Electronic Supporting Information

belonging to

Wingtip substituents tailor the catalytic activity of ruthenium triazolylidene complexes in base-free alcohol oxidation

Daniel Canseco-Gonzalez and Martin Albrecht*

 Experimental procedures for the synthesis of the triazolium salts 1a-m Experimental procedures for the synthesis of the carbene silver complexes 2a-m Time-conversion profiles for BnOH oxidation using complexes 3a-g and 4 References 		
	S5 S8	
		S9

1. Experimental procedures for the synthesis of the triazolium salts 1a-m

General. Butyl azide,^{S1} 1-4-dihexyl-1,2,3-triazole,^{S2} and the triazolium salts **1f**, **1h**, **1i**,^{S3} were synthesized as described previously. All other reagents are commercially available and were used as received. Microwave reactions were carried out using a Biotage Initiator 2.5, operating at 100 W irradiation power.

1-ethyl-4-butyl-1,2,3-triazole. To a solution of ethyl azide, generated in situ by mixing iodoethane (3.73 g, 23.8 mmol) and sodium azide (6.22 g, 95.7 mmol) in *t*BuOH/H₂O (100 mL, 1:1 v/v) at RT for 48 h, was added 1-hexyne (1.95 g, 23.8 mmol), aqueous CuSO₄ (1 M, 5.1 mL, 5.1 mmol), and Cu powder (60 mg, 0.94 mmol). The reaction mixture was stirred for 15 h at 100 °C. Most *t*BuOH was evaporated under reduced pressure and the residue was extracted with CH₂Cl₂ (3 × 70 mL). The combined organic phases were washed with NH₄OH (25%, 2 × 50 mL), H₂O (2 × 100 mL), and, brine

 $(2 \times 100 \text{ mL})$, dried over MgSO₄ and evaporated to dryness. The residue was washed with pentane (50 mL) and purified over a small pad of SiO₂. Elution with Et₂O afforded the title product as pale yellow oil (2.76 g, 76 %). ¹H NMR (CDCl₃, 300 MHz): δ 7.28 (s, 1H, H_{trz}), 4.37 (q, ³*J*_{HH} = 7.4 Hz, 2H, NCH₂), 2.72 (t, ³*J*_{HH} = 7.3 Hz, 2H, C_{trz}–CH₂), 1.64 (quint, ³*J*_{HH} = 7.3 Hz, 2H, C_{trz}–CH₂CH₂), 1.53 (t, ³*J*_{HH} = 7.4 Hz, 3H, NCH₂CH₃), 1.38 (sext, ³*J*_{HH} = 7.3 Hz, 2H, CH₂CH₂CH₃), 0.92 (t, ³*J*_{HH} = 7.3 Hz, 3H, CH₂CH₂CH₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 148.8 (C_{trz}–Bu), 120.1 (C_{trz}–H), 45.4 (NCH₂), 31.8 (C_{trz}–CH₂), 25.6 (C_{trz}–CH₂CH₂), 22.5 (C_{trz}–CH₂CH₂CH₂), 15.7 (NCH₂CH₃), 14.0 (CH₂CH₂CH₃). Anal. Calcd for C₈H₁₅N₃ (153.13) × 1/8 H₂O: C, 61.80; H, 9.89; N, 27.03. Found: C, 61.67; H, 10.02; N, 26.90

1-butyl-4-mesityl-1,2,3-triazole. Freshly synthesized butyl azide (450 mg, 4.53 mmol), and 1ethynyl-mesitylene (720 mg, 4.99 mmol) were suspended in a mixture of water (7.0 mL) and THF (7.0 mL). Copper sulfate (20 mg, 0.09 mmol), and sodium ascorbate (180 mg, 0.90 mmol) were added and the mixture was stirred for 6 h at 100 °C under microwave irradiation. All volatiles were evaporated off and and the residue was extracted with CH₂Cl₂ (2 × 20 mL). The combined organic phases were washed with aqueous NH₄OH (25%, 2 × 20 mL), H₂O (2 × 50 mL), and brine (2 × 30 mL), dried over MgSO₄ and evaporated to dryness. The residue was washed with pentane (50 mL) to afford a red oil, which was filtered over a small pad of SiO₂. Elution with Et₂O gave the triazole as pale orange oil (700 mg, 60%). ¹H NMR (CDCl₃, 300 MHz): δ 7.40 (s, 1H, H_{trz}), 6.93 (s, 2H, H_{Mes}), 4.42 (t, ³*J*_{HH} = 7.2 Hz, 2H, NCH₂), 2.31 (s, 3H, Mes–CH₃), 2.10 (s, 6H, Mes–CH₃), 1.95 (quint, 2H, ³*J*_{HH} = 7.2 Hz, NCH₂C*H*₂), 1.38 (sext, ³*J*_{HH} = 7.2 Hz, 2H, C*H*₂CH₃), 0.96 (t, ³*J*_{HH} = 7.2 Hz, 2H, CH₂CH₃). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 145.7 (C_{trz}–Mes), 138.2, 137.9, 128.5, 127.5 (4 × C_{Mes}), 122.4 (C_{trz}–H), 50.2 (NCH₂), 31.3 (NCH₂CH₂), 21.3, 20.8 (2 × Mes–CH₃), 19.9 (CH₂CH₃), 13.7 (CH₂CH₃). Anal. Calcd for C₁₅H₂₁N₃ (243.34): C, 74.03; H, 8.70; N, 17.27. Found: C, 74.14; H, 8.75; N, 16.90.

