# Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

### General:

Preliminary examination and data collection were carried out on an area detecting system (Kappa-CCD; Nonius) using graphite-monochromated Mo K<sub>a</sub> radiation ( $\lambda = 0.71073$  Å) with an Oxford Cryosystems cooling system at the window of a sealed fine-focus X-ray tube. The reflections were integrated. Raw data were corrected for Lorentz, polarization, decay, and absorption effects. The absorption correction was applied using SADABS.<sup>1</sup> After merging, the independent reflections were used for all calculations. The structure was solved by a combination of direct methods<sup>II</sup> and difference Fourier syntheses.<sup>III</sup> All non-hydrogen atom positions were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal positions using the SHELXL riding model. Full-matrix least-squares refinements were carried out by minimizing  $\Sigma w(F_o^2 - F_c^2)^2$  with the SHELXL-97 weighting scheme and stopped at shift/err < 0.001. Neutral-atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from ref V. All calculations were performed with the programs COLLECT,<sup>VII</sup> DIRAX,<sup>VII</sup> EVALCCD,<sup>VIII</sup> SIR92,<sup>II</sup> SADABS,<sup>I</sup> PLATON,<sup>IX</sup> and the SHELXL-97 package.<sup>III,IV</sup> For visualization Mercury<sup>X</sup> and PLATON<sup>IX</sup> and for the preparation of supporting material ENCIFER<sup>XI</sup> and PLATON<sup>IX</sup> were used.

- [I] Sheldrick, G. M. SADABS, Version 2.10; University of Göttingen, Göttingen, Germany, 2002.
- [II] Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli M. "SIR92", J. Appl. Cryst. 1994, 27, 435-436.
- [III] Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.
- [IV] Sheldrick, G. M. "SHELXL-97", University of Göttingen, Göttingen, Germany, (1998).
- [V] International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
- [VI] Hooft, R. W. W. "COLLECT" Data Collection Software for Nonius-Kappa CCD; Nonius BV., Delft, The Netherlands, 1999.
- [VII] Duisenberg, A. J. M. J. Appl. Crystallogr. 1992, 25, 92.
- [VIII] Duisenberg, A. J. M.; Kroon-Batenburg, L. M. J.; Schreurs, A. M. M., J. Appl. Crystallogr. 2003, 36, 220.
- [IX] Spek, A. L. "PLATON", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, (2010).
- [X] Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466.
- [XI] Allen, F. H.; Johnson, O.; Shields, G. P.; Smith, B. R.; Towler, M. J. Appl. Crystallogr. 2004, 37, 335.

# **Compound 8a**

## $\underline{\text{Table S1}}$ - Crystal Data and Details of the Structure Determination for: Compound 8a

#### Crystal Data

| Formula<br>Formula Weight |                 | C14      | H14 Br2 N4 Pd |
|---------------------------|-----------------|----------|---------------|
| Crvstal Svstem            |                 |          | Orthorhombic  |
| Space group               |                 | Pna21    | (No. 33)      |
| a, b, c [Angstrom]        | 12.4150(9)      | 9.508(2) | 14.0530(17)   |
| V [Ang**3]                |                 |          | 1658.8(4)     |
| Ζ                         |                 |          | 4             |
| D(calc) [g/cm**3]         |                 |          | 2.020         |
| Mu(MoKa) [ /mm ]          |                 |          | 5.934         |
| F(000)                    |                 |          | 968           |
| Crystal Size [mm]         |                 | 0.20 x   | 0.20 x 0.20   |
|                           | Data Collection |          |               |
|                           |                 |          |               |
| Temperature (K)           |                 |          | 198           |
|                           |                 |          |               |

|      | Мо      | Кa                           | 0.71073                                         |
|------|---------|------------------------------|-------------------------------------------------|
|      |         | 4                            | .8, 25.4                                        |
| -14: | 14 ; -1 | 1: 11 ;                      | : -16: 16                                       |
|      | 11505,  | 3005                         | 5, 0.031                                        |
|      |         |                              | 2748                                            |
|      | -14:    | Mo<br>-14: 14 ; -1<br>11505, | MoKa<br>4<br>-14: 14 ; -11: 11 ;<br>11505, 3005 |

