0.292435 | 4.570681  | 2.53013  |

Table S19.Cartesian coordinate of 1B.

|    | Х         | Y         | Z         |
|----|-----------|-----------|-----------|
| Si | 0.456757  | 0.410441  | 0.469123  |
| С  | 0.993578  | 1.252739  | 2.092083  |
| С  | 1.081628  | 0.437436  | 3.229910  |
| С  | 1.256491  | 2.630196  | 2.261264  |
| С  | 1.387586  | 0.946589  | 4.488025  |
| Н  | 0.898833  | -0.628405 | 3.138701  |
| С  | 1.563144  | 3.137286  | 3.526782  |
| С  | 1.624379  | 2.304986  | 4.638420  |
| Н  | 1.436375  | 0.282263  | 5.344686  |
| Н  | 1.758730  | 4.198109  | 3.648923  |
| Н  | 1.861192  | 2.720042  | 5.612599  |
| С  | 1.659782  | 0.864844  | -0.952868 |
| С  | 2.909166  | 0.229413  | -0.868804 |
| С  | 1.436411  | 1.694262  | -2.072905 |
| С  | 3.898309  | 0.396378  | -1.831165 |
| Н  | 3.124035  | -0.413412 | -0.020315 |
| С  | 2.428950  | 1.851408  | -3.045243 |
| С  | 3.654764  | 1.207279  | -2.930894 |
| Н  | 4.853639  | -0.105899 | -1.719441 |
| Н  | 2.246213  | 2.493245  | -3.901682 |
| Н  | 4.413167  | 1.345145  | -3.694489 |
| С  | -1.369738 | 0.739534  | 0.169013  |
| Н  | -1.722823 | 0.284243  | -0.761323 |
| Н  | -1.923630 | 0.277403  | 0.993802  |
| Н  | -1.622635 | 1.808176  | 0.155901  |
| С  | 0.623273  | -1.459358 | 0.682685  |
| Н  | -0.126029 | -1.836968 | 1.385175  |
| Н  | 0.440486  | -1.946241 | -0.280292 |
| Н  | 1.606481  | -1.781339 | 1.034697  |
| Rh | -0.711628 | 4.107875  | -0.485197 |
| Н  | -1.928364 | 4.373304  | -1.493593 |
| С  | -1.552074 | 5.452897  | 0.495925  |
| 0  | -2.101911 | 6.300037  | 1.038777  |
| Р  | -0.077663 | 2.726732  | -2.212128 |
| Н  | 0.181533  | 3.346491  | -3.455953 |
| Н  | -1.036730 | 1.790429  | -2.668444 |
| Р  | 1.167369  | 3.820881  | 0.855491  |
| Н  | 1.629132  | 4.966299  | 1.548072  |
| Η  | 2.388834  | 3.516165  | 0.200635  |

Table S20.Cartesian coordinate of 2A.

|    | Х         | Y         | Z         |
|----|-----------|-----------|-----------|
| Si | 0.543521  | 0.717925  | 0.139453  |
| С  | 1.312433  | 1.109046  | 1.857018  |
| С  | 2.011158  | 0.164405  | 2.621930  |
| С  | 1.190708  | 2.404677  | 2.382825  |
| С  | 2.572227  | 0.495348  | 3.849156  |
| Н  | 2.117524  | -0.852930 | 2.256164  |
| С  | 1.752562  | 2.743807  | 3.617049  |
| С  | 2.445269  | 1.789184  | 4.349139  |
| Н  | 3.107323  | -0.256013 | 4.421550  |
| Н  | 1.645267  | 3.750393  | 4.011132  |
| Н  | 2.879146  | 2.050231  | 5.308824  |
| С  | 2.013605  | 0.587186  | -1.090416 |
| С  | 2.942098  | -0.463157 | -1.083122 |
| С  | 2.181739  | 1.593140  | -2.053270 |
| С  | 3.993663  | -0.506130 | -1.989831 |
| Н  | 2.842685  | -1.265368 | -0.357512 |
| С  | 3.237644  | 1.556781  | -2.968800 |
| С  | 4.144046  | 0.506065  | -2.935559 |
| Н  | 4.699208  | -1.330783 | -1.964103 |
| Н  | 3.351382  | 2.343636  | -3.709036 |
| Н  | 4.963358  | 0.473217  | -3.646231 |
| С  | -2.197817 | 1.829713  | 0.895515  |
| Н  | -1.746729 | 1.349794  | 1.768645  |
| Н  | -2.830296 | 2.646397  | 1.251859  |
| Н  | -2.827489 | 1.098058  | 0.390231  |
| С  | -0.243491 | -0.994803 | 0.243910  |
| Н  | -1.094269 | -0.986035 | 0.929853  |
| Н  | -0.607533 | -1.298133 | -0.741648 |
| Н  | 0.460810  | -1.757233 | 0.592416  |
| Rh | -0.733563 | 2.612461  | -0.482329 |
| Н  | -1.299905 | 1.512542  | -1.473580 |
| С  | -2.044745 | 3.906733  | -1.111880 |
| 0  | -2.871285 | 4.591607  | -1.501277 |
| Р  | 0.945053  | 2.946219  | -2.043222 |
| Н  | 1.777923  | 4.097183  | -2.013947 |
| Н  | 0.587069  | 3.037991  | -3.410991 |
| Р  | 0.243792  | 3.622509  | 1.385797  |
| Н  | -0.613377 | 4.192189  | 2.360868  |
| Н  | 1.159870  | 4.706096  | 1.310664  |