General procedure for the synthesis of the triazolium iodides 1. To a MeCN solution of triazole was added MeI and the mixture was stirred under microwave irradiation at 90 °C for 5 h. All volatiles

were then removed in vacuo. The residue was washed with copious amounts of Et₂O several times and dried in vacuo to afford the crude triazolium salt **1**. Microanalytically pure samples were obtained by recrystallization from hot acetone.

1-ethyl-3-methyl-4-butyl-1,2,3-triazolium iodide 1a. Reaction of 1-ethyl-4-butyl-1,2,3-triazole (1.48 g, 9.68 mmol) and CH₃I (13.7 g, 96.8 mmol) in MeCN (8 mL) according to the general procedure gave **1a** as a yellow oil (2.50 g, 88%). ¹H NMR (CDCl₃, 500 MHz): δ 8.91 (s, 1H, H_{trz}), 4.71 (q, ³*J*_{HH} = 7.4 Hz, 2H, NCH₂), 4.23 (s, 3H, NCH₃), 2.89 (m, 2H, C_{trz}–CH₂), 1.71 (quint, ³*J*_{HH} = 7.3 Hz, 2H, C_{trz}–CH₂CH₂), 1.61 (t, ³*J*_{HH} = 7.4 Hz, 3H, NCH₂CH₃), 1.40 (sext, ³*J*_{HH} = 7.3 Hz, 2H, C_{trz}–CH₂CH₂CH₂), 0.89 (t, ³*J*_{HH} = 7.3 Hz, 3H, C_{trz}–CH₂CH₂ CH₂CH₃). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 144.6 (C_{trz}–Bu), 128.9 (C_{trz}–H), 49.9 (NCH₂), 38.9 (NCH₃), 29.1 (C_{trz}–CH₂), 23.7 (C_{trz}–CH₂CH₂), 22.1 (C_{trz}–CH₂CH₂CH₂), 14.7 (NCH₂CH₃), 13.7 (C_{trz}–CH₂CH₂CH₂CH₃). Anal. Calcd for C₉H₁₈IN₃ (295.16): C, 36.62; H, 6.15; N, 14.24. Found: C, 36.72; H, 6.33; N, 13.92

1,4-dihexyl-3-methyl-1,2,3-triazolium iodide 1c. Reaction of 1,4-dihexyl-1,2,3-triazole (1.00 g, 4.21 mmol) and CH₃I (6.0 g, 42.12 mmol) in MeCN (10 mL) according to the general procedure gave **1c** as a yellow oil (1.4 g, 88%). ¹H NMR (CDCl₃, 500 MHz): δ 9.00 (s, 1H, H_{trz}), 4.63 (t, ³*J*_{HH} = 7.4 Hz, 2H, NCH₂), 4.24 (s, 3H, NCH₃), 2.88 (m, 2H, C_{trz}-CH₂), 1.95 (quint, ³*J*_{HH} = 7.4 Hz, 2H, NCH₂CH₂), 1.70 (quint, ³*J*_{HH} = 7.7 Hz, 2H, C_{trz}-CH₂CH₂), 1.36 (m, 12H, CH₂ hex), 0.80 (m, 6H, CH₃ hex). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 144.7 (C_{trz}-hex), 129.2 (C_{trz}-H), 54.4 (NCH₂), 38.9 (NCH₃), 31.2, 30.9, 29.4, 28.7, 27.2, 25.7, 24.0, 22.4, 22.3 (9 × CH₂, Hex), 14.0, 13.9 (2 × CH₃, Hex)