#### Refinement

| Nref, Npar                                                 | 3005, 192                |
|------------------------------------------------------------|--------------------------|
| R, wR2, S                                                  | 0.0205, 0.0375, 1.06     |
| $w = 1/[\langle s^2 (Fo^2 \rangle) + (0.0000P)^2 \rangle]$ | where P=(Fo^2^+2Fc^2^)/3 |
| Max. and Av. Shift/Error                                   | 0.01, 0.00               |
| Flack x                                                    | 0.025(7)                 |
| Min. and Max. Resd. Dens. [e/Ang^3]                        | -0.33, 0.33              |

### Table S2 - Bond Distances (Angstrom) for: Compound 8a

| Pd1 | -Brl | 2.4960(6) | C5  | -C6   | 1.376(5) |
|-----|------|-----------|-----|-------|----------|
| Pd1 | -Br2 | 2.4885(8) | C6  | -C7   | 1.380(6) |
| Pd1 | -C1  | 1.965(4)  | С7  | -C8   | 1.385(5) |
| Pd1 | -C10 | 1.958(3)  | C8  | -C9   | 1.385(5) |
| N1  | -C1  | 1.336(4)  | C11 | -C12  | 1.348(6) |
| N1  | -C2  | 1.386(4)  | C2  | -H2   | 0.9500   |
| N1  | -C13 | 1.459(5)  | С3  | -НЗ   | 0.9500   |
| N2  | -C1  | 1.362(5)  | C5  | -Н5   | 0.9500   |
| N2  | -C3  | 1.399(4)  | C6  | -Н6   | 0.9500   |
| N2  | -C4  | 1.424(4)  | C7  | -H7   | 0.9500   |
| NЗ  | -C9  | 1.426(4)  | C8  | -H8   | 0.9500   |
| NЗ  | -C10 | 1.359(4)  | C11 | -H11  | 0.9500   |
| NЗ  | -C12 | 1.404(5)  | C12 | -H12  | 0.9500   |
| N4  | -C10 | 1.339(4)  | C13 | -H13A | 0.9800   |
| N4  | -C11 | 1.387(5)  | C13 | -H13B | 0.9800   |
| N4  | -C14 | 1.465(5)  | C13 | -H13C | 0.9800   |
| C2  | -C3  | 1.349(5)  | C14 | -H14A | 0.9800   |
| C4  | -C5  | 1.389(5)  | C14 | -H14B | 0.9800   |
| C4  | -C9  | 1.392(5)  | C14 | -H14C | 0.9800   |

| Table S3 - Bond A | Ingles (Degrees) | ) for: Compound | 8a |
|-------------------|------------------|-----------------|----|
|-------------------|------------------|-----------------|----|

