## **Electronic Supplementary Information**

## Phase transformation of ultrathin nanowires through lanthanide doping: from InOOH to rh-In<sub>2</sub>O<sub>3</sub>

Wen-Hui Zhang,<sup>a</sup> Feng Wang,<sup>b</sup> and Wei-De Zhang<sup>\*,a</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, South China University of

Technology, 381 Wushan Road, Guangzhou 510640, China

<sup>b</sup> Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.

## **Experimental details**

**Materials.** Indium(III) chloride tetrahydrate (InCl<sub>3</sub>·4H<sub>2</sub>O), gadolinium(III) chloride hydrate (GdCl<sub>3</sub>·xH<sub>2</sub>O), indium(III) acetylacetonate (In(acac)<sub>3</sub>), gadolinium(III) acetylacetonate (Gd(acac)<sub>3</sub>), oleylamine (OM, 70%) were purchased from Sigma-Aldrich and used as starting materials without further purification.

Synthesis of nanocrystals. The InOOH precursors were prepared by a solvothermal route firstly reported by Xu and Wang.<sup>1</sup> In a typical procedure, 0.1 g  $InCl_3 \cdot 4H_2O$  and 0 g or 0.0065 g  $GdCl_3 \cdot xH_2O$  ( $n_{Gd}/n_{In+Gd}=5\%$ ) was dissolved in 5 mL of OM. Then, 8 mL of ethanol was dropped in while ultrasonicating, forming a clear solution, which was transferred into a Teflon-lined stainless steel autoclave to react at 180 °C for 12 h. The product was collected at the bottom, washed three times with ethanol, and centrifuged at 5000 rpm for 2 min. The white product can be well redispersed in cyclohexane.

When the chlorides were replaced by acetylacetonates as raw materials, 0.1405 g  $In(acac)_3$  and 0 g or 0.0082 g  $Gd(acac)_3$  ( $n_{Gd}/n_{In+Gd}=5\%$ ) were used and other procedures were the same as described above. The Gd-doped product can be well redispersed in cyclohexane.

To transform InOOH to  $In_2O_3$ , the as-synthesized InOOH precursors redispersed in 1 ml cyclohexane was heated in 10 ml OM at 100 °C for 30 min, then degased at 100 °C for 30 min and subsequently heated at 250 or 300 °C for 30 min under Ar atmosphere. The product was washed three times with ethanol and collected by centrifugation at 5000 rpm for 2 min.

**Characterization.** JEM 1400 transmission electron microscope (TEM) operated at 120 kV was used to record TEM images of the samples. Scanning transmission electron microscopy (STEM) and high-resolution TEM (HRTEM) images were taken with FEI Tecnai F20 with an attached energy dispersed X-ray spectrometer (EDS). Powder X-ray diffraction (XRD) analyses were performed on a Philips PW-1830 X-ray diffractometer with Cu K $\alpha$  irradiation ( $\lambda = 1.5406$  Å) at a scanning speed of 0.014 degree/sec over the 2 $\theta$  range of 10–70 degree. The photoluminescence (PL) spectroscopic measurements were performed on a LabRam HR spectrometer (JY-Horiba) with He-Cd laser as the excitation source ( $\lambda_{ex}$ = 325 nm).



**Figure S1** Crystal unit cell of (a) InOOH (H is not included for clarification), (b)  $c-In_2O_3$  and (c) rh-In\_2O\_3 viewed along the b axes.

## Reference

1 X. X. Xu and X. Wang, Inorg. Chem., 2009, 48, 3890.