1-butyl-3-methyl-4-mesityl-1,2,3-triazolium iodide 1g. Reaction of 1-butyl-4-mesityl-1,2,3-triazole (1.00 g, 4.10 mmol) and CH₃I (5.4 g, 41 mmol) in MeCN (12 mL) according to the general procedure gave **1g** as a yellow solid (1.19 g, 75%). ¹H NMR (CDCl₃, 500 MHz): δ 9.51 (s, 1H, H_{trz}), 6.97 (s, 2H, H_{Mes}), 4.97 (t, ³*J*_{HH} = 7.4 Hz, 2H, NCH₂), 3.98 (s, 3H, NCH₃), 2.31 (s, 3H, Mes–CH₃), 2.08 (m, 2H, NCH₂CH₂), 2.03 (s, 6H, Mes–CH₃), 1.42 (sext, ³*J*_{HH} = 7.4 Hz, 2H, CH₂CH₃), 0.96 (t, ³*J*_{HH} = 7.4 Hz, 2H, NCH₂); δ 142.6 (C_{trz}–Mes), 141.6, 138.2, 129.5, 128.4,

127.6, 117.6 (6 × C_{Mes}), 131.0 (C_{trz} -H), 54.8 (NCH₂), 38.1 (NCH₃), 31.3 (NCH₂CH₂), 21.4, 20.1 (2 × Mes–CH₃), 19.5 (CH₂CH₃), 13.5 (CH₂CH₃). Anal. Calcd for C₁₆H₂₄IN₃ (385.29): C, 49.88; H, 6.28; N, 10.91. Found: C, 49.59; H, 5.99; N, 11.20

Synthesis of (1-methyl-3-ethyl-4-phenyl-1,2,3-triazolium iodide) 1k. To a solution of 1-methyl-4-phenyl-1,2,3-triazole (800 mg, 5.0 mmol) in MeCN (20 mL) was added EtI (3.9 g, 25 mmol) and the mixture was heated to 75 °C for 48 h. All volatiles were then removed in vacuo. The solid residue was washed with Et₂O several times, and then dried recrystallized from acetone (1.10 g, 70%). ¹H NMR (CDCl₃, 500 MHz): δ 9.39 (s, 1H, H_{trz}), 7.65 (m, 2H, H_{ar}), 7.55 (m, 3H, H_{ar}), 4.57 (q, ³*J*_{HH} = 7.4 Hz, 2H, NCH₂), 4.53 (s, 3H, NCH₃), 1.58 (t, ³*J*_{HH} = 7.4 Hz, 3H, NCH₂C*H*₃). ¹³C{1H} NMR (CDCl₃, 125 MHz): δ 142.4 (C_{trz}–Ph), 131.9, 130.9 (2 × C_{Ph}), 129.8 (C_{trz}–H), 129.7, 121.8 (2 × C_{Ph}), 47.7 (NCH₂), 41.5 (NCH₃), 14.4 (NCH₂CH₃). Anal. Calcd for C₁₁H₁₄IN₃ (315.53): C, 41.92; H, 4.48; N, 13.33. Found: C, 41.85; H, 4.55; N, 13.28.

Synthesis of (1,3-diethyl-4-phenyl-1,2,3-triazolium iodide) 11. To a solution of 1-ethyl-4-phenyl-1,2,3-triazole (800 mg, 4.6 mmol) in MeCN (20 mL) was added EtI (3.6 g, 23 mmol) and the mixture was heated to 75 °C for 48 h. All volatiles were then removed in vacuo. The solid residue was washed with diethyl ether several times, then dried and finally recrystallized from acetone (1.20 g, 79%). ¹H NMR (CDCl₃, 500 MHz): δ 9.45 (s, 1H, H_{trz}), 7.69 (m, 2H, H_{Ph}), 7.53 (m, 3H, H_{Ph}), 4.87 (q, ³J_{HH} = 7.4 Hz, 2H, NCH₂), 4.59 (q, ³J_{HH} = 7.3 Hz, 2H, NCH₂), 1.71 (t, ³J_{HH} = 7.4 Hz, 3H, NCH₂CH₃), 1.57 (t, ³J_{HH} = 7.3 Hz, 3H, NCH₂CH₃). ¹³C{1H} NMR (CDCl₃, 125 MHz): δ 142.4 (Ctrz=Ph), 131.8, 130.6 (2 × C_{Ph}), 129.7 (Ctrz=H), 129.1, 121.8 (2 × C_{Ph}), 50.2, 47.8 (2 × NCH₂), 14.7, 14.4 (2 × NCH₂CH₃). Anal. Calcd for C₁₂H₁₆IN₃ (329.18): C, 43.78; H, 4.90; N, 12.77. Found: C, 43.74; H, 4.97; N, 12.73.