| Br1 | -Pd1 | -Br2 | 94.10(2)   | Pd1  | -C10 | -N3   | 124.3(2) |
|-----|------|------|------------|------|------|-------|----------|
| Br1 | -Pd1 | -C1  | 91.65(10)  | Pd1  | -C10 | -N4   | 130.3(3) |
| Br1 | -Pd1 | -C10 | 174.91(13) | NЗ   | -C10 | -N4   | 105.4(2) |
| Br2 | -Pd1 | -C1  | 172.78(8)  | N4   | -C11 | -C12  | 107.3(3) |
| Br2 | -Pd1 | -C10 | 90.67(12)  | N3   | -C12 | -C11  | 106.0(3) |
| C1  | -Pd1 | -C10 | 83.45(15)  | N1   | -C2  | -H2   | 126.00   |
| C1  | -N1  | -C2  | 111.0(3)   | С3   | -C2  | -H2   | 126.00   |
| C1  | -N1  | -C13 | 124.4(3)   | N2   | -C3  | -НЗ   | 127.00   |
| C2  | -N1  | -C13 | 124.7(3)   | C2   | -C3  | -НЗ   | 127.00   |
| C1  | -N2  | -C3  | 110.2(3)   | C4   | -C5  | -H5   | 120.00   |
| C1  | -N2  | -C4  | 124.9(3)   | C6   | -C5  | -H5   | 120.00   |
| C3  | -N2  | -C4  | 124.9(3)   | C5   | -C6  | -нб   | 120.00   |
| С9  | -N3  | -C10 | 125.0(3)   | C7   | -C6  | -нб   | 120.00   |
| С9  | -N3  | -C12 | 124.5(3)   | C6   | -C7  | -H7   | 120.00   |
| C10 | -N3  | -C12 | 110.3(3)   | C8   | -C7  | -H7   | 120.00   |
| C10 | -N4  | -C11 | 111.0(3)   | С7   | -C8  | -H8   | 120.00   |
| C10 | -N4  | -C14 | 125.2(3)   | С9   | -C8  | -H8   | 120.00   |
| C11 | -N4  | -C14 | 123.7(3)   | N4   | -C11 | -H11  | 126.00   |
| Pd1 | -C1  | -N1  | 129.2(3)   | C12  | -C11 | -H11  | 126.00   |
| Pd1 | -C1  | -N2  | 125.3(2)   | NЗ   | -C12 | -H12  | 127.00   |
| N1  | -C1  | -N2  | 105.5(3)   | C11  | -C12 | -H12  | 127.00   |
| N1  | -C2  | -C3  | 107.3(3)   | N1   | -C13 | -H13A | 110.00   |
| N2  | -C3  | -C2  | 106.1(3)   | N1   | -C13 | -H13B | 109.00   |
| N2  | -C4  | -C5  | 119.1(3)   | N1   | -C13 | -H13C | 110.00   |
| N2  | -C4  | -C9  | 121.3(3)   | H13A | -C13 | -H13B | 109.00   |
| С5  | -C4  | -C9  | 119.7(3)   | H13A | -C13 | -H13C | 109.00   |
| C4  | -C5  | -C6  | 120.3(4)   | H13B | -C13 | -H13C | 109.00   |
| С5  | -C6  | -C7  | 120.3(4)   | N4   | -C14 | -H14A | 109.00   |
| C6  | -C7  | -C8  | 119.8(4)   | N4   | -C14 | -H14B | 110.00   |
| C7  | -C8  | -C9  | 120.4(4)   | N4   | -C14 | -H14C | 110.00   |
| NЗ  | -C9  | -C4  | 122.3(3)   | H14A | -C14 | -H14B | 109.00   |
| NЗ  | -C9  | -C8  | 118.1(3)   | H14A | -C14 | -H14C | 109.00   |
| C4  | -C9  | -C8  | 119.6(3)   | H14B | -C14 | -H14C | 109.00   |



## **Compound 8b**

 $\underline{Table \ S4}$  - Crystal Data and Details of the Structure Determination for: Compound 8b

#### Crystal Data

C22 H18 Br2 N4 Pd, 2(C2 H3 N) Formula Formula Weight 686.71 Crystal System Triclinic Space group P-1 (No. 2) a, b, c [Angstrom] 9.7310(12) 10.752(2) 13.9470(7)alpha, beta, gamma [deg] 96.085(9) 103.753(6) 98.478(15) V [Ang\*\*3] 1386.7(3) Ζ 2 D(calc) [g/cm\*\*3]1.645 Mu(MoKa) [ /mm ] 3.576 F(000) 676 0.19 x 0.19 x 0.33 Crystal Size [mm] Data Collection

| Temperature (K)                            |      |              |       | 198    |
|--------------------------------------------|------|--------------|-------|--------|
| Radiation [Angstrom]                       |      | MoK <i>a</i> | 0     | .71073 |
| Theta Min-Max [Deg]                        |      |              | 2.7,  | 26.4   |
| Dataset                                    | -12: | 11 ; -13:    | 13 ;  | 0: 17  |
| Tot., Uniq. Data, R(int)                   |      | 5686,        | 5686, | 0.000  |
| Observed data $[I > 2.0 \text{ sigma}(I)]$ |      |              |       | 4437   |
|                                            |      |              |       |        |

Refinement

| Nref, Npar                                | 5686, 320                |
|-------------------------------------------|--------------------------|
| R, wR2, S                                 | 0.0308, 0.0576, 1.05     |
| w = 1/[\s^2^(Fo^2^)+(0.0203P)^2^+1.4433P] | where P=(Fo^2^+2Fc^2^)/3 |
| Max. and Av. Shift/Error                  | 0.00, 0.00               |
| Min. and Max. Resd. Dens. [e/Ang^3]       | -0.54, 0.50              |

The unit cell contains 1 disordered acetonitrile molecule which has been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON. $^{\rm IX}$ 