Table S21.Cartesian coordinate of 3A.

| Si   0.314405   -0.098507   0.428435     C   1.009370   0.581786   2.065376     C   1.382045   -0.292570   3.095056     C   1.112234   1.964340   2.322595     C   1.822354   0.171490   4.330423     H   1.316276   -1.364256   2.935081     C   1.544216   2.431264   3.566266     C   1.899251   1.537842   4.569725     H   2.096977   -0.534178   5.108042     H   1.606339   3.498806   3.754674     H   2.234557   1.909768   5.532351     C   1.582693   0.333049   -0.944974     C   2.859409   -0.235111   -0.819246     C   1.345188   1.132399   -2.081316     C   3.859715   -0.030430   -1.761941     H   3.083614   -0.849521   0.048653     C   2.350329   1.335641   -3.033284     C   3.603654                                                                                                                               |    | Х         | Y         | Z         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|-----------|-----------|
| C1.0093700.5817862.065376C1.382045-0.2925703.095056C1.1122341.9643402.322595C1.8223540.1714904.330423H1.316276-1.3642562.935081C1.5442162.4312643.566266C1.8992511.5378424.569725H2.096977-0.5341785.108042H1.6063393.4988063.754674H2.2345571.9097685.532351C1.5826930.333049-0.944974C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.27105952.411654-0.887440C-1.6743774.568937                                                                    | Si | 0.314405  | -0.098507 | 0.428435  |
| C 1.382045 -0.292570 3.095056   C 1.112234 1.964340 2.322595   C 1.822354 0.171490 4.330423   H 1.316276 -1.364256 2.935081   C 1.544216 2.431264 3.566266   C 1.899251 1.537842 4.569725   H 2.096977 -0.534178 5.108042   H 1.606339 3.498806 3.754674   H 2.234557 1.909768 5.532351   C 1.582693 0.333049 -0.944974   C 2.859409 -0.235111 -0.819246   C 1.345188 1.132399 -2.081316   C 3.459715 -0.030430 -1.761941   H 3.083614 -0.849521 0.048653   C 2.350329 1.335641 -3.033284   C 3.603654 0.757789 -2.877382   H 4.837050 -0.481704 -1.623983   H 2.155061 1.955208 -3.903403   H -1.358291 0.637958                                                                                                                                                                                                                              | С  | 1.009370  | 0.581786  | 2.065376  |
| C1.1122341.9643402.322595C1.8223540.1714904.330423H1.316276-1.3642562.935081C1.5442162.4312643.566266C1.8992511.5378424.569725H2.096977-0.5341785.108042H1.6063393.4988063.754674H2.2345571.9097685.532351C1.5826930.333049-0.944974C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.607081.996320-2.285992H0.0621102.829567 <td>С</td> <td>1.382045</td> <td>-0.292570</td> <td>3.095056</td> | С  | 1.382045  | -0.292570 | 3.095056  |
| C1.8223540.1714904.330423H1.316276-1.3642562.935081C1.5442162.4312643.566266C1.8992511.5378424.569725H2.096977-0.5341785.108042H1.6063393.4988063.754674H2.2345571.9097685.532351C1.5826930.333049-0.944974C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567<                                                               | С  | 1.112234  | 1.964340  | 2.322595  |
| H1.316276-1.3642562.935081C1.5442162.4312643.566266C1.8992511.5378424.569725H2.096977-0.5341785.108042H1.6063393.4988063.754674H2.2345571.9097685.532351C1.5826930.333049-0.944974C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.04208                                                               | С  | 1.822354  | 0.171490  | 4.330423  |
| C1.5442162.4312643.566266C1.8992511.5378424.569725H2.096977-0.5341785.108042H1.6063393.4988063.754674H2.2345571.9097685.532351C1.5826930.333049-0.944974C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.15473                                                               | Н  | 1.316276  | -1.364256 | 2.935081  |
| C1.8992511.5378424.569725H2.096977-0.5341785.108042H1.6063393.4988063.754674H2.2345571.9097685.532351C1.5826930.333049-0.944974C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.04                                                               | С  | 1.544216  | 2.431264  | 3.566266  |
| H2.096977-0.5341785.108042H1.6063393.4988063.754674H2.2345571.9097685.532351C1.5826930.333049-0.944974C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.35991                                                               | С  | 1.899251  | 1.537842  | 4.569725  |