Synthesis of (1-butyl-3-ethyl-4-phenyl-1,2,3-triazolium iodide) 1m. To a solution of 1-butyl-4-phenyl-1,2,3-triazole (800 mg, 4.0 mmol) in MeCN (20 mL) was added EtI (3.1 g, 20 mmol) and the mixture was heated to 75 °C for 48 h. All volatiles were then removed in vacuo. The solid residue was washed with diethyl ether several times, and dried. Pure **1m** was obtained by recrystallization from

CH₂Cl₂ (727 mg, 51%). ¹H NMR (CDCl₃, 500 MHz): δ 9.52 (s, 1H, H_{trz}), 7.69 (m, 2H, H_{Ph}), 7.55 (m, 3H, H_{Ph}), 4.84 (t, ³*J*_{HH} = 7.4 Hz, 2H, NC*H*₂CH₂), 4.61 (q, ³*J*_{HH} = 7.3 Hz, 2H, NC*H*₂CH₃), 2.08 (quint, ³*J*_{HH} = 7.4 Hz, 2H, NCH₂C*H*₂), 1.59 (t, ³*J*_{HH} = 7.3 Hz, 3H, NCH₂C*H*₃) 1.46 (sext, ³*J*_{HH} = 7.4 Hz, 2H, NCH₂C*H*₂), 0.97 (t, ³*J*_{HH} = 7.4 Hz, 3H, NCH₂CH₂CH₂C*H*₂). ¹³C{1H} NMR (CDCl₃, 125 MHz): δ 142.3 (C_{trz}-Ph), 131.9, 130.0 (2 × C_{Ph}), 129.8 (C_{trz}-H), 129.7, 121.9 (2 × C_{Ph}), 54.4 (NCH₂CH₂), 47.8 (NCH₂CH₃), 31.3 (NCH₂CH₂), 19.5 (NCH₂CH₂CH₂CH₃), 14.4 (NCH₂CH₃), 13.3 (NCH₂CH₂CH₂CH₃). Anal. Calcd for C₁₄H₂₀IN₃ (357.23): C, 47.07; H, 5.64; N, 11.76. Found: C, 47.09; H, 5.75; N, 11.61.

2. Experimental procedures for the synthesis of the carbene silver complexes 2a-m

General procedure: To a solution of the triazolium salt 1 (1.0 eq) in CH_2Cl_2 was added Ag_2O (0.5 eq). The mixture was stirred in the dark at room temperature for the indicated time and filtered through Celite. The solvent was removed in vacuo at room temperature and the residue was washed with pentane (3 × 25 mL).

Complex 2a. According to the general procedure, **1a** (833 mg, 2.82 mmol) and Ag₂O (327 mg, 1.41 mmol) in CH₂Cl₂ (30 mL) were stirred for 2 h, affording **2a** as a yellow oil (691 mg, 61%). ¹H NMR (DMSO–D₆, 500 MHz): δ 4.50 (t, ³*J*_{HH} = 7.3 Hz, 2H, NCH₂), 4.10 (s, 3H, NCH₃), 2.80 (t, ³*J*_{HH} = 7.4 Hz, 2H, C_{trz}–CH₂CH₂), 1.53 (t, ³*J*_{HH} = 7.3 Hz, 3H, NCH₂CH₃), 1.39 (sext, ³*J*_{HH} = 7.4 Hz, 2H, C_{trz}–CH₂CH₂CH₂), 0.92 (t, ³*J*_{HH} = 7.4 Hz, 3H, C_{trz}–CH₂CH₂CH₃).

Complex 2b. According to the general procedure from **1b** (520 mg, 1.6 mmol) and Ag₂O (187 mg, 0.80 mmol) in CH₂Cl₂ (30 mL) for 2 h, **2b** as a yellow oil (682 mg, 99%). ¹H NMR (DMSO–D₆, 300 MHz) δ 4.48 (t, ³*J*_{HH} = 7.0 Hz, 2H, NCH₂), 4.01 (s, 3H, NCH₃), 2.81 (t, ³*J*_{HH} = 7.6 Hz, 2H, C_{trz}–CH₂), 1.93 (quint, ³*J*_{HH} = 7.0 Hz, 2H, NCH₂CH₂), 1.72 (quint, ³*J*_{HH} = 7.6 Hz, 2H, C_{trz}–CH₂CH₂), 1.28 (m, 4H, C*H*₂CH₃), 0.89 (m, 6H, CH₂CH₃).