#### Table S5 - Bond Distances (Angstrom) for: Compound 8b

| Pd1 | -Brl | 2.4705(6) | C14 | -C15  | 1.405(4) |
|-----|------|-----------|-----|-------|----------|
| Pd1 | -Br2 | 2.4924(6) | C15 | -C16  | 1.374(4) |
| Pd1 | -C1  | 1.957(3)  | C17 | -C18  | 1.368(6) |
| Pd1 | -C10 | 1.964(3)  | C18 | -C19  | 1.388(6) |
| N1  | -C1  | 1.339(3)  | C19 | -C20  | 1.390(5) |
| N1  | -C2  | 1.397(4)  | C5  | -Н5   | 0.9500   |
| N1  | -C21 | 1.461(4)  | C6  | -н6   | 0.9500   |
| N2  | -C1  | 1.361(4)  | С7  | -H7   | 0.9500   |
| N2  | -C3  | 1.408(4)  | C8  | -H8   | 0.9500   |
| N2  | -C4  | 1.425(3)  | C13 | -H13  | 0.9500   |
| NЗ  | -C9  | 1.427(4)  | C14 | -H14  | 0.9500   |
| NЗ  | -C10 | 1.359(4)  | C15 | -H15  | 0.9500   |
| NЗ  | -C12 | 1.402(4)  | C16 | -H16  | 0.9500   |
| N4  | -C10 | 1.342(4)  | C17 | -H17  | 0.9500   |
| N4  | -C11 | 1.389(4)  | C18 | -H18  | 0.9500   |
| N4  | -C22 | 1.458(5)  | C19 | -H19  | 0.9500   |
| N5  | -C24 | 1.128(5)  | C20 | -H20  | 0.9500   |
| N6  | -C26 | 1.124(6)  | C21 | -H21C | 0.9800   |
| C2  | -C13 | 1.384(4)  | C21 | -H21A | 0.9800   |

# Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

| C2  | -C3  | 1.389(4) | C21 | -H21B | 0.9800   |
|-----|------|----------|-----|-------|----------|
| C3  | -C16 | 1.379(4) | C22 | -H22C | 0.9800   |
| C4  | -C9  | 1.396(4) | C22 | -H22A | 0.9800   |
| C4  | -C5  | 1.384(4) | C22 | -H22B | 0.9800   |
| С5  | -C6  | 1.386(4) | C23 | -C24  | 1.462(6) |
| C6  | -C7  | 1.381(4) | C23 | -H23B | 0.9800   |
| С7  | -C8  | 1.375(4) | C23 | -H23C | 0.9800   |
| C8  | -C9  | 1.386(4) | C23 | -H23A | 0.9800   |
| C11 | -C12 | 1.396(5) | C25 | -C26  | 1.458(6) |
| C11 | -C17 | 1.379(5) | C25 | -H25A | 0.9800   |
| C12 | -C20 | 1.385(5) | C25 | -H25B | 0.9800   |
| C13 | -C14 | 1.374(4) | C25 | -H25C | 0.9800   |

