Cage clusters built from uranyl ions bridged through peroxo and 1-hydroxyethane-1,1diphosphonic acid ligands

Zuolei Liao¹, Jie Ling¹, Laura R. Reinke¹, Jennifer E. S. Szymanowski¹, Ginger E. Sigmon¹, Peter C. Burns^{1,2}*

¹Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, 46556, USA.

²Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA

CONTENTS

Figure S1. UV-vis spectra for single crystals of $U24L_{12}$, $U40L_{20}$, $U64L_{32}$, $U20L_{10}$, $U16L_8$ and $U16L_8P_4$.

Figure S2. IR spectra for single crystals of $U24L_{12}$, $U40L_{20}$, $U64L_{32}$, $U20L_{10}$, $U16L_8$ and $U16L_8P_4$.

Table S1. Final coordinates and equivalent isotropic displacement parameters of non-hydrogen atoms for cluster U24L₁₂.

Table S2. Anisotropic displacement for cluster U24L₁₂.

Table S3. Selected bond distances (Å) and angles (degree) for cluster U24L₁₂.

Table S4. Final coordinates and equivalent isotropic displacement parameters of non-hydrogen atoms for cluster $U40L_{20}$.

Table S5. Anisotropic displacement for cluster $U40L_{20}$.

Table S6. Selected bond distances (Å) and angles (degree) for cluster U40L₂₀.

Table S7. Final coordinates and equivalent isotropic displacement parameters of non-hydrogen atoms for cluster U64L₃₂.

Table S8. Anisotropic displacement for cluster U64L₃₂.

Table S9. Selected bond distances (Å) and angles (degree) for cluster U64L₃₂.

Table S10. Final coordinates and equivalent isotropic displacement parameters of non-hydrogen atoms for cluster $U16L_8$.

Table S11. Anisotropic displacement for cluster U16L₈.

Table S12. Selected bond distances (Å) and angles (degree) for cluster U16L₈.

Table S13. Final coordinates and equivalent isotropic displacement parameters of non-hydrogen atoms for cluster $U20L_{10}$.

Table S14. Anisotropic displacement for cluster U20L₁₀.

Table S15. Selected bond distances (Å) and angles (degree) for cluster U20L₁₀.

Table S16. Final coordinates and equivalent isotropic displacement parameters of non-hydrogen atoms for cluster $U16L_8P_4$.

Table S17. Anisotropic displacement for cluster U16L₈P₄.

Table S18. Selected bond distances (Å) and angles (degree) for cluster U16L₈P₄.

Figure S1. UV-vis spectra for single crystals of $U24L_{12}(a)$, $U40L_{20}(b)$, $U64L_{32}(c)$, $U20L_{10}(d)$, $U16L_8$ (e)and $U16L_8P_4(f)$.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Figure S2. IR spectra for single crystals of $U24L_{12}(a)$, $U40L_{20}(b)$, $U64L_{32}(c)$, $U20L_{10}(d)$, $U16L_8(e)$ and $U16L_8P_4(f)$.

Table S1 - Final	Coordinates a Parameters for: U24L ₁₂	and Equivalen of the non-H P2/n	t Isotropic 1 ydrogen atoms R = 0.09	Displacement S
Atom	x 	У	Z 	U(eq) [Ang ²]
U1	0.74370(4)	0.05956(3)	0.12823(4)	0.0383(3)
U2	0.44577(4)	0.25226(3)	0.11577(4)	0.0287(3)
U3	0.62824(4)	0.05954(3)	0.24368(4)	0.0384(3)
U4	0.61585(4)	0.25233(3)	-0.05427(4)	0.0287(3)
U5	0.63875(4)	0.25023(4)	0.54699(4)	0.0364(3)
U6	0.44124(4)	0.14525(3)	0.23667(4)	0.0342(3)
U7	0.73666(4)	0.14522(3)	-0.05865(4)	0.0344(3)
U8	0.74112(4)	0.35917(4)	-0.04510(5)	0.0406(3)
U9	0.45294(4)	0.25020(4)	0.36128(4)	0.0363(3)
U10	0.45498(4)	0.35913(4)	0.24113(4)	0.0402(3)
U11	0.74253(6)	0.51807(4)	0.12741(6)	0.0816(6)
U12	0.62730(6)	0.51811(4)	0.24259(6)	0.0814(6)
P1	0.4866(3)	0.1966(2)	-0.0131(3)	0.0297(19)
P2	0.4853(3)	0.3060(2)	-0.0145(3)	0.0296(19)
P3	0.4924(3)	0.0314(2)	0.1759(3)	0.039(2)
P4	0.6757(3)	0.0316(2)	-0.0076(3)	0.041(3)
P5	0.7989(3)	0.0306(3)	-0.0006(3)	0.047(3)
P6	0.5011(3)	0.2992(3)	0.4988(3)	0.048(3)
P7	0.5073(3)	0.1909(3)	0.4927(3)	0.044(3)
P8	0.4993(3)	0.0306(3)	0.2991(3)	0.048(3)
P9	0.6796(3)	0.4768(2)	-0.0087(3)	0.051(3)
P10	0.4913(3)	0.4767(2)	0.1793(3)	0.049(3)
P11	0.8027(4)	0.4761(3)	0.0014(5)	0.074(4)
P12	0.5015(5)	0.4759(3)	0.3025(4)	0.075(4)
01	0.6514(8)	0.5347(8)	0.1509(8)	0.062(6)
02	0.7358(14)	0.5585(13)	-0.0218(14)	0.132(12)
03	0.4032(14)	0.4910(12)	0.2436(13)	0.120(11)