Complex 2c. According to the general procedure, reaction of **1c** (146 mg, 0.38 mmol) and Ag₂O (45 mg, 0.19 mmol) in CH₂Cl₂ (20 mL) for 48 h yielded **2c** as a yellow oil (162 mg, 98%). ¹H NMR (DMSO–D₆, 500 MHz) δ 4.45 (t, ³*J*_{HH} = 7.0 Hz, 2H, NCH₂), 4.01 (s, 3H, NCH₃), 2.80 (m, 2H, C_{trz}-CH₂), 1.92 (quint, ³*J*_{HH} = 7.0 Hz, 2H, NCH₂CH₂), 1.72 (quint, ³*J*_{HH} = 7.6 Hz, 2H, C_{trz}-CH₂CH₂), 1.26 (m, 12H, CH₂ hex), 0.83 (m, 6H, CH₂CH₃).

The carbene silver complex 2d is reported elsewhere.^{S3c}

The carbene silver complex **2e** is reported elsewhere.^{S4}

Complex 2f. According to the general procedure from **1f** (500 mg, 1.46 mmol) and Ag₂O (169 mg, 0.73 mmol) in CH₂Cl₂ (30 mL) for 2 h gave **2f** as a white solid (362 mg, 55%). ¹H NMR (DMSO–D₆, 300 MHz): δ 7.73 (m, 2H, H_{Ph}), 7.53 (m, 3H, H_{Ph}), 4.50 (t, ³*J*_{HH} = 7.3 Hz, 2H, NC*H*₂), 4.14 (s, 3H, NCH₃), 1.92 (quint, ³*J*_{HH} = 7.3 Hz, 2H, NCH₂C*H*₂), 1.29 (sext, ³*J*_{HH} = 7.3 Hz, 2H, C*H*₂CH₃), 0.87 (t, ³*J*_{HH} = 7.3 Hz, 3H, CH₂C*H*₃).

Complex 2g. According to the general procedure, reaction of **1g** (362 mg, 0.94 mmol) and Ag₂O (109 mg, 0.47 mmol) in CH₂Cl₂ (30 mL) for 2 h yielded **2g** as a yellow oil (450 mg, 97%). ¹H NMR (DMSO–D₆, 500 MHz): δ 7.04 (s, 2H, H_{Ar}), 4.51 (t, ³*J*_{HH} = 6.9 Hz, 2H, NC*H*₂), 3.81 (s, 3H, NCH₃), 2.32 (s, 3H, Mes–CH₃), 2.10 (m, 2H, NCH₂C*H*₂), 1.94 (s, 6H, Mes–CH₃), 1.25 (sext, ³*J*_{HH} = 7.4 Hz, 2H, C*H*₂CH₃), 0.89 (t, ³*J*_{HH} = 7.4 Hz, 2H, CH₂C*H*₃)

Complex 2h. According to the general procedure, reaction of **1h** (1.01 mg, 2.5 mmol) and Ag₂O (290 mg, 1.3 mmol) in CH₂Cl₂ (30 mL) for 2 h afforded **2h** as a white solid (1.02 mg, 79%). ¹H NMR (DMSO–D₆, 300 MHz): δ 7.67–7.49 (m, 5H, H_{Ar}), 7.07 (s, 2H, H_{Mes}), 4.23 (s, 3H, NCH₃), 2.39 (s, 3H, Mes–CH₃), 1.86 (s, 6H, Mes–CH₃).

Complex 2i. According to the general procedure, **1i** (199 mg, 0.45 mmol) and Ag_2O (57 mg, 0.22 mmol) in CH_2Cl_2 (30 mL) for 16 h gave **2i** as a white solid (246 mg, 99%). ¹H NMR (DMSO–D₆, 500

MHz): δ 7.04 (s, 2H, H_{Mes}), 7.03 (s, 2H, H_{Mes}), 3.90 (s, 3H, NCH₃), 2.39, 2.38 (2 × s, 3H, Mes–CH₃), 1.86, 1.79 (2 × s, 6H, Mes–CH₃)

Complex 2j. According to the general procedure, **1j** (500 mg, 1.38 mmol) and Ag₂O (159 mg, 0.68 mmol) in CH₂Cl₂ (30 mL) for 2 h afforded **2j** as a white solid (422 mg, 65%). ¹H NMR (DMSO–D₆, 500 MHz): δ 7.92 (m, 2H, H_{Ar}), 7.75 (m, 2H, H_{Ar}), 7.60 (m, 2H, H_{Ar}), 7.51 (m, 4H, H_{Ar}), 4.25 (s, 3H, NCH₃).

