## **Electronic Supplementary Information**

Ratiometric fluorescence sensing and intracellular imaging of Al<sup>3+</sup> ion driven by an intramolecular excimer formation of a pyrimidine-pyrene scaffold

Sudipta Das,<sup>a</sup> Animesh Sahana,<sup>a</sup> Arnab Banerjee,<sup>a</sup> Sisir Lohar,<sup>a</sup> Damir A. Safin,<sup>\*b</sup> Maria G. Babashkina,<sup>b</sup> Michael Bolte,<sup>c</sup> Yann Garcia,<sup>b</sup> Ipsit Hauli,<sup>d</sup> Subhra Kanti Mukhopadhyay<sup>d</sup> and Debasis Das<sup>\*a</sup>

<sup>a</sup> Department of Chemistry, The University of Burdwan, Burdwan, 713104, West Bengal, India. Fax: +91 342 2530452; Tel: +91 342 2533913; E-mail: ddas100in@yahoo.com

<sup>b</sup> Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry, Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium. Fax: +32(0) 1047 2330; Tel: +32(0) 1047 2831; E-mail: damir.safin@ksu.ru

<sup>c</sup> Institut für Anorganische Chemie J.-W.-Goethe-Universität, Frankfurt/Main, Germany

<sup>d</sup> Department of Microbiology, The University of Burdwan, Burdwan 713104, India



Fig. S1 FTIR spectrum of L.



**Fig. S2** FTIR spectrum of  $[L-Al^{3+}]$ .







**Fig. S5** Enlarged view of the 8.1–8.5 ppm range of the <sup>1</sup>H NMR spectra of L (bottom), L + 0.5 eqv. Al<sup>3+</sup> (middle) and L + 1 eqv. Al<sup>3+</sup> (top).



**Fig. S6**  $^{13}$ C NMR titration of L by Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O in DMSO-*d*<sub>6</sub>.



**Fig. S7** Color change of a solution of L after addition of equivalent quantity of  $Al^{3+}$ : under ambient light (left) and under UV light (right).



**Fig. S8** Emission spectra of L and its  $Al^{3+}$  complex with  $\lambda_{ex} = 290$  nm ([L] = 5  $\mu$ M, [ $Al^{3+}$ ] = 50  $\mu$ M, DMSO–H<sub>2</sub>O, 4:1, v/v, 0.1 M HEPES buffer, pH 7.4).



**Fig. S9** Emission intensities of L (5  $\mu$ M) + Al<sup>3+</sup> (110  $\mu$ M) (1) and L (5  $\mu$ M) + M<sup>n+</sup> (150  $\mu$ M), where M<sup>n+</sup>: (2) Na<sup>+</sup>, (3) Mg<sup>2+</sup>, (4) Cr<sup>3+</sup>, (5) Mn<sup>2+</sup>, (6) Fe<sup>3+</sup>, (7) Co<sup>2+</sup>, (8) Ni<sup>2+</sup>, (9) Cu<sup>2+</sup>, (10) Zn<sup>2+</sup>, (11) Hg<sup>2+</sup>, (12) Pb<sup>2+</sup>, (13) Cd<sup>2+</sup>, (14) Ag<sup>+</sup> (as their nitrate salts) (DMSO–H<sub>2</sub>O (4:1, v/v), 0.1 M HEPES buffer, pH 7.4,  $\lambda_{ex} = 330$  nm,  $\lambda_{em} = 445$  nm).



Fig. S10 Interference of different anions (as their sodium salts)  $[SO_4^{2-}(1), Cl^-(2), F^-(3), I^-(4), N_3^-(5), NO_2^-(6), NO_3^-(7), HSO_4^-(8), CH_3COO^-(9), H_2PO_4^-(10)]$  on the determination of  $[Al^{3+}]$  by L (DMSO-H<sub>2</sub>O (4:1, v/v), 0.1 M HEPES buffer, pH 7.4,  $\lambda_{ex} = 330$  nm,  $\lambda_{em} = 445$  nm). [L] = 5  $\mu$ M,  $[Al^{3+}] = 110 \ \mu$ M and  $[anion] = 150 \ \mu$ M.



**Fig. S11** Plot of variation of fluorescence intensity with time.  $[L] = 5 \ \mu\text{M}$ ,  $[Al^{3+}] = 110 \ \mu\text{M}$  (DMSO–H<sub>2</sub>O (4:1, v/v), 0.1 M HEPES buffer, pH 7.4,  $\lambda_{ex} = 330 \text{ nm}$ ,  $\lambda_{em} = 445 \text{ nm}$ ).



**Fig. S12** Determination of the detection limit of  $Al^{3+}$  by L (5  $\mu$ M ) (DMSO–H<sub>2</sub>O (4:1, v/v), 0.1 M HEPES buffer, pH 7.4,  $\lambda_{ex} = 330$  nm,  $\lambda_{em} = 445$  nm) (R<sup>2</sup> = 0.99).