04	0.4825(15)	0.5026(13)	0.3505(15)	0.138(12)
05	0.6651(10)	0.5284(9)	0.3348(10)	0.079(7)
06	0.5606(11)	0.4850(9)	0.2973(11)	0.086(8)
07	0.7442(9)	0.5762(8)	0.0952(9)	0.072(6)
08	0.8516(14)	0.5019(12)	-0.0207(14)	0.126(11)
09	0.7959(10)	0.4851(9)	0.0621(10)	0.080(7)
010	0.4720(8)	0.3410(8)	0.5274(8)	0.060(6)
011	0.4161(11)	0.2405(9)	0.5099(11)	0.082(8)
012	0.7339(10)	0.0042(9)	-0.0917(10)	0.074(7)
013	0.5944(9)	0.5765(8)	0.2442(9)	0.063(6)
014	0.5495(9)	0.4955(8)	0.1806(9)	0.066(6)
015	0.3935(10)	0.2509(7)	-0.0370(10)	0.066(6)
016	0.6945(9)	0.5540(8)	0.1935(9)	0.066(6)
017	0.4071(10)	0.0050(9)	0.2335(10)	0.081(7)
018	0.6809(9)	0.4955(8)	0.0500(9)	0.064(6)
019	0.8468(9)	0.0036(8)	-0.0209(9)	0.068(6)
020	0.4801(9)	0.0027(8)	0.3467(9)	0.061(6)
021	0.6437(9)	0.4512(8)	0.2438(9)	0.070(6)
022	0.5609(8)	0.0280(7)	0.2986(8)	0.049(5)
023	0.5547(7)	0.0275(7)	0.1803(7)	0.046(5)
024	0.6249(8)	0.0076(7)	-0.0353(8)	0.052(5)
025	0.6079(9)	0.2504(7)	0.6130(9)	0.058(6)
026	0.4850(8)	0.1451(7)	0.5160(8)	0.059(6)
027	0.3879(9)	0.2506(6)	0.3915(9)	0.053(5)
028	0.6513(6)	0.0723(6)	0.1514(6)	0.033(4)
029	0.6298(8)	0.4936(7)	-0.0433(8)	0.058(5)
030	0.4650(8)	0.0080(7)	0.1252(8)	0.054(5)
031	0.7978(8)	0.0272(7)	0.0610(8)	0.049(5)
032	0.4563(8)	0.4933(7)	0.1291(8)	0.055(5)
033	0.7417(7)	0.1178(6)	0.0936(7)	0.045(5)

034	0.6631(7)	0.0741(6)	0.3362(7)	0.043(4)
035	0.4904(7)	0.4205(6)	0.1863(7)	0.041(4)
036	0.8019(8)	0.4235(7)	-0.0124(8)	0.050(5)
037	0.3757(7)	0.1152(6)	0.2325(7)	0.039(4)
038	0.7371(7)	0.3903(6)	-0.1093(7)	0.044(4)
039	0.4868(8)	0.4228(7)	0.3013(8)	0.050(5)
040	0.6468(7)	0.3345(6)	-0.0619(7)	0.043(4)
041	0.6796(7)	0.0276(7)	0.0549(7)	0.048(5)
042	0.4734(7)	0.0850(6)	0.1778(7)	0.038(4)
043	0.6917(7)	0.0963(6)	0.1919(7)	0.039(4)
044	0.7329(7)	0.1153(6)	-0.1240(7)	0.040(4)
045	0.3901(7)	0.3898(7)	0.2365(8)	0.048(5)
046	0.5645(7)	0.2986(6)	0.5132(7)	0.044(5)
047	0.6996(9)	0.5485(8)	0.3013(9)	0.071(6)
048	0.4874(7)	0.2985(6)	0.4353(8)	0.047(5)
049	0.5175(8)	0.2506(6)	0.3310(8)	0.045(5)
050	0.6864(7)	0.4214(6)	-0.0109(7)	0.039(4)
051	0.5941(7)	0.1173(6)	0.2421(7)	0.043(4)
052	0.4799(7)	0.0835(6)	0.2976(7)	0.044(5)
053	0.7429(7)	-0.0006(7)	0.1572(8)	0.050(5)
054	0.5222(7)	0.3318(6)	0.2467(7)	0.039(4)
055	0.6579(7)	-0.0020(7)	0.2429(8)	0.050(5)
056	0.3792(7)	0.2552(5)	0.0784(7)	0.034(4)
057	0.7465(6)	0.3321(6)	0.0216(7)	0.036(4)
058	0.7097(8)	0.3002(7)	0.5846(8)	0.048(5)
059	0.4376(7)	0.3345(6)	0.1469(7)	0.043(4)
060	0.6687(7)	0.2500(6)	0.4830(7)	0.038(4)
061	0.4607(8)	0.1519(7)	-0.0392(8)	0.050(5)
062	0.5455(6)	0.3038(5)	-0.0227(6)	0.029(4)
063	0.5694(7)	0.1961(6)	0.5087(7)	0.041(4)
064	0.6779(7)	0.0848(6)	-0.0254(7)	0.037(4)

065	0.4910(7)	0.1967(6)	0.4307(7)	0.042(4)
066	0.7984(7)	0.0827(6)	-0.0201(7)	0.041(4)
067	0.6429(6)	0.1724(6)	-0.0744(6)	0.029(4)
068	0.5052(6)	0.1763(6)	0.2403(6)	0.033(4)
069	0.5791(7)	0.2554(6)	-0.1214(7)	0.034(4)
070	0.4151(7)	0.3005(6)	0.2899(7)	0.041(4)
071	0.4772(6)	0.3032(6)	0.0458(7)	0.033(4)
072	0.7094(7)	0.2057(6)	0.5933(7)	0.044(5)
073	0.4251(6)	0.1721(6)	0.1434(6)	0.030(4)
074	0.4061(7)	0.2055(6)	0.2908(7)	0.042(4)
075	0.5134(6)	0.2490(5)	0.1523(6)	0.026(4)
076	0.5477(6)	0.2007(6)	-0.0225(6)	0.031(4)
077	0.4578(7)	0.3495(6)	-0.0415(7)	0.040(4)
078	0.8322(7)	0.3342(6)	-0.0591(7)	0.042(4)
079	0.7437(9)	0.4535(8)	0.1465(10)	0.071(6)
080	0.4312(7)	0.1697(6)	0.3296(7)	0.039(4)
081	0.6522(6)	0.2479(5)	0.0138(7)	0.029(4)
082	0.4029(7)	0.2067(6)	0.1796(7)	0.037(4)
083	0.7397(6)	0.1757(5)	0.0046(6)	0.027(3)
084	0.4403(7)	0.3338(6)	0.3316(7)	0.041(4)
085	0.4780(6)	0.2008(5)	0.0480(6)	0.029(4)
086	0.6705(7)	0.1694(6)	0.5681(7)	0.036(4)
087	0.4133(7)	0.3005(6)	0.1826(7)	0.040(4)
088	0.6826(7)	0.2996(6)	-0.0860(7)	0.039(4)
089	0.6999(7)	0.0954(6)	0.3002(7)	0.039(4)
090	0.6798(7)	0.2062(6)	-0.0968(7)	0.034(4)
C1	0.4508(10)	0.2511(8)	-0.0471(11)	0.033(6)
C2	0.4753(13)	0.2414(11)	0.5254(14)	0.056(8)
C3	0.4702(12)	0.0013(11)	0.2362(12)	0.049(7)
C4	0.4636(11)	0.2519(9)	-0.1068(11)	0.036(6)

