Supporting information

Caution. 99- Techetium is a weak beta emitter (Emax = 292 keV), the dose rate calculated in a typical experiment is 3.54 millirad/hours. All manipulations were performed in radiochemistry laboratory designed for chemical synthesis using efficient HEPA-filtered fume hoods, and following locally approved radioisotope handling and monitoring procedures. The starting material NH_4TcO_4 was obtained from stocks at the Los Alamos National Laboratory originally purchased from the Oak Ridge Isotope Office.¹

I. Cerium titration.

A volume of 0.9 mL (V1) of the green solution (C1, Tc = 0.01412 M) containing the Tc complex was placed in a 1 cm quartz cuvette. Aliquot of a 0.25 M Cerium (+4) solution in 3-4 M H₂SO₄ (C2, Sigma-Aldrich) were added with a micropipette to the quartz cuvette. After each addition, the UV-visible spectrum of the solution was recorded and the concentration of the Tc species was monitored using the band at 695 nm. The representation of the absorbance at 695 nm, as a function of the volume of the cerium solution is presented in Figure S1_titration. Using Figure S1_titration, a volume of 105(5) μ L of the cerium solution was estimated at the equivalence point.

For the reaction: $Tc(+x) + (7-x).Ce(+4) \rightarrow Tc(+7) + (7-x).Ce(+3)$, the oxidation state x of the is determined at the equivalence using the equation: $C2 \cdot V2 = C1 \cdot V1 \cdot (7-x)$

 $C1 = 0.01412 \text{ M}, V1 = 0.9 \text{ mL}, C2 = 0.25 \text{ M}, V2 = 105(5) \mu L.$ Calculation indicate x = 4.93(10)

Figure S1_titration. Variation of the absorbance at 695 nm of a solution (Tc = 0.01412 M, V= 0.9 mL) containing the green complexes Tc(+x) as a function of the volume of a Ce(IV) solution (0.25 M in 3-4 M H₂SO₄) added. At equivalence, the volume needed to oxidize Tc(+x) to Tc(+7) is 105(5) μ L (i.e., x = 4.93(10))

II. NMR spectroscopy. The ⁹⁹Tc NMR spectra of solutions were collected on a JEOL GX-400 spectrometer with 5 mm tubes fitted with Teflon inserts that were purchased from Wilmad Glass. Chemical shifts (δ) were measured from a 0.2 M NH₄TcO₄ solution in D₂O as the external reference (δ = 0). Measurements were performed at 298 K.

Figure S1_NMR. 99-Tc NMR spectra of the solution obtained 1 hour after the reaction of: A) TcO_4^- with MeOH in 6 M H₂SO₄ and B) HTcO₄ with MeOH in 13 M H₂SO₄.

III. EPR spectroscopy

Figure S1_EPR. EPR spectrum of the frozen (77 K) solution obtained after the reaction of $HTcO_4$ with MeOH in 13 M H₂SO₄.

IV. UV-visible spectroscopy. UV-visible spectra were recorded at room temperature in a quartz cell (1 cm) on a Cary 6000i double beam spectrometer.

Figure S1_UV. Reaction between HTcO4 (0.97 mM, 1 mL) and Methanol (20 μ L) in 13 M H₂SO₄. UV-visible spectra before (black) and after: 5 minutes (red), 30 minutes (blue) and 1 hour of reaction (green). A solution of 13 M H₂SO₄ (1 mL) / MeOH (20 μ L) was used as the reference.

Figure S2_UV: UV-visible spectrum of a solution of 0.01 M KMnO₄ in 13 M H₂SO₄ A) before the reaction. B) 2 minutes after the reaction of 1 mL of the solution with MeOH (20 μ L).

Figure S3_UV. UV-visible spectrum of a solution of 0.01 M KReO₄ in 13 M H₂SO₄. Blue: before reaction. Red : 48 hours after the reaction of 1 mL the solution with MeOH (20 μ L).

Figure S4_UV. Reaction between HTcO₄ (0.97 mM, 1 mL) and MeOH (20 μ l) in 13 M H₂SO₄. Concentration (Moles.L⁻¹) of the green Tc(+5) species in solution as function of the reaction time (minutes). Concentration of the Tc green species was determined using the absorbance at 695 nm. The initial reaction rate (2.9.10⁻⁵ Moles. L⁻¹.min⁻¹) is also represented.

Figure S5_UV. Reaction between HTcO₄ (0.97 mM, 1 mL) and formaldehyde (20 μ l) in 13 M H₂SO₄. A) UV-visible spectra before the reaction. B) UV-visible spectra after 2 minutes of reaction (HTcO₄ has been entirely converted to the Tc(+5) species). A solution of 13 M H₂SO₄ (1 mL) / formaldehyde (20 μ L) was used as the reference.