Complex 2k. According to the general procedure, **1k** (315 mg, 1.0 mmol) and Ag₂O (116 mg, 0.49 mmol) in CH₂Cl₂ (30 mL) for 2 h yielded **2k** as a white solid (169 mg, 40%). ¹H NMR (d₆-DMSO, 400 MHz): δ 7.66 (m, 2H, H_{Ph}), 7.56 (m, 3H, H_{Ph}), 4.48 (q, ³J_{HH} = 7.3 Hz, 2H, NCH₂), 4.27 (s, 3H, NCH₃), 1.38 (t, ³J_{HH} = 7.3 Hz, 3H, NCH₂CH₃).

Complex 21. According to the general procedure, reaction of **11** (500 mg, 1.52 mmol) and Ag₂O (176 mg, 0.76 mmol) in CH₂Cl₂ (35 mL) for 2 h gave **21** as a white solid (291 mg, 44%). ¹H NMR (d₆-DMSO, 300 MHz): δ 7.67 (m, 2H, H_{Ph}), 7.55 (m, 3H, H_{Ph}), 4.60–4.45 (m, 4H, NCH₂), 1.54, 1.38 (2 × t, ³J_{HH} = 7.3 Hz, 3H, NCH₂CH₃).

Complex 2m. According to the general procedure from **1m** (521 mg, 1.46 mmol) and Ag₂O (169 mg, 0.73 mmol) in CH₂Cl₂ (35 mL) for 2 h, yielding **2m** as a white solid (150 mg, 44%). ¹H NMR (d₆-DMSO, 300 MHz): δ 7.70 (m, 2H, H_{Ph}), 7.52 (m, 3H, H_{Ph}), 4.50 (t, ³J_{HH} = 7.4 Hz, 2H, NCH₂CH₂), 4.16 (q, ³J_{HH} = 7.3 Hz, 2H, NCH₂CH₃), 1.95 (quint, ³J_{HH} = 7.4 Hz, 2H, NCH₂CH₂), 1.61 (t, ³J_{HH} = 7.3 Hz, 2H, NCH₂CH₃), 1.95 (quint, ³J_{HH} = 7.4 Hz, 2H, NCH₂CH₂), 0.86 (t, ³J_{HH} = 7.4 Hz, 3H, NCH₂CH₂CH₂CH₂).

3. Time-conversion profiles for BnOH oxidation using complexes 3a-g

Figure S1. Time-conversion profile for the catalytic oxidation of benzyl alcohol (0.2 mmol) by triazolylidene ruthenium complexes **3a-3c** or **4** (5 mol%, 0.01 mmol) in toluene (2 mL) at 110 °C determined by ¹H NMR spectroscopy (anisole, 0.2 mmol, as internal standard).

Figure S2. Time-conversion profile for the catalytic oxidation of benzyl alcohol (0.2 mmol) by triazolylidene ruthenium complexes **3d–3g** (5 mol%, 0.01 mmol) in toluene (2 mL) at 110 °C determined by ¹H NMR spectroscopy (anisole, 0.2 mmol, as internal standard).

4. References

- S1 D. M. Nguyen and D. H. Miles, Synth. Commun., 2011, 41, 1759-1771.
- S2 B. M. J. M. Suijkerbuijk, B. N. H. Aerts, H. P. Dijkstra, M. Lutz, A. L. Spek, G. van Koten and
 R. J. M. K. Gebbink, *Dalton Trans.*, 2007, 1273-1276.
- S3 (a) T. Nakamura, K. Ogata, S. Fukuzawa, *Chem. Lett.* 2010, 39, 920-922; (b) A. Poulain, D. Canseco-Gonzalez, R. Hynes-Roche, H. Müller-Bunz, O. Schuster, H. Stoeckli-Evans, A. Neels and M. Albrecht, *Organometallics*, 2011, 30, 1021-1029; (c) D. Canseco-Gonzalez, A. Gniewek, M. Szulmanowicz, H. Müller-Bunz, A. M. Trzeciak and M. Albrecht, *Chem. Eur. J.*, 2012, 18, 6055-6062.
- S4 P. Mathew, A. Neels and M. Albrecht, J. Am. Chem. Soc., 2008, 130, 13534–13535.