C5	0.7354(11)	0.0009(10)	-0.0299(12)	0.047(7)
C6	0.4630(13)	0.5049(12)	0.2408(13)	0.060(8)
C7	0.7401(13)	0.5039(12)	-0.0364(13)	0.061(8)
C8	0.4900(12)	0.2398(10)	0.5840(13)	0.049(7)
C9	0.7359(12)	-0.0505(11)	-0.0118(12)	0.050(7)
C10	0.4867(13)	-0.0521(12)	0.2357(14)	0.063(9)
C11	0.7438(13)	0.4904(12)	-0.0963(14)	0.061(9)
C12	0.4764(14)	0.5572(12)	0.2356(14)	0.065(9)
*01W	0.6747(17)	0.3898(16)	0.1014(18)	0.066(12)
Li4	0.707(2)	0.3594(18)	0.128(2)	0.050(12)
*02W	0.301(2)	0.3033(18)	0.284(2)	0.078(14)
*03W	0.714(2)	0.3027(19)	0.698(2)	0.088(15)
*04W	0.8743(16)	-0.0963(15)	0.0234(17)	0.059(11)
*05W	0.7172(17)	0.2690(15)	0.2166(17)	0.057(10)
*06W	0.6273(16)	0.4274(14)	0.3706(16)	0.055(10)
*07W	0.5236(16)	-0.0967(15)	0.3766(16)	0.057(11)
*08W	0.6095(19)	-0.0372(18)	0.1106(19)	0.078(14)
*010W	0.5546(15)	0.0439(14)	0.0529(16)	0.051(10)
*011W	0.4972(12)	0.3959(11)	0.4077(12)	0.078(9)
*012W	3/4	0.3935(16)	1/4	0.086(13)
*013W	0.9074(12)	0.3954(11)	-0.0007(12)	0.082(9)
*014W	0.5971(13)	0.3969(12)	-0.1291(13)	0.085(9)
*015W	0.6168(16)	0.2871(14)	0.3831(17)	0.056(11)
*016W	0.5990(13)	0.3806(12)	0.0375(13)	0.072(9)
*017W	0.3713(12)	0.3973(11)	0.0949(12)	0.082(9)
*018W	0.5380(12)	0.3821(11)	0.1005(12)	0.063(8)
019W	0.5534(10)	0.1412(9)	0.3611(10)	0.080(7)
020W	0.8609(10)	0.1420(9)	0.0527(10)	0.079(7)
*021W	0.8804(12)	-0.0208(11)	0.1212(12)	0.078(9)
*022W	3/4	-0.077(3)	1/4	0.10(2)

023W	3/4	0.2068(14)	1/4	0.098(12)
024W	0.9759(10)	0.0307(9)	0.0230(10)	0.086(7)
025W	0.7484(9)	0.2401(7)	0.0995(9)	0.060(6)
026W	0.6002(9)	0.2400(7)	0.2485(9)	0.054(5)
027W	0.6632(7)	0.1841(7)	0.3371(8)	0.050(5)
028W	0.6562(8)	0.1869(7)	0.1565(8)	0.056(5)
029W	0.5438(8)	0.1428(7)	0.1236(8)	0.050(5)
030W	0.6238(8)	0.1435(7)	0.0431(8)	0.048(5)
031W	0.6115(7)	0.2860(6)	0.1111(7)	0.039(4)
032W	0.5698(8)	0.4917(7)	0.0699(8)	0.052(5)
*09W	0.490(3)	0.403(3)	-0.116(3)	0.07(2)
Li1	0.302(3)	0.280(3)	0.174(3)	0.09(2)
*Li2	0.827(3)	0.281(3)	0.699(3)	0.06(2)
Li3	0.628(2)	0.361(2)	0.208(2)	0.066(15)
Li5	0.298(2)	0.2028(19)	0.295(2)	0.060(14)
Li6	0.704(2)	0.2040(19)	0.703(2)	0.058(13)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor Starred Atom sites have a S.O.F less than 1.0

Table S2 - (An)isotropic Displacement Parameters for: $U24L_{12}$ P2/n R = 0.09						
Atom	U(1,1) or U	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
U1	0.0392(6)	0.0276(5)	0.0449(7)	-0.0036(4)	-0.0126(5)	0.0050(4)
U2	0.0276(5)	0.0245(5)	0.0329(6)	0.0016(4)	-0.0026(4)	0.0003(4)
U3	0.0382(6)	0.0282(5)	0.0456(7)	0.0052(4)	-0.0128(5)	-0.0035(4)
U4	0.0276(5)	0.0252(5)	0.0322(6)	-0.0001(4)	-0.0031(4)	0.0014(4)
U5	0.0271(5)	0.0484(6)	0.0337(6)	0.0041(4)	0.0023(4)	-0.0023(4)
U6	0.0324(5)	0.0332(6)	0.0352(6)	0.0056(4)	-0.0063(4)	-0.0115(4)
U7	0.0303(5)	0.0332(6)	0.0379(6)	-0.0116(4)	-0.0060(4)	0.0054(4)
U8	0.0292(5)	0.0330(6)	0.0590(7)	0.0121(5)	0.0019(5)	-0.0010(4)
U9	0.0289(5)	0.0477(6)	0.0323(6)	0.0024(4)	0.0023(4)	-0.0038(4)
U10	0.0527(6)	0.0329(6)	0.0344(6)	-0.0007(4)	0.0012(5)	0.0125(5)
U11	0.0987(11)	0.0309(7)	0.0991(11)	-0.0091(6)	-0.0752(9)	0.0124(6)
U12	0.0926(10)	0.0312(7)	0.1042(12)	0.0118(6)	-0.0746(9)	-0.0088(6)
Pl	0.031(3)	0.024(3)	0.033(4)	-0.004(3)	-0.003(3)	-0.001(3)
P2	0.029(3)	0.029(3)	0.029(4)	0.001(3)	-0.006(3)	-0.001(3)
P3	0.036(4)	0.030(4)	0.047(4)	0.000(3)	-0.012(3)	-0.016(3)
P4	0.044(4)	0.030(4)	0.045(5)	-0.014(3)	-0.016(3)	0.001(3)
P5	0.044(4)	0.044(4)	0.051(5)	-0.019(4)	-0.013(4)	0.022(3)
P6	0.034(4)	0.072(6)	0.036(4)	0.001(4)	-0.008(3)	0.000(4)
P7	0.035(4)	0.058(5)	0.037(4)	0.016(3)	-0.008(3)	-0.013(3)
P8	0.048(4)	0.041(4)	0.050(5)	0.022(3)	-0.013(4)	-0.018(3)
Р9	0.057(5)	0.027(4)	0.061(5)	0.009(3)	-0.031(4)	-0.001(3)
P10	0.055(5)	0.022(4)	0.062(5)	0.002(3)	-0.029(4)	0.005(3)
P11	0.058(5)	0.035(5)	0.123(9)	0.030(5)	-0.028(5)	-0.023(4)
P12	0.114(8)	0.036(5)	0.066(6)	-0.025(4)	-0.030(6)	0.025(5)