Figure S6_UV. Reaction between HTcO₄ (0.97 mM, 1 mL) and formic acid (20 μ L) in 13 M H₂SO₄. UV-visible spectra before (black) and after 1 hour of reaction (red). A solution of 13 M H₂SO₄ (1 mL) / formic acid (20 μ L) was used as the reference.

Figure S7_UV. UV-visible spectrum of the brown solution 3 months after the reaction of a $[TcO_4]^-$ (Tc = 0.017 M) solution (1 mL) in 6 M H₂SO₄ solution with MeOH (20 µl). Top: Spectra of the brown solution without dilution. Bottom: Spectra of the brown solution after dilution (1:100) in 6 M H₂SO₄.

V. Formic acid titration.

The titration of formic acid was performed using the method reported in the literature.² A solution of $HTcO_4$ (0.02 M, 1 mL) in 13 M H₂SO₄ was reacted with MeOH (20 µl). After the reaction 10 µl of the green solution were diluted 1 mL of water. After the dilution, 10 µL of a mercury acetate solution in acetic acid (12 mg of mercuric acetate by mL) were added to the solution. The UV-visible spectrum was recorded as a function of the time. The spectrum after 1 hour of reaction exhibits the peak at 236 nm which indicate the presence of acetic acid in solution (Figure S1_Formic).

It is noted that in the same condition, the reaction of mercury acetate with sulfuric acid /MeOH solution (10 μ L) do not produce the peak at 236 nm (Figure S2_Formic).

Figure S1_Formic. UV-visible spectra after 1 hour of the solution (10 μ L mercuric acetate solution + 1 mL H₂O + 10 μ L Tc green solution). A solution (10 μ L Tc green solution + 1 mL H₂O) was used as a blank. The Tc green solution was prepared after the reaction of HTcO₄ (0.02 M, 1 mL) in 13 M H₂SO₄ with MeOH (20 μ L).

Figure S2_Formic. UV-visible spectra after 1 hour of the solution (10 μ L mercuric acetate solution + 1 mL H₂O+ 10 μ l H₂SO₄/MeOH solution). A solution (10 μ L H₂SO₄/MeOH + 1 mL H₂O) was used as a blank. The H₂SO₄/MeOH solution was prepared by dilution of MeOH (20 μ L) in 13 M H₂SO₄ (1 mL).

VI. XAFS spectroscopy.

XAFS measurements were carried out at the Advanced Photon Source (APS) at the BESSRC-CAT 12 BM station in Argonne National Laboratory. Potassium pertechnetate (23 mg, 0.114 mmol) was dissolved in 5 ml of 13 M H₂SO₄, then 1 ml was taken and 20 µl of MeOH (0.5 mmol) were added to the solution. After the reaction, 100 µl of the green solution were taken and placed in a teflon sample holder of local design. XAFS spectra were recorded at the Tc-K edge (21,044 eV) in fluorescence mode at room temperature using a 13 elements germanium detector. A double crystal of Si [1 1 1] was used as a monochromator. The energy was calibrated using a molybdenum foil (Mo-K edge = 20,000 eV). Fourteen spectra were recorded in the k range [0 - 14] Å⁻¹ and averaged. Background contribution was removed using the Athena³ software and data analysis was performed using WINXAS.⁴ For the fitting procedure, amplitude and phase shift function were calculated in the putative [TcO(SO₄)₃]⁻ specie by FEFF8.2 software.⁵ Input files were generated by Atoms⁶ using the crystallographic structure of $K_4MoO_2(SO_4)_3$.⁷ Adjustments of the k³ -weighted EXAFS spectra were performed under the constraints $S_0^2 = 0.9$. A single value of energy shift ($\Delta E0$) was used for all scattering.

In order to determinate the structure of the complexes, various adjustments considering: (1) Tc-O, (2) Tc=O, Tc-O, (3) Tc=O, Tc-O, Tc-S_{mono} and (4) Tc=O, Tc-O, Tc-S_{bid} scatterings. Results are presented in Table S1 and Table S2.