**Fig. S13** Job's plot for the determination of a stoichiometry of the  $[L-Al^{3+}]$  system.



**Fig. S14** Effect of pH on the emission intensity of L (5  $\mu$ M) (black) and the [L–Al<sup>3+</sup>] system (red) ([L] = [Al<sup>3+</sup>] = 5  $\mu$ M) (DMSO–H<sub>2</sub>O (4:1, v/v), 0.1 M HEPES buffer,  $\lambda_{ex} = 330$  nm,  $\lambda_{em} = 445$  nm).

| Bond lengths      |          |                   |          |                   |          |
|-------------------|----------|-------------------|----------|-------------------|----------|
| N(1)–C(21)        | 1.403(4) | C(3)–C(17)        | 1.425(5) | C(10)–C(16)       | 1.432(5) |
| N(2)–C(22)        | 1.342(4) | C(3)–C(4)         | 1.435(5) | C(11)–C(12)       | 1.346(6) |
| N(23)-C(24)       | 1.333(4) | C(4)–C(5)         | 1.348(5) | C(12)–C(13)       | 1.431(5) |
| N(25)-C(26)       | 1.339(4) | C(5)–C(6)         | 1.426(5) | C(13)–C(14)       | 1.386(5) |
| C(1)–N(1)         | 1.276(4) | C(6)–C(7)         | 1.394(6) | C(13)–C(17)       | 1.426(5) |
| C(22)–N(23)       | 1.353(4) | C(6)–C(16)        | 1.416(5) | C(14)–C(15)       | 1.388(5) |
| C(24)–N(25)       | 1.339(4) | C(7)–C(8)         | 1.386(6) | C(16)–C(17)       | 1.411(5) |
| C(1)–C(2)         | 1.478(5) | C(8)–C(9)         | 1.391(6) | C(21)–C(26)       | 1.377(5) |
| C(2)–C(15)        | 1.398(5) | C(9)–C(10)        | 1.399(6) | C(21)–C(22)       | 1.423(4) |
| C(2)–C(3)         | 1.417(5) | C(10)–C(11)       | 1.425(6) |                   |          |
| Bond angles       |          |                   |          |                   |          |
| N(1)-C(1)-C(2)    | 120.9(3) | C(3)–C(17)–C(13)  | 119.9(4) | C(14)-C(13)-C(12) | 121.5(4) |
| N(1)-C(21)-C(22)  | 118.3(3) | C(4)–C(5)–C(6)    | 122.2(4) | C(14)-C(13)-C(17) | 119.8(3) |
| N(2)-C(22)-C(21)  | 121.2(3) | C(5)–C(4)–C(3)    | 121.6(3) | C(14)-C(15)-C(2)  | 121.6(4) |
| N(23)-C(22)-C(21) | 120.4(3) | C(6)-C(16)-C(10)  | 119.2(4) | C(15)–C(2)–C(1)   | 118.1(3) |
| N(25)-C(26)-C(21) | 124.3(3) | C(7)–C(6)–C(5)    | 122.6(4) | C(15)–C(2)–C(3)   | 119.5(3) |
| N(2)-C(22)-N(23)  | 118.4(3) | C(7)–C(6)–C(16)   | 119.9(4) | C(15)-C(14)-C(13) | 120.3(4) |
| N(23)-C(24)-N(25) | 128.9(3) | C(7)–C(8)–C(9)    | 120.2(4) | C(16)–C(6)–C(5)   | 117.5(4) |
| C(1)–N(1)–C(21)   | 117.8(3) | C(8)–C(7)–C(6)    | 120.8(4) | C(16)–C(17)–C(3)  | 120.5(3) |
| C(24)-N(23)-C(22) | 116.0(3) | C(8)–C(9)–C(10)   | 121.1(4) | C(16)-C(17)-C(13) | 119.7(3) |
| C(26)–C(21)–N(1)  | 125.1(3) | C(9)–C(10)–C(11)  | 122.2(4) | C(17)–C(3)–C(4)   | 117.4(3) |
| C(24)-N(25)-C(26) | 113.8(3) | C(9)-C(10)-C(16)  | 118.8(4) | C(17)–C(13)–C(12) | 118.7(4) |
| C(2)–C(3)–C(4)    | 123.7(3) | C(11)-C(10)-C(16) | 118.9(4) | C(17)–C(16)–C(6)  | 120.8(3) |
| C(2)–C(3)–C(17)   | 118.9(3) | C(11)–C(12)–C(13) | 121.8(4) | C(17)-C(16)-C(10) | 120.0(4) |
| C(3)-C(2)-C(1)    | 122.3(3) | C(12)-C(11)-C(10) | 121.0(4) | C(26)–C(21)–C(22) | 116.4(3) |

Table S1 Selected bond lengths (Å) and bond angles (°) for L

Table S2 Selected hydrogen bond lengths (Å) and angles (°) for L

| D–H…A                 | <i>d</i> (D–H) | <i>d</i> (H···A) | <i>d</i> (D····A) | ∠(DHA) |
|-----------------------|----------------|------------------|-------------------|--------|
| N(2)-H(2A)···N(25)#1  | 0.870(10)      | 2.41(3)          | 3.137(4)          | 141(3) |
| N(2)–H(2B)····N(23)#2 | 0.881(10)      | 2.248(12)        | 3.123(4)          | 172(3) |

Symmetry transformations used to generate equivalent atoms: #1 x, y + 1, z; #2 –x, –y + 1, –z + 2