## Table S6 - Bond Angles (Degrees) for: Compound 8b

| Br1                        | -Pd1    | -Br2 | 94.52(2)   | C18  | -C19     | -C20  | 121.8(4)                               |
|----------------------------|---------|------|------------|------|----------|-------|----------------------------------------|
| Br1                        | -Pd1    | -C1  | 90.53(9)   | C12  | -C20     | -C19  | 116.0(3)                               |
| Br1                        | -Pd1    | -C10 | 172.66(9)  | C4   | -C5      | -Н5   | 120.00                                 |
| Br2                        | -Pd1    | -C1  | 174.83(10) | C6   | -C5      | -Н5   | 120.00                                 |
| Br2                        | -Pd1    | -C10 | 92.54(9)   | C5   | -C6      | -н6   | 120.00                                 |
| C1                         | -Pd1    | -C10 | 82.45(13)  | С7   | -C6      | -нб   | 120.00                                 |
| C1                         | -N1     | -C2  | 110.8(2)   | C6   | -C7      | -H7   | 120.00                                 |
| C1                         | -N1     | -C21 | 124.8(2)   | C8   | -C7      | -H7   | 120.00                                 |
| C2                         | -N1     | -C21 | 124.4(2)   | C7   | -C8      | -H8   | 120.00                                 |
| C1                         | -N2     | -C3  | 110.4(2)   | С9   | -C8      | -H8   | 120.00                                 |
| C1                         | -N2     | -C4  | 124.3(2)   | C2   | -C13     | -H13  | 122.00                                 |
| C3                         | -N2     | -C4  | 125.4(2)   | C14  | -C13     | -H13  | 122.00                                 |
| C9                         | -N3     | -C10 | 124.8(2)   | C13  | -C14     | -H14  | 119.00                                 |
| C9                         | -N3     | -C12 | 125.3(3)   | C15  | -C14     | -H14  | 119.00                                 |
| C10                        | -N3     | -C12 | 109.9(3)   | C14  | -C15     | -H15  | 119.00                                 |
| C10                        | -N4     | -C11 | 110.6(3)   | C16  | -C15     | -H15  | 119.00                                 |
| C10                        | -N4     | -C22 | 125.2(3)   | C3   | -C16     | -H16  | 122.00                                 |
| C11                        | -N4     | -C22 | 124.1(2)   | C15  | -C16     | -H16  | 122.00                                 |
| Pd1                        | -C1     | -N1  | 128.9(2)   | C11  | -C17     | -H17  | 122.00                                 |
| Pd1                        | -C1     | -N2  | 124.20(19) | C18  | -C17     | -H17  | 122.00                                 |
| N1                         | -C1     | -N2  | 106.7(2)   | C17  | -C18     | -H18  | 119.00                                 |
| N1                         | -C2     | -C3  | 106.8(2)   | C19  | -C18     | -H18  | 119.00                                 |
| N1                         | -C2     | -C13 | 131.6(3)   | C18  | -C19     | -H19  | 119.00                                 |
| C3                         | -C2     | -C13 | 121.7(3)   | C20  | -C19     | -H19  | 119.00                                 |
| N2                         | -C3     | -C2  | 105.4(2)   | C12  | -C20     | -H20  | 122.00                                 |
| N2                         | -C3     | -C16 | 132.6(2)   | C19  | -C20     | -H20  | 122.00                                 |
| C2                         | -C3     | -C16 | 122.0(3)   | N1   | -C21     | -H21A | 109.00                                 |
| N2                         | -C4     | -C5  | 119.8(3)   | N1   | -C21     | -H21B | 109.00                                 |
| N2                         | -C4     | -C9  | 120.6(3)   | N1   | -C21     | -H21C | 109.00                                 |
| C5                         | -C4     | -C9  | 119.6(3)   | H21A | -C21     | -H21B | 110.00                                 |
| C4                         | -C5     | -C6  | 120.1(3)   | H21A | -C21     | -H21C | 109.00                                 |
| C5                         | -C6     | -C7  | 120.1(3)   | H21B | -C21     | -H21C | 110.00                                 |
| C6                         | -C7     | -C8  | 120.2(3)   | N4   | -C22     | -H22A | 110.00                                 |
| C7                         | -C8     | -09  | 120.3(3)   | N4   | -C22     | -H22B | 109.00                                 |
| N.3                        | -09     | -C4  | 120.7(2)   | N4   | -C22     | -H22C | 109.00                                 |
| N.3                        | -09     | -C8  | 119.6(3)   | H22A | -C22     | -H22B | 109.00                                 |
| C4                         | -09     | -C8  | 119.7(3)   | H22A | -C22     | -H22C | 109.00                                 |
| Pd1                        | -C10    | -N3  | 124.1(2)   | H22B | -C22     | -H22C | 109.00                                 |
| Pd1                        | -C10    | -N4  | 128.6(2)   | N5   | -C24     | -023  | 1797(4)                                |
| N3                         | -C10    | -N4  | 107 2(3)   | C24  | -C23     | -H23A | 109 00                                 |
| N4                         | -C11    | -C12 | 106.6(3)   | C24  | -C23     | -H23B | 109.00                                 |
| N4                         | -C11    | -C17 | 131 3(3)   | C24  | -023     | -H23C | 110 00                                 |
| C12                        | -C11    | -C17 | 122 2(3)   | H23A | -C23     | -H23B | 109 00                                 |
| N3                         | -C12    | -C11 | 105 8(3)   | н23д | -023     | -H23C | 109.00                                 |
| N3                         | -C12    | -C20 | 1327(3)    | H23R | -023     | -H23C | 109.00                                 |
| C11                        | -C12    | -C20 | 121  4(3)  | N6   | -025     | -025  | 179 0(5)                               |
| $\bigcirc$ $\perp$ $\perp$ | U _ L L | 020  | (J)        | 110  | <u> </u> | ~~ ~  | ±,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

#### Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

| - | 10  | $0 \cdot 1$ | .1 500/ 11 | · 1 C O  | 1.01 |      |       |        |
|---|-----|-------------|------------|----------|------|------|-------|--------|
|   | C17 | -C18        | -C19       | 122.4(3) | H25B | -C25 | -H25C | 109.00 |
|   | C11 | -C17        | -C18       | 116.2(3) | H25A | -C25 | -H25C | 110.00 |
|   | C3  | -C16        | -C15       | 116.5(3) | H25A | -C25 | -H25B | 109.00 |
|   | C14 | -C15        | -C16       | 121.7(3) | C26  | -C25 | -H25C | 109.00 |
|   | C13 | -C14        | -C15       | 121.5(3) | C26  | -C25 | -H25B | 109.00 |
|   | C2  | -C13        | -C14       | 116.6(3) | C26  | -C25 | -H25A | 109.00 |
|   |     |             |            |          |      |      |       |        |

Figure F2 – Ortep drawing with 50% ellipsoids for: Compound 8b



## **Compound 11a**

Table S7 - Crystal Data and Details of the Structure Determination for: Compound 11a

#### Crystal Data

Formula 2(C26 H21 Br4 N4 Pd), 3(C H2 C12) Formula Weight 1885.71 Crystal System Orthorhombic Space group (No. 60) Pbcn a, b, c [Angstrom] 21.297(2) 18.653(5) 15.986(4)V [Ang\*\*3] 6351(2) Ζ 4 D(calc) [g/cm\*\*3]1.972 Mu(MoKa) [ /mm ] 5.896 F(000) 3632 Crystal Size [mm] 0.15 x 0.20 x 0.20 Data Collection 198 Temperature (K) 0.71073 Radiation [Angstrom] MoKa Theta Min-Max [Deg] 4.8, 26.4 -26: 26 ; -23: 23 ; -19: 20 Dataset 148489, 6472, 0.074 Tot., Uniq. Data, R(int) Observed data [I > 2.0 sigma(I)] 4896 Refinement Nref, Npar 6472, 357

R, wR2, S0.0321, 0.0537, 1.09 $w = 1/[\s^2^{(Fo^2^)+(0.0056P)^2+16.6044P]}$  where  $P=(Fo^{2^++2Fc^{2^)})/$ Max. and Av. Shift/Error0.00, 0.00Min. and Max. Resd. Dens. [e/Ang^3]-0.72, 0.69

| Table S8 - Bo | ond Distances | (Angstrom) for | r: Compound | 11a |
|---------------|---------------|----------------|-------------|-----|
|---------------|---------------|----------------|-------------|-----|