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Table	S3 - Bond for:	Distances (Angular U24L ₁₂ $P2/n$	gstrom)	R = 0.09	
U1	-028	2.405(15)	U4	-076	2.377(15)
U1	-031	2.38(2)	U4	-081	1.815(17)
U1	-033	1.815(17)	U4	-088	2.281(17)
U1	-041	2.432(17)	U4	-090	2.335(17)
U1	-043	2.333(17)	U5	-025	1.85(2)
U1	-053	1.805(19)	U5	-046	2.339(17)
U1	-034_a	2.394(17)	U5	-058	2.34(2)
U1	-089_a	2.342(17)	U5	-060	1.790(17)
U2	-056	1.791(17)	U5	-063	2.383(17)
U2	-059	2.407(17)	U5	-072	2.324(17)
U2	-071	2.396(17)	U5	-086	2.401(17)
U2	-073	2.380(16)	U5	-078_a	2.433(17)
U2	-075	1.805(15)	U6	-037	1.798(17)
U2	-082	2.329(17)	U6	-042	2.381(17)
U2	-085	2.373(14)	U6	-052	2.398(17)
U2	-087	2.306(17)	U6	-068	1.777(15)
U3	-022	2.39(2)	U6	-073	2.396(15)
U3	-023	2.426(17)	U6	-074	2.338(17)
U3	-028	2.404(15)	U6	-080	2.406(17)
U3	-034	2.376(17)	U6	-082	2.335(17)
U3	-043	2.326(17)	U7	-044	1.794(17)
U3	-051	1.797(17)	U7	-064	2.392(17)
U3	-055	1.847(19)	U7	-066	2.423(17)
U3	-089	2.345(17)	U7	-067	2.407(15)
U4	-040	2.402(17)	U7	-083	1.756(14)
U4	-062	2.412(14)	U7	-090	2.321(17)
U4	-067	2.367(16)	U7	-072_a	2.335(17)
U4	-069	1.797(17)	U7	-086_a	2.397(17)

U8	-036	2.40(2)	U11	-018	2.39(2)
U8	-038	1.784(17)	U11	-079	1.84(2)
U8	-040	2.401(17)	U11	-05_a	2.37(2)
U8	-050	2.376(17)	U11	-047_a	2.30(2)
U8	-057	1.788(17)	U12	-01	2.42(2)
U8	-078	2.385(17)	U12	-05	2.37(2)
U8	-088	2.340(17)	U12	-06	2.39(3)
U8	-058_a	2.290(19)	U12	-013	1.80(2)
U9	-027	1.82(2)	U12	-014	2.40(2)
U9	-048	2.340(18)	U12	-016	2.34(2)
U9	-049	1.81(2)	U12	-021	1.89(2)
U9	-065	2.372(17)	U12	-047	2.33(2)
U9	-070	2.350(17)	P1	-061	1.50(2)
U9	-074	2.330(17)	P1	-076	1.536(16)
U9	-080	2.395(17)	P1	-085	1.533(16)
U9	-084	2.429(17)	P1	-C1	1.89(2)
U10	-035	2.374(17)	P2	-062	1.505(16)
U10	-039	2.38(2)	P2	-071	1.509(18)
U10	-045	1.791(18)	P2	-077	1.498(18)
U10	-054	1.801(17)	P2	-C1	1.87(2)
U10	-059	2.402(17)	P3	-023	1.520(19)
U10	-070	2.282(17)	P3	-030	1.50(2)
U10	-084	2.380(17)	P3	-042	1.552(18)
U10	-087	2.330(17)	P3	-C3	1.82(3)
U11	-01	2.40(2)	P4	-024	1.51(2)
U11	-07	1.79(2)	P4	-041	1.527(19)
U11	-09	2.34(2)	P4	-064	1.533(18)
U11	-016	2.31(2)	P4	-C5	1.82(3)
Ρ5	-019	1.51(2)	P12	-04	1.50(4)
Ρ5	-031	1.51(2)	P12	-06	1.48(3)
Ρ5	-066	1.514(18)	P12	-039	1.51(2)

P5	-C5	1.84(3)	P12	-C6	1.88(3)
P6	-010	1.56(2)	01	-016	1.51(3)
P6	-046	1.556(19)	02	-C7	1.55(5)
P6	-048	1.56(2)	03	-C6	1.52(5)
P6	-C2	1.86(3)	05	-047	1.35(3)
Ρ7	-026	1.51(2)	011	-C2	1.46(4)
Ρ7	-063	1.538(19)	012	-C5	1.51(4)
Ρ7	-065	1.539(19)	015	-C1	1.45(3)
Ρ7	-C2	1.82(3)	017	-C3	1.54(4)
P8	-020	1.51(2)	028	-043	1.49(2)
P8	-022	1.51(2)	034	-089	1.44(2)
P8	-052	1.534(19)	040	-088	1.46(2)
P8	-C3	1.82(3)	058	-078_a	1.48(3)
Р9	-018	1.52(2)	059	-087	1.45(2)
Р9	-029	1.49(2)	067	-090	1.44(2)
Р9	-050	1.539(17)	070	-084	1.46(2)
Р9	-C7	1.84(3)	072	-086	1.48(2)
P10	-014	1.51(2)	073	-082	1.44(2)
P10	-032	1.50(2)	074	-080	1.46(2)
P10	-035	1.560(17)	OlW	-Li4	1.29(7)
P10	-C6	1.88(3)	C1	-C4	1.52(4)
P11	-08	1.53(4)	C2	-C8	1.45(5)
P11	-09	1.53(3)	C3	-C10	1.53(4)
P11	-036	1.49(2)	C5	-C9	1.49(4)
P11	-C7	1.88(3)	C6	-C12	1.49(5)
C7	-C11	1.52(5)			