Table S1. Result for the adjustments (1) and 2) considering: (1) Tc-O and (2) Tc=O, Tc-O scatterings. Adjustments performed for R= [0.8; 2.5] Å. ΔE_0 (eV) = -4.21 for (1), -3.11 for (1a), 6.26 for (2), 8.73 for (2a) and 6.22 for (2b). ^a fixed

Adjustment	Scattering	C.N	R (Å)	σ^2 (Å ²)	Reduced chi ²
1	Tc-O	5.72	2.02(2)	0.004 ^a	156
1a	Tc-O	6 ^a	2.02(2)	0.0046	131
2	Tc=O	1.03	1.64(2)	0.0022 ^a	13.12
	Tc-O	4.42	2.06(2)	0.004 ^a	
2a	Tc=O	2 ^a	1.66(2)	0.0070	102
	Tc-O	4 ^a	2.06	0.0036	
2b	Tc=O	1 ^a	1.65(2)	0.0019	9
	Tc-O	5 ^a	2.06(2)	0.0051	

Table S2. Result for the adjustments (3) and (4) considering: (3) Tc=O, Tc-O, Tc-S_{mono} and (4) Tc=O, Tc-O, Tc-S_{mono} and Tc-S_{bid} scatterings. Adjustments performed for R= [0.8; 4] Å. ΔE_0 (eV) = -2.94 for (3, 2.98 for (4), 6.5 for (4a) and 5.63 for (4b). ^a fixed

Adjustment	Scattering	C.N	R (Å)	σ^2 (Å ²)	Reduced chi ²
3	Tc=O	0.9	1.64(2)	0.0022 ^a	46.75
	Tc-O	4.7	2.05(2)	0.004^{a}	
	Tc-S _{mono}	2.7	3.27(3)	0.009 ^a	
4	Tc=O	1 ^a	1.64(2)	0.0030	46.7
	Tc-O	5 ^a	2.05(2)	0.0045	
	Tc-S _{mono}	2 ^a	3.27(3)	0.0064	
4a	Tc=O	1.0(2)	1.65(2)	0.0022 ^a	8.05
	Tc-O	4.4(9)	2.07(2)	0.004^{a}	
	Tc-S _{bid}	0.5(1)	2.89(3)	0.006^{a}	
	Tc-S _{mono}	1.9(4)	3.30(3)	0.009v	
4b	Tc=O	1 ^a	1.65(2)	0.0021	10.5
	Tc-O	5^{a}	2.06(2)	0.005	
	Tc-S _{bid}	1 ^a	2.88(3)	0.0093	
	Tc-S _{mono}	2^{a}	3.29(3)	0.0083	

Figure S1_XAFS. XANES spectra of: A) the solution obtained after the reaction of $HTcO_4$ with MeOH in 13 M H₂SO₄ and B) the $[TcCl_6]^{2-}$ anion in $(Me_4N)_2TcCl_6$

VII. Computational method. Structural optimization of the molecular complexes proposed in this study was carried out using density functional theory (DFT), as implemented in the Gaussian 09 software.⁸ Structural relaxation calculations were performed, without symmetry constraints applied, using the generalized gradient approximation (GGA) and the Becke 3-parameter, Lee, Yang and Parr⁹ (B3LYP) hybrid functional. The Dunning-Huzinaga valence double- ζ basis set¹⁰ (D95V) was used for the H, O and S atoms, in combination with the Stuttgart/Dresden effective core potentials¹¹ (SDD ECPs) for the Tc metal atom. This computational approach was shown in our previous studies to successfully reproduce experimental structures of molecular complexes containing Tc, O and S.¹²

¹ http://www.ornl.gov/sci/isotopes/catalog.html

² Y. G. Khabarov and M. S. Yakovlev, Rus. J. Appl. Chem., 2007, 80, 1481.

³ B. Ravel and M. Newville J. Synchrotron Rad. 2005, **12**, 537.

⁴ T. Ressler, J. Synchrotron Rad., 1998, **5**, 118.

⁵ J.J. Rehr, R.C. Albers. *Rev. Mod. Phys.*, 2000, **72**, 621.

⁶ B. Ravel., J. Synchrotron Rad., 2001, **8**, 314.

⁷ S. J. Cline Schaffer and R. W. Berg. Acta Cryst., 2008, E64, i20.

⁸ Gaussian 09, Revision A.02 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

⁹ A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648; C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785; S. H. Vosko, L. Wilk, M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200; P. J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623.

¹⁰ T. H. Dunning Jr. and P. J. Hay, in *Modern Theoretical Chemistry*, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1976), p. 1.

¹¹ D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, *Theor. Chem. Acc.*, 1990, 77, 123.

¹² M. Ferrier, P. F. Weck, F. Poineau, E. Kim, A. Stebbins, L. Ma, A. P. Sattelberger, K. R. Czerwinski, *Dalton Trans.*, 2012, **41**, 6291.