| H1.6063393.4988063.754674H2.2345571.9097685.532351C1.5826930.333049-0.944974C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                | Н  | 2.096977  | -0.534178 | 5.108042  |
| H2.2345571.9097685.532351C1.5826930.333049-0.944974C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.26085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                               | Н  | 1.606339  | 3.498806  | 3.754674  |
| C1.5826930.333049-0.944974C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                  | Н  | 2.234557  | 1.909768  | 5.532351  |
| C2.859409-0.235111-0.819246C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                      | С  | 1.582693  | 0.333049  | -0.944974 |
| C1.3451881.132399-2.081316C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                       | С  | 2.859409  | -0.235111 | -0.819246 |
| C3.859715-0.030430-1.761941H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.80468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                  | С  | 1.345188  | 1.132399  | -2.081316 |
| H3.083614-0.8495210.048653C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                      | С  | 3.859715  | -0.030430 | -1.761941 |
| C2.3503291.335641-3.033284C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                | Н  | 3.083614  | -0.849521 | 0.048653  |
| C3.6036540.757789-2.877382H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                          | С  | 2.350329  | 1.335641  | -3.033284 |
| H4.837050-0.481704-1.623983H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                    | С  | 3.603654  | 0.757789  | -2.877382 |
| H2.1550611.955208-3.903403H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                               | Н  | 4.837050  | -0.481704 | -1.623983 |
| H4.3751340.927797-3.621218C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                         | Н  | 2.155061  | 1.955208  | -3.903403 |
| C-1.3582910.6379580.143072H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                   | Н  | 4.375134  | 0.927797  | -3.621218 |
| H-1.8869630.113225-0.659893H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                             | С  | -1.358291 | 0.637958  | 0.143072  |
| H-1.9596480.5005661.045199H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                        | Н  | -1.886963 | 0.113225  | -0.659893 |
| H-2.1478502.9117861.002724C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н  | -1.959648 | 0.500566  | 1.045199  |
| C0.292982-1.9859760.531408H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н  | -2.147850 | 2.911786  | 1.002724  |
| H-0.386337-2.3221251.321094H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С  | 0.292982  | -1.985976 | 0.531408  |
| H-0.080468-2.390324-0.414603H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н  | -0.386337 | -2.322125 | 1.321094  |
| H1.276085-2.4305310.712228Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н  | -0.080468 | -2.390324 | -0.414603 |
| Rh-1.2913572.754855-0.310802H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Н  | 1.276085  | -2.430531 | 0.712228  |
| H-2.7105952.411654-0.887440C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rh | -1.291357 | 2.754855  | -0.310802 |
| C-1.6743774.568937-0.710893O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н  | -2.710595 | 2.411654  | -0.887440 |
| O-2.0050755.638294-0.944314P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С  | -1.674377 | 4.568937  | -0.710893 |
| P-0.2607081.996320-2.285992H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0  | -2.005075 | 5.638294  | -0.944314 |
| H0.0621102.829567-3.385797H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Р  | -0.260708 | 1.996320  | -2.285992 |
| H-1.0223521.042089-3.004268P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н  | 0.062110  | 2.829567  | -3.385797 |
| P0.6518363.1547321.010756H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Н  | -1.022352 | 1.042089  | -3.004268 |
| H0.6374354.3522131.763040H1.9101913.3599130.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р  | 0.651836  | 3.154732  | 1.010756  |
| H 1.910191 3.359913 0.385228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н  | 0.637435  | 4.352213  | 1.763040  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н  | 1.910191  | 3.359913  | 0.385228  |