Displace	Table S2	- Final Coor	dinates and	Equivalent Iso	otropic
22062000		Parameters for: u4012	of the non- 0 Imm2	Hydrogen atom: R = 0.06	5
	Atom	x	У	Z 	U(eq) [Ang ²]
	U1	0.13101(10)	0.31764(8)	-0.19583(6)	0.0287(9)
	U2	0	0.31520(12)	-0.13240(8)	0.0270(12)
	U3	0.34954(16)	1/2	-0.13410(7)	0.0247(12)
	U4	0	0.31617(12)	-0.25993(7)	0.0293(12)
	U5	0	0.31568(12)	-0.00846(7)	0.0243(12)
	U6	0.13081(10)	0.31742(8)	0.05488(6)	0.0266(9)
	U7	0.34037(11)	0.39568(7)	0.05658(5)	0.0254(8)
	U8	0.34000(11)	0.39589(7)	-0.19764(5)	0.0246(8)
	U9	0.34979(16)	1/2	-0.00699(7)	0.0237(12)
	U10	0.32870(16)	1/2	0.12075(7)	0.0236(11)
	U11	0	0.39641(11)	0.21960(7)	0.0240(12)
	U12	0.32942(17)	1/2	-0.26137(7)	0.0253(12)
	U13	0	0.39628(10)	-0.36019(8)	0.0250(12)
	U14	0.13158(15)	1/2	-0.35744(8)	0.0260(12)
	U15	0	0.31638(13)	0.11899(7)	0.0303(12)
	U16	0.13139(15)	1/2	0.21678(8)	0.0239(11)
	P1	0.2713(8)	0.4466(5)	-0.3301(4)	0.028(6)
	P2	0.2711(8)	0.4481(6)	0.1885(3)	0.028(5)
	P3	0.0665(2)	0.2503(2)	-0.0707(4)	0.0287(17)
	P4	0.2717(7)	0.2872(5)	-0.2283(4)	0.028(5)
	P5	0.2724(7)	0.2866(5)	0.0889(3)	0.027(5)
	P6	0.0653(8)	0.2881(6)	0.1883(3)	0.033(6)
	P7	0.2757(3)	0.4467(2)	-0.0713(5)	0.0287(17)
	P8	0.2740(6)	0.2878(5)	-0.1646(3)	0.024(5)
	Р9	0.0667(7)	0.2866(6)	-0.3289(3)	0.028(6)
	P10	0.2764(8)	0.2879(6)	0.0224(3)	0.041(6)

Table S	2 - Final Coord	linates and I	Equivalent Isc	tropic
Displacement	Parameters for: u40120	of the non- Imm2	Hydrogen atoms R = 0.06	(continued)
Atom	x 	У	Z 	U(eq) [Ang [*] 2]
*01	0	0.244(2)	0.2291(10)	0.045(19)
02	0	0.2566(12)	-0.3732(7)	0.039(10)
03	0.200(2)	1/2	-0.0995(10)	0.071(17)
04	0.3735(14)	1/2	0.1978(8)	0.044(10)
05	0.2815(12)	0.2056(8)	0.0567(6)	0.044(7)
06	0	0.1804(12)	-0.0477(8)	0.054(11)
07	0.3958(19)	1/2	0.1415(9)	0.021(11)
08	0.0684(12)	0.2905(10)	0.1539(6)	0.045(9)
09	0.393(3)	1/2	-0.2819(14)	0.062(19)
010	0.1683(19)	1/2	0.2511(9)	0.032(13)
011	0.2314(7)	0.4026(5)	-0.0694(12)	0.054(5)
012	0.0618(11)	0.2815(8)	-0.2967(5)	0.029(7)
013	0.1772(17)	1/2	-0.3908(8)	0.019(11)
014	0.2033(14)	0.2797(10)	0.0846(6)	0.051(10)
015	0.3634(9)	0.2589(7)	-0.1953(5)	0.021(6)
016	0.2043(9)	0.2879(8)	-0.2285(5)	0.014(6)
017	0.2977(13)	0.4019(9)	0.2033(6)	0.031(8)
018	0.4050(10)	0.3586(8)	0.0601(5)	0.019(7)
019	0	0.3687(16)	-0.3943(6)	0.054(17)
020	0.2982(12)	0.2578(9)	-0.0002(6)	0.039(9)
021	0.2058(10)	0.2809(8)	0.0227(5)	0.027(6)
022	0.2058(13)	0.4528(9)	0.1965(6)	0.031(9)
023	0.2981(14)	0.2625(10)	-0.2566(6)	0.029(9)
024	0.3179(11)	0.4498(9)	-0.0442(6)	0.027(8)
025	0.2988(12)	0.2652(9)	-0.1363(6)	0.035(8)
026	0.2100(10)	0.2939(8)	-0.1641(5)	0.031(7)

- 4 -

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Table S	2 - Final Coord	linates and i	Equivalent Iso	tropic
DISPIRCEMENT	Parameters for: u40120	of the non-:) Imm2	Hydrogen atoms R = 0.06	(continued)
Atom	x 	У	Z 	U(eq) [Ang^2]
027	0.0943(11)	0.2593(8)	-0.1974(5)	0.017(6)
028	0.3017(14)	0.4088(10)	-0.3429(7)	0.039(9)
029	0.3655(11)	0.4229(9)	0.0084(6)	0.017(7)
030	0.0955(19)	1/2	-0.3216(9)	0.044(9)
031	0.2784(16)	1/2	-0.1483(7)	0.018(10)
032	0	0.3727(10)	0.1372(7)	0.006(8)
033	0.2947(16)	0.3380(11)	0.0859(7)	0.025(10)
034	0.0966(13)	0.2640(10)	0.0531(7)	0.035(9)
035	0.0881(16)	1/2	0.1840(7)	0.0200
036	0.2963(11)	0.3371(9)	-0.1653(5)	0.021(7)
037	0.1033(9)	0.4189(7)	0.2279(5)	0.015(6)
O38	0	0.372(2)	-0.2798(14)	0.070(19)
039	0.1211(13)	0.2631(10)	-0.3374(6)	0.037(9)
040	0.3073(11)	0.4475(9)	-0.0984(6)	0.027(8)
041	0.2810(14)	0.4505(10)	-0.2958(7)	0.035(10)
042	0.0991(12)	0.4204(9)	-0.3627(6)	0.038(8)
043	0.3871(14)	0.4569(10)	0.0299(7)	0.038(10)
044	0.2043(13)	0.4470(9)	-0.3345(6)	0.026(8)
045	0.3056(14)	0.3383(11)	0.0264(7)	0.042(10)
046	0.1655(14)	0.3722(9)	0.0550(8)	0.028(9)
047	0	0.2642(12)	0.0093(7)	0.018(10)
O48	0.2726(13)	0.4289(9)	-0.1956(7)	0.016(7)
049	0.2972(18)	0.3384(12)	-0.2275(8)	0.033(11)
050	0	0.2556(12)	0.1023(8)	0.028(10)
051	0.1009(9)	0.3266(7)	-0.1466(4)	0.012(5)
052	0.2735(19)	1/2	0.0120(8)	0.036(13)