| Pd1 | -Brl | 2.4817(8) | C17 | -C18  | 1.383(8)  |
|-----|------|-----------|-----|-------|-----------|
| Pd1 | -Br2 | 2.4842(8) | C18 | -C19  | 1.380(7)  |
| Pd1 | -C1  | 1.961(3)  | C20 | -C21  | 1.510(5)  |
| Pd1 | -C10 | 1.975(3)  | C21 | -C26  | 1.373(5)  |
| Br3 | -C6  | 1.891(4)  | C21 | -C22  | 1.377(6)  |
| Br4 | -C7  | 1.883(4)  | C22 | -C23  | 1.374(8)  |
| Cl1 | -C27 | 1.748(10) | C23 | -C24  | 1.380(10) |
| C12 | -C27 | 1.738(8)  | C24 | -C25  | 1.353(11) |
| C13 | -C28 | 1.737(5)  | C25 | -C26  | 1.389(8)  |
| Nl  | -C2  | 1.390(4)  | C2  | -H2   | 0.9500    |
| Nl  | -C1  | 1.341(4)  | C3  | -НЗ   | 0.9500    |
| Nl  | -C13 | 1.477(4)  | C5  | -Н5   | 0.9500    |
| N2  | -C3  | 1.398(4)  | C8  | -H8   | 0.9500    |
| N2  | -C4  | 1.426(4)  | C11 | -H11  | 0.9500    |
| N2  | -C1  | 1.361(4)  | C12 | -H12  | 0.9500    |
| N3  | -C12 | 1.393(5)  | C13 | -H13B | 0.9900    |
| N3  | -C10 | 1.364(4)  | C13 | -H13A | 0.9900    |
| N3  | -C9  | 1.423(5)  | C15 | -H15  | 0.9500    |
| N4  | -C20 | 1.478(4)  | C16 | -H16  | 0.9500    |
| N4  | -C11 | 1.382(5)  | C17 | -H17B | 0.9900    |
| N4  | -C10 | 1.345(5)  | C17 | -H17A | 0.9900    |
| C2  | -C3  | 1.335(5)  | C18 | -H18  | 0.9500    |
| C4  | -C9  | 1.401(5)  | C19 | -H19  | 0.9500    |
| C4  | -C5  | 1.383(5)  | C20 | -H20B | 0.9900    |
| C5  | -C6  | 1.381(5)  | C20 | -H20A | 0.9900    |
| C6  | -C7  | 1.375(5)  | C22 | -H22  | 0.9500    |
| C7  | -C8  | 1.385(5)  | C23 | -H23  | 0.9500    |
| C8  | -C9  | 1.386(5)  | C24 | -H24  | 0.9500    |
| C11 | -C12 | 1.336(5)  | C25 | -H25  | 0.9500    |
| C13 | -C14 | 1.508(5)  | C26 | -H26  | 0.9500    |
| C14 | -C19 | 1.391(6)  | C27 | -H27A | 0.9900    |
| C14 | -C15 | 1.377(6)  | C27 | -H27B | 0.9900    |
| C15 | -C16 | 1.373(8)  | C28 | -H28A | 0.9900    |
| C16 | -C17 | 1.369(9)  | C28 | -H28B | 0.9900    |

## Table S9 - Bond Angles (Degrees) for: Compound 11a

| Br1 | -Pd1 | -Br2 | 92.12(2)   | C22  | -C23 | -C24  | 119.5(5) |
|-----|------|------|------------|------|------|-------|----------|
| Br1 | -Pd1 | -C1  | 90.59(10)  | C23  | -C24 | -C25  | 120.4(6) |
| Br1 | -Pd1 | -C10 | 174.07(10) | C24  | -C25 | -C26  | 120.0(6) |
| Br2 | -Pd1 | -C1  | 176.39(9)  | C21  | -C26 | -C25  | 120.3(5) |
| Br2 | -Pd1 | -C10 | 91.73(9)   | Nl   | -C2  | -H2   | 126.00   |
| C1  | -Pd1 | -C10 | 85.39(13)  | C3   | -C2  | -H2   | 126.00   |
| C1  | -N1  | -C2  | 111.1(3)   | N2   | -C3  | -НЗ   | 127.00   |
| C1  | -N1  | -C13 | 125.1(3)   | C2   | -C3  | -НЗ   | 127.00   |
| C2  | -N1  | -C13 | 123.6(3)   | C4   | -C5  | -н5   | 120.00   |
| C1  | -N2  | -C3  | 110.6(3)   | C6   | -C5  | -Н5   | 120.00   |
| C1  | -N2  | -C4  | 124.4(3)   | C7   | -C8  | -H8   | 120.00   |
| C3  | -N2  | -C4  | 124.5(3)   | С9   | -C8  | -H8   | 120.00   |
| С9  | -N3  | -C10 | 124.7(3)   | N4   | -C11 | -H11  | 126.00   |
| С9  | -N3  | -C12 | 124.0(3)   | C12  | -C11 | -H11  | 126.00   |
| C10 | -N3  | -C12 | 110.8(3)   | NЗ   | -C12 | -H12  | 127.00   |
| C10 | -N4  | -C11 | 110.9(3)   | C11  | -C12 | -H12  | 127.00   |
| C10 | -N4  | -C20 | 125.1(3)   | Nl   | -C13 | -H13A | 109.00   |
| C11 | -N4  | -C20 | 123.9(3)   | N1   | -C13 | -H13B | 109.00   |
| Pd1 | -C1  | -N1  | 130.6(2)   | C14  | -C13 | -H13A | 109.00   |
| Pd1 | -C1  | -N2  | 124.6(2)   | C14  | -C13 | -H13B | 109.00   |
| Nl  | -C1  | -N2  | 104.7(3)   | H13A | -C13 | -H13B | 108.00   |

# Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

| N1   | -C2  | -C3   | 107.2(3) | C14   | -C15 | -H15   | 120.00   |
|------|------|-------|----------|-------|------|--------|----------|
| N2   | -C3  | -C2   | 106.4(3) | C16   | -C15 | -H15   | 120.00   |
| N2   | -C4  | -C5   | 118.4(3) | C15   | -C16 | -H16   | 120.00   |
| N2   | -C4  | -C9   | 122.1(3) | C17   | -C16 | -H16   | 120.00   |
| C5   | -C4  | -C9   | 119.6(3) | C16   | -C17 | -H17A  | 107.00   |
| C4   | -C5  | -C6   | 120.3(3) | C16   | -C17 | -H17B  | 107.00   |
| Br3  | -C6  | -C5   | 117.8(3) | C18   | -C17 | -H17A  | 107.00   |
| Br3  | -C6  | -C7   | 121.5(3) | C18   | -C17 | -H17B  | 107.00   |
| C5   | -C6  | -C7   | 120.5(3) | H17A  | -C17 | -H17B  | 107.00   |
| Br4  | -C7  | -C6   | 122.4(3) | C17   | -C18 | -H18   | 120.00   |
| Br4  | -C7  | -C8   | 117.9(3) | C19   | -C18 | -H18   | 120.00   |
| C6   | -C7  | -C8   | 119.6(3) | C14   | -C19 | -H19   | 120.00   |
| C7   | -C8  | -C9   | 120.7(3) | C18   | -C19 | -H19   | 120.00   |
| NЗ   | -C9  | -C4   | 123.0(3) | N4    | -C20 | -H20A  | 109.00   |
| NЗ   | -C9  | -C8   | 117.9(3) | N4    | -C20 | -H20B  | 109.00   |
| C4   | -C9  | -C8   | 119.2(3) | C21   | -C20 | -H20A  | 109.00   |
| Pd1  | -C10 | -N3   | 123.8(3) | C21   | -C20 | -H20B  | 109.00   |
| Pd1  | -C10 | -N4   | 131.7(2) | H20A  | -C20 | -H20B  | 108.00   |
| NЗ   | -C10 | -N4   | 104.5(3) | C21   | -C22 | -H22   | 120.00   |
| N4   | -C11 | -C12  | 107.7(3) | C23   | -C22 | -H22   | 120.00   |
| NЗ   | -C12 | -C11  | 106.0(3) | C22   | -C23 | -H23   | 120.00   |
| N1   | -C13 | -C14  | 113.0(3) | C24   | -C23 | -H23   | 120.00   |
| C13  | -C14 | -C15  | 120.9(3) | C23   | -C24 | -H24   | 120.00   |
| C13  | -C14 | -C19  | 120.2(3) | C25   | -C24 | -H24   | 120.00   |
| C15  | -C14 | -C19  | 118.9(4) | C24   | -C25 | -H25   | 120.00   |
| C14  | -C15 | -C16  | 120.9(5) | C26   | -C25 | -H25   | 120.00   |
| C15  | -C16 | -C17  | 119.9(5) | C21   | -C26 | -H26   | 120.00   |
| C16  | -C17 | -C18  | 120.4(5) | C25   | -C26 | -H26   | 120.00   |
| C17  | -C18 | -C19  | 119.5(5) | C11   | -C27 | -C12   | 111.6(4) |
| C14  | -C19 | -C18  | 120.3(4) | C11   | -C27 | -H27A  | 109.00   |
| N4   | -C20 | -C21  | 111.7(3) | Cll   | -C27 | -H27B  | 109.00   |
| C20  | -C21 | -C22  | 121.2(4) | C12   | -C27 | -H27A  | 109.00   |
| C20  | -C21 | -C26  | 119.9(3) | C12   | -C27 | -H27B  | 109.00   |
| C22  | -C21 | -C26  | 119.0(4) | H27A  | -C27 | -H27B  | 108.00   |
| C21  | -C22 | -C23  | 120.8(5) | C13   | -C28 | -C13_a | 110.7(4) |
| C13  | -C28 | -H28A | 110.00   | Cl3_a | -C28 | -H28A  | 110.00   |
| C13  | -C28 | -H28B | 110.00   | Cl3_a | -C28 | -H28B  | 110.00   |
| H28A | -C28 | -H28B | 108.00   |       |      |        |          |

Figure F3 – Ortep drawing with 50% ellipsoids for: Compound 11a