Table S22.Cartesian coordinate of TS(1).

|    | Х         | Y         | Z         |
|----|-----------|-----------|-----------|
| Si | 0.377004  | 0.226273  | 0.426690  |
| С  | 1.136835  | 1.065406  | 1.964960  |
| С  | 1.838429  | 0.203131  | 2.825641  |
| С  | 1.186865  | 2.444836  | 2.260366  |
| С  | 2.579657  | 0.661581  | 3.907302  |
| Н  | 1.809593  | -0.866054 | 2.646350  |
| С  | 1.946209  | 2.900816  | 3.344711  |
| С  | 2.646206  | 2.023775  | 4.161558  |
| Н  | 3.106065  | -0.043741 | 4.542186  |
| Н  | 1.985948  | 3.963951  | 3.560953  |
| Н  | 3.230195  | 2.405251  | 4.992645  |
| С  | 1.681959  | 0.456780  | -0.954382 |
| С  | 2.798376  | -0.387500 | -0.842128 |
| С  | 1.691719  | 1.388311  | -2.012520 |
| С  | 3.877301  | -0.323140 | -1.715430 |
| Н  | 2.839295  | -1.116313 | -0.039339 |
| С  | 2.777338  | 1.448896  | -2.893021 |
| С  | 3.868446  | 0.602343  | -2.749270 |
| Н  | 4.721143  | -0.992529 | -1.583848 |
| Н  | 2.771458  | 2.170729  | -3.703987 |
| Н  | 4.701977  | 0.668583  | -3.440667 |
| С  | -1.397819 | 0.713263  | 0.039743  |
| Н  | -1.749280 | 0.165743  | -0.841527 |
| Н  | -2.021022 | 0.400476  | 0.885421  |
| Н  | -1.570923 | 1.781718  | -0.131995 |
| С  | 0.255914  | -1.630614 | 0.759204  |
| Н  | -0.403752 | -1.814749 | 1.613342  |
| Н  | -0.198836 | -2.109072 | -0.114195 |
| Н  | 1.201049  | -2.142534 | 0.950808  |
| Rh | -0.652978 | 4.054198  | -0.786811 |
| Н  | -1.298552 | 4.431222  | -2.196715 |
| С  | -1.744769 | 5.467129  | -0.274262 |
| 0  | -2.441850 | 6.350284  | -0.049569 |
| Р  | 0.325094  | 2.589592  | -2.280318 |
| Н  | 0.831461  | 3.209289  | -3.443962 |
| Н  | -0.630624 | 1.759985  | -2.917570 |
| Р  | 0.199204  | 3.740618  | 1.373437  |
| Н  | -0.828614 | 3.863997  | 2.345403  |
| Н  | 0.951968  | 4.857507  | 1.813769  |

Table S23.Cartesian coordinate of TS(2).