- 5 -

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Table	S4 -	Final Coord Param for:	linates Neters o U40L ₂₀	and Equiv of the non Imm2	alent Isotropic -Hydrogen atoms R = 0.06	Displacement (continued)
	Atom	x 		У	Z 	U(eq) [Ang ²]
	053	0.2918	(15)	0.2605(11) 0.1134(7)	0.043(11)
	054	0.1226	(12)	0.2608(9) 0.2017(6)	0.030(8)
	055	0.1013	(12)	0.3354(9) -0.2440(6)	0.035(8)
	056	0.0999	(10)	0.3256(8) 0.1047(5)	0.015(6)
	057		0	0.3622(12) 0.2537(5)	0.015(9)
	058	0.3920	(11)	0.4512(9) -0.1706(5)	0.014(7)
	059	0.3614	(14)	0.4164(10) -0.1497(7)	0.033(9)
	060	0.2769	(16)	0.4284(12) 0.0555(9)	0.042(11)
	061	0.4213	(12)	1/	2 -0.1172(6)	0.004(7)
	062		0	0.3788(11) -0.1133(7)	0.031(9)
	063		0	0.3653(9) -0.0297(5)	0.010(7)
	064	0.1706	(15)	0.3746(10) -0.1965(9)	0.036(10)
	065	0.0978	(12)	0.3378(9) 0.0064(6)	0.044(9)
	066	0.4118	(12)	0.3650(9) -0.1987(6)	0.033(8)
	067	0.0640	(12)	0.2832(9) -0.0449(6)	0.024(8)
	068	0.2861	(12)	0.4478(9) 0.1572(6)	0.019(8)
	069	0.0592	(12)	0.3472(9) 0.0287(5)	0.031(8)
	070	0.3465	(12)	0.4169(9) 0.1045(6)	0.025(8)
	071	0.0639	(15)	0.3389(11) -0.3381(7)	0.042(11)
	072	0.41	.4(2)	1/	2 -0.0269(11)	0.072(18)
	073	0.0548	(11)	0.3548(8) -0.1657(5)	0.025(7)
	074		0	0.4235(14) -0.3271(9)	0.029(13)
	075	0.3797	(12)	0.4488(9) 0.0861(6)	0.027(8)
	076		0	0.2655(12) -0.2418(8)	0.028(11)
	077	0.0640	(18)	0.4510(13) 0.2390(9)	0.084(14)
	078	0.0628	(11)	0.3384(8) 0.2010(5)	0.011(7)
	079		0	0.4312(12) 0.1863(7)	0.012(10)

080	0.1208(6)	0.2191(5)	-0.0704(12)	0.032(3)
081	0.2612(17)	1/2	0.0986(8)	0.017(10)
082	0.0596(8)	0.4543(6)	-0.3822(4)	0.003(5)
083	0.259(2)	1/2	-0.2433(9)	0.039(14)
084	0.3478(12)	0.4233(9)	-0.2483(6)	0.022(8)
085	0	0.2564(14)	-0.1523(9)	0.035(13)
086	0.3804(11)	0.4569(8)	-0.2291(5)	0.019(7)
087	0.0606(14)	0.3503(10)	0.0827(6)	0.028(9)
088	0.0590(14)	0.3548(10)	-0.2264(7)	0.032(9)
089	0.0645(14)	0.2781(11)	-0.0988(7)	0.039(10)
090	0.3698(18)	1/2	-0.3469(13)	0.11(2)
C1	0	0.2139(9)	-0.070(2)	0.022(6)
C2	0.2303(12)	1/2	-0.0727(12)	0.030(8)
C3	0.308(3)	1/2	-0.3796(16)	0.08(2)
C4	0	0.2608(13)	0.2008(10)	0.028(16)
C5	0.2971(13)	0.2599(10)	-0.1967(7)	0.0200
C6	0.2978(16)	1/2	0.2020(8)	0.019(10)
C7	0.3085(18)	1/2	-0.3482(10)	0.0200
C8	0.3632(16)	0.2476(13)	0.0584(8)	0.034(11)
C9	0	0.1915(14)	-0.1011(9)	0.018(9)
C10	0.294(2)	1/2	0.2367(10)	0.0200
C11	0.188(2)	1/2	-0.0437(10)	0.021(12)
C12	0.300(2)	0.2472(13)	0.0565(10)	0.056(12)
C13	0.266(2)	0.2073(12)	-0.1939(10)	0.066(15)
C14	0	0.2079(17)	-0.3255(11)	0.037(16)
C15	0	0.2528(15)	-0.3416(11)	0.033(17)
C16	0	0.2047(14)	0.1925(10)	0.026(13)
*06W	0.125(5)	0.264(4)	-0.080(3)	0.12(4)
Na6	0.2384(9)	0.2049(7)	-0.0358(4)	0.078(6)
07₩	0.1560(14)	0.1886(11)	-0.0370(7)	0.103(10)

*010W	0.019(2)	0.1527(18)	0.1110(12)	0.072(19)
OlW	0	1/2	-0.2781(8)	0.035(9)
02W	0.1278(5)	0.3968(4)	0.1605(3)	0.050(3)
O3W	0.1859(7)	0.4432(5)	-0.2226(3)	0.0200
*04W	0.086(2)	0.4382(17)	0.0139(10)	0.069(14)
*05W	0.1055(17)	0.3763(13)	-0.0633(10)	0.060(13)
08W	0.0972(9)	0.4409(7)	-0.2435(4)	0.045(5)
*09W	0.0354(18)	0.1508(15)	0.0265(9)	0.055(12)
*011W	0.176(2)	1/2	0.0497(12)	0.042(14)
012W	0.2029(13)	0.3010(10)	-0.2958(6)	0.053(9)
013W	0.170(4)	1/2	-0.1886(17)	0.12(3)
*014W	0.205(2)	0.2927(18)	0.1504(11)	0.039(15)
*015W	0.1246(16)	0.2057(13)	0.0001(8)	0.056(12)
*016W	0.1401(18)	0.2128(14)	-0.1401(8)	0.021(10)
*017W	0.1403(15)	0.2208(12)	0.1186(7)	0.047(10)
*018W	0.150(2)	0.2224(18)	-0.2676(11)	0.050(15)
*019W	0.3982(18)	0.3418(13)	0.1296(8)	0.068(13)
*020W	0.3966(17)	0.3536(14)	-0.2773(9)	0.026(10)
Nal	0	0.2180(4)	0.0559(2)	0.005(2)
*Na2	0.2161(12)	0.3963(9)	0.1156(6)	0.023(7)
Na3	0.1824(5)	0.3087(4)	-0.0377(3)	0.048(3)
*Na4	1/2	1/2	-0.072(3)	0.072(12)
*Na7	0.2202(12)	0.3986(9)	-0.0063(5)	0.042(7)
*Na8	0.2020(11)	0.4102(8)	-0.1393(5)	0.033(6)
*Na9	0.2229(12)	0.3911(9)	-0.2603(6)	0.072(9)
*Na10	0.0544(11)	0.4419(8)	-0.2868(5)	0.050(6)
*Na5	0.2413(19)	0.2152(16)	-0.0985(9)	0.020(11)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor Starred Atom sites have a S.O.F less than 1.0

Table S4 - (An)isotropic Displacement Parameters for: $U40L_{20}$ Imm2 R = 0.06								
Atom	U(1,1) or 1	U U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)		
U1	0.0156(15)	0.0436(16)	0.0269(15)	0.0067(14)	0.0021(14)	-0.0004(12)		
U2	0.018(2)	0.043(2)	0.020(2)	-0.0011(18)	0	0		
U3	0.026(2)	0.030(2)	0.018(2)	0.0000	-0.0058(18)	0		
U4	0.019(2)	0.047(2)	0.022(2)	0.0074(18)	0	0		
U5	0.018(2)	0.039(2)	0.016(2)	-0.0024(17)	0	0		
U6	0.0175(16)	0.0418(16)	0.0205(14)	-0.0034(13)	-0.0003(14)	-0.0015(12)		
U7	0.0239(15)	0.0306(14)	0.0216(14)	0.0008(14)	0.0000(13)	0.0017(12)		
U8	0.0225(15)	0.0296(14)	0.0218(14)	-0.0005(13)	-0.0011(13)	0.0005(12)		
U9	0.024(2)	0.030(2)	0.017(2)	0	0.0034(18)	0		
U10	0.021(2)	0.0267(19)	0.023(2)	0.0000	-0.0042(18)	0		
U11	0.021(2)	0.028(2)	0.023(2)	0.0036(17)	0	0		
U12	0.023(2)	0.032(2)	0.021(2)	0.0000	-0.0008(18)	0		
U13	0.022(2)	0.025(2)	0.028(2)	-0.0016(18)	0	0		
U14	0.021(2)	0.031(2)	0.026(2)	0.0000	-0.0002(18)	0		
U15	0.022(2)	0.048(2)	0.021(2)	-0.0066(18)	0	0		
U16	0.018(2)	0.0268(19)	0.027(2)	0.0000	-0.0026(18)	0		
P1	0.033(11)	0.016(8)	0.036(11)	0.002(8)	-0.002(8)	0.004(8)		
Ρ2	0.018(9)	0.037(9)	0.028(10)	0.008(8)	-0.001(7)	-0.008(8)		
Р3	0.020(3)	0.047(3)	0.019(3)	-0.010(11)	-0.003(11)	0.007(2)		
P4	0.026(9)	0.031(9)	0.028(9)	-0.005(8)	0.004(7)	0.012(8)		
P5	0.016(8)	0.039(10)	0.026(9)	0.000(8)	-0.006(7)	-0.009(7)		
P6	0.034(11)	0.033(10)	0.032(11)	0.001(8)	0.002(9)	0.005(9)		
P7	0.033(3)	0.030(3)	0.023(3)	-0.001(10)	-0.006(10)	-0.006(2)		
P8	0.005(6)	0.038(9)	0.029(9)	0.009(7)	-0.004(6)	-0.007(6)		
Р9	0.028(10)	0.034(10)	0.022(10)	0.006(8)	0.007(8)	0.009(8)		
P10	0.044(11)	0.054(11)	0.025(9)	-0.007(8)	-0.003(8)	0.018(9)		

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Table	S6 - Bond for:	Distances (Angs U40L ₂₀ Imm2	strom)	R = 0.06	
U1	-016	2.40(2)	U4	-088	2.32(3)
U1	-026	2.41(2)	U4	-012_a	2.41(2)
U1	-027	1.85(2)	U4	-055_a	2.47(3)
U1	-051	2.397(19)	U4	-088_a	2.32(3)
U1	-055	2.39(3)	U5	-047	1.67(3)
U1	-064	1.84(3)	U5	-063	1.72(2)
U1	-073	2.46(2)	U5	-065	2.40(3)
U1	-088	2.40(3)	U5	-067	2.41(3)
U2	-051	2.40(2)	U5	-069	2.36(3)
U2	-062	2.01(3)	U5	-065_a	2.40(3)
U2	-073	2.28(2)	U5	-067_a	2.41(3)
U2	-085	1.90(4)	U5	-069_a	2.36(3)
U2	-089	2.38(3)	U6	-014	2.39(3)
U2	-051_a	2.40(2)	U6	-021	2.49(2)
U2	-073_a	2.28(2)	U6	-034	1.70(3)
U2	-089_a	2.38(3)	U6	-046	1.74(3)
U3	-031	1.74(4)	U6	-056	2.43(2)
U3	-040	2.42(3)	U6	-065	2.44(3)
U3	-058	2.39(2)	U6	-069	2.19(3)
U3	-059	2.49(3)	U6	-087	2.25(3)
U3	-061	1.80(3)	U7	-018	1.81(2)
U3	-040_b	2.42(3)	U7	-029	2.43(3)
U3	-058_b	2.39(2)	U7	-033	2.36(3)
U3	-059_b	2.49(3)	U7	-043	2.38(3)
U4	-012	2.41(2)	U7	-045	2.28(3)
U4	-038	1.83(6)	U7	-060	1.71(4)
U4	-055	2.47(3)	U7	-070	2.31(3)
U4	-076	1.66(4)	U7	-075	2.22(3)

U8	-036	2.45(2)	U11	-079	1.83(3)
U8	-048	1.79(3)	U11	-037_a	2.45(2)
U8	-049	2.35(4)	U11	-077_a	2.30(4)
U8	-058	2.33(2)	U11	-078_a	2.34(2)
U8	-059	2.35(3)	U12	-09	1.73(7)
U8	-066	1.85(3)	U12	-041	2.39(3)
U8	-084	2.48(3)	U12	-083	1.80(4)
U8	-086	2.44(2)	U12	-084	2.29(3)
U9	-024	2.35(3)	U12	-086	2.25(2)
U9	-029	2.32(3)	U12	-041_b	2.39(3)
U9	-043	2.27(3)	U12	-084_b	2.29(3)
U9	-052	1.94(4)	U12	-086_b	2.25(2)
U9	-072	1.72(5)	U13	-019	1.77(3)
U9	-024_b	2.35(3)	U13	-042	2.35(3)
U9	-029_b	2.32(3)	U13	-071	2.40(3)
U9	-043_b	2.27(3)	U13	-074	1.72(4)
U10	-07	1.80(4)	U13	-082	2.357(18)
U10	-068	2.44(3)	U13	-042_a	2.35(3)
U10	-070	2.50(3)	U13	-071_a	2.40(3)
U10	-075	2.45(3)	U13	-082_a	2.357(18)
U10	-081	1.84(4)	U14	-013	1.86(4)
U10	-068_b	2.44(3)	U14	-030	1.85(4)
U10	-070_b	2.50(3)	U14	-042	2.38(3)
U10	-075_b	2.45(3)	U14	-044	2.47(3)
U11	-037	2.45(2)	U14	-082	2.376(18)
U11	-057	1.86(3)	U14	-042_b	2.38(3)
U11	-077	2.30(4)	U14	-044_b	2.47(3)
U11	-078	2.34(2)	U14	-082_b	2.376(18)
U15	-08	2.36(3)	Р3	-06W	1.45(12)
U15	-032	1.80(3)	P4	-016	1.53(3)
U15	-050	1.89(3)	P4	-023	1.60(3)