|    | Х         | Y         | Z         |
|----|-----------|-----------|-----------|
| Si | 0.342563  | 0.677135  | 0.279277  |
| С  | 1.265442  | 1.314832  | 1.853316  |
| С  | 2.215614  | 0.487445  | 2.472587  |
| С  | 1.041398  | 2.571395  | 2.439909  |
| С  | 2.906004  | 0.884686  | 3.610768  |
| Н  | 2.430283  | -0.489456 | 2.052654  |
| С  | 1.718991  | 2.969287  | 3.596563  |
| С  | 2.653821  | 2.128135  | 4.182621  |
| Н  | 3.642231  | 0.222047  | 4.054862  |
| Н  | 1.522039  | 3.943262  | 4.035585  |
| Н  | 3.185538  | 2.441803  | 5.074943  |
| С  | 1.666513  | 0.523222  | -1.147505 |
| С  | 2.292391  | -0.695745 | -1.447656 |
| С  | 2.107098  | 1.649950  | -1.856332 |
| С  | 3.303058  | -0.784169 | -2.400273 |
| Н  | 1.982889  | -1.602707 | -0.942646 |
| С  | 3.130482  | 1.574396  | -2.801380 |
| С  | 3.730912  | 0.352442  | -3.077165 |
| Н  | 3.754582  | -1.747192 | -2.617922 |
| Н  | 3.450042  | 2.465299  | -3.334555 |
| Н  | 4.517847  | 0.286378  | -3.821400 |
| С  | -1.713727 | 0.929896  | 0.468474  |
| Н  | -1.742844 | 0.685510  | 1.532764  |
| Н  | -2.462134 | 1.719024  | 0.326276  |
| Н  | -2.053917 | 0.079848  | -0.120706 |
| С  | 0.102307  | -1.182900 | 0.688728  |
| Н  | -0.551427 | -1.301072 | 1.556987  |
| Н  | -0.370067 | -1.704428 | -0.151403 |
| Н  | 1.032925  | -1.709013 | 0.915233  |
| Rh | -0.752009 | 2.880288  | -0.488656 |
| Н  | -1.034028 | 2.224178  | -1.903074 |
| С  | -2.111593 | 4.170410  | -0.980084 |
| 0  | -2.774129 | 5.010454  | -1.393184 |
| Р  | 1.219052  | 3.204251  | -1.500847 |
| Н  | 2.230418  | 4.006202  | -0.902944 |
| Н  | 1.236546  | 3.839276  | -2.766846 |
| Р  | -0.138903 | 3.695365  | 1.607476  |
| Н  | -1.103124 | 3.927386  | 2.624481  |
| Η  | 0.524609  | 4.942319  | 1.724047  |
Table S24.Cartesian coordinate of TS(3).

|    | Х         | Y         | Z         |
|----|-----------|-----------|-----------|
| Si | 0.462091  | 0.300499  | 0.374040  |
| С  | 1.173680  | 0.967803  | 2.009719  |
| С  | 1.513593  | 0.079835  | 3.039099  |
| С  | 1.337993  | 2.345669  | 2.260723  |
| С  | 1.979398  | 0.527760  | 4.271342  |
| Н  | 1.402204  | -0.988642 | 2.883068  |
| С  | 1.797311  | 2.795245  | 3.500575  |
| С  | 2.117407  | 1.889941  | 4.505537  |
| Н  | 2.226594  | -0.187177 | 5.049618  |
| Н  | 1.907827  | 3.859561  | 3.684953  |
| Н  | 2.473468  | 2.249593  | 5.465380  |
| С  | 1.747535  | 0.665577  | -1.000977 |
| С  | 2.967957  | -0.009177 | -0.835011 |
| С  | 1.619179  | 1.491185  | -2.137036 |
| С  | 4.017166  | 0.117280  | -1.736969 |
| Н  | 3.111065  | -0.646039 | 0.033683  |
| С  | 2.674294  | 1.610704  | -3.048170 |
| С  | 3.869178  | 0.930506  | -2.853484 |
| Н  | 4.947394  | -0.414568 | -1.565222 |
| Н  | 2.561840  | 2.250323  | -3.918366 |
| Н  | 4.679262  | 1.040695  | -3.566996 |
| С  | -1.252606 | 1.001718  | 0.183093  |
| Н  | -1.803753 | 0.588989  | -0.663308 |
| Н  | -1.799858 | 0.674900  | 1.076724  |
| Н  | -1.792558 | 2.362883  | 0.706392  |
| С  | 0.364045  | -1.584328 | 0.491495  |
| Η  | -0.331377 | -1.885920 | 1.281251  |
| Η  | -0.021521 | -1.980794 | -0.453085 |
| Η  | 1.325298  | -2.070485 | 0.680120  |
| Rh | -0.990812 | 3.176688  | -0.406393 |
| Η  | -2.337227 | 2.967777  | -1.193458 |
| С  | -1.597782 | 4.954972  | -0.323027 |
| 0  | -2.014842 | 6.024261  | -0.291464 |
| Р  | 0.100850  | 2.499235  | -2.382296 |
| Н  | 0.566809  | 3.343822  | -3.422732 |
| Н  | -0.657161 | 1.637897  | -3.217701 |
| Р  | 0.917482  | 3.549267  | 0.943083  |
| Н  | 0.949793  | 4.747378  | 1.694782  |
| Н  | 2.186472  | 3.704599  | 0.323992  |