U15	-056	2.37(2)	P4	-049	1.56(4)
U15	-087	2.37(3)	P4	-C5	1.75(4)
U15	-08_a	2.36(3)	P5	-014	1.59(4)
U15	-056_a	2.37(2)	P5	-033	1.55(3)
U15	-087_a	2.37(3)	P5	-053	1.43(4)
U16	-010	1.80(4)	P5	-C12	1.97(5)
U16	-022	2.35(3)	P6	-08	1.60(3)
U16	-035	1.81(3)	P6	-054	1.63(3)
U16	-037	2.44(2)	P6	-078	1.54(3)
U16	-077	2.31(4)	P6	-C4	1.77(3)
U16	-022_b	2.35(3)	P7	-011	1.603(17)
U16	-037_b	2.44(2)	P7	-024	1.58(3)
U16	-077_b	2.31(4)	P7	-040	1.45(3)
P1	-028	1.40(3)	P7	-C2	1.826(16)
P1	-041	1.61(4)	P8	-025	1.57(3)
P1	-044	1.53(3)	P8	-026	1.46(3)
P1	-C7	1.92(3)	P8	-036	1.48(3)
Ρ2	-017	1.60(3)	P8	-C5	1.77(3)
P2	-022	1.53(3)	P9	-012	1.51(3)
Ρ2	-068	1.49(3)	P9	-039	1.45(3)
P2	-C6	1.71(3)	P9	-071	1.54(4)
Р3	-067	1.52(3)	P9	-C15	1.88(3)
Р3	-080	1.513(15)	P10	-020	1.44(3)
Р3	-089	1.52(4)	P10	-021	1.61(3)
Р3	-C1	1.824(16)	P10	-045	1.58(4)
P10	-C12	2.03(5)	056	-087	1.52(4)
Na6	-07W	1.92(4)	058	-059	1.55(4)
01	-C4	1.40(7)	065	-069	1.38(4)
02	-C15	1.47(6)	070	-075	1.45(4)
03	-C2	1.42(7)	084	-086	1.50(4)

04	-C6	1.72(5)	090	-C7	1.39(6)
05	-C12	1.25(4)	OlOW	-010W_c	0.86(6)
06	-C1	1.40(8)	C1	-C9	1.58(10)
06W	-080	1.35(12)	C2	-C11	1.65(7)
06W	-089	1.67(13)	C3	-C7	1.46(9)
015	-C5	1.50(4)	C4	-C16	1.63(5)
029	-043	1.47(4)	C5	-C13	1.65(5)
037	-077	1.37(4)	C6	-C10	1.61(6)
042	-082	1.59(3)	C8	-C12	1.43(6)
051	-073	1.58(3)	C14	-C15	1.47(7)
055	-088	1.37(4)			

Displace	Table S2	- Final Coord	inates and H	Equivalent Iso	otropic
Dispided		Parameters of for: u64132	of the non-H I4/m	Hydrogen atoms R = 0.09	5
	Atom	x	У	Z 	U(eq) [Ang ²]
	U1	0.67065(4)	0.88558(4)	-0.07414(4)	0.0381(6)
	U2	0.88556(4)	0.67065(4)	-0.07414(4)	0.0379(6)
	U3	0.58336(6)	0.88545(6)	0	0.0367(8)
	U4	0.88548(6)	0.58338(6)	0	0.0367(8)
	U5	0.75811(6)	0.88527(6)	0	0.0426(8)
	U6	0.88526(6)	0.75812(6)	0	0.0427(8)
	U7	0.74997(4)	0.66301(4)	-0.14207(4)	0.0444(6)
	U8	0.66293(4)	0.74994(4)	-0.14207(4)	0.0444(6)
	U9	0.66594(5)	0.57881(5)	-0.17024(5)	0.0612(7)
	U10	0.57879(5)	0.66588(5)	-0.17019(5)	0.0614(7)
	P1	0.6355(4)	0.5001(4)	-0.2276(3)	0.071(5)
	P2	0.7219(4)	0.4999(3)	-0.2120(3)	0.061(5)
	P3	0.7133(3)	0.8457(3)	-0.1512(3)	0.048(4)
	P4	0.8458(3)	0.7131(3)	-0.1513(3)	0.049(4)
	P5	0.8520(3)	0.8520(3)	-0.0370(3)	0.054(4)
	P6	0.5000(3)	0.8315(3)	-0.0375(3)	0.043(4)
	P7	0.8491(3)	0.6244(3)	-0.1515(3)	0.048(4)
	P8	0.6245(3)	0.8490(3)	-0.1515(3)	0.047(4)
	01	0.6738(7)	0.6104(7)	-0.2038(6)	0.053(7)
	02	0.689(2)	0.542(2)	-0.2646(19)	0.24(3)
	03	0.5373(18)	0.7753(18)	0	0.13(2)
	04	0.5975(9)	0.5976(9)	-0.1692(8)	0.078(9)
	05	0.6584(9)	0.5452(10)	-0.1365(8)	0.086(10)
	06	0.5452(10)	0.6586(10)	-0.1367(8)	0.087(10)
	07	0.8713(12)	0.8715(12)	-0.0689(10)	0.118(13)
	08	0.7274(7)	0.7274(7)	-0.1259(6)	0.042(6)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Dignlage	Table S2 ·	- Final C	oordinates	s and	Equivalent	Isotropic	
Displace	ment	Paramet for: u6	ers of the 4132 I	∋ non- 1/m	Hydrogen at R = 0	oms (con .09	tinued)
	Atom 	x 		Y 	Z 	U(eq)	[Ang^2]
	09	0.9178(1	8) 0.870	38(18)		0 0	.13(2)
	010	0.6314(1	0) 0.536	50(10)	-0.2075(8) 0.0	90(10)
	011	0.5358(1	0) 0.632	16(10)	-0.2074(9) 0.0	93(11)
	012	0.7639(1	0) 0.50	001(9)	-0.2262(9) 0.0	88(10)
	013	0.8708(8) 0.59	900(8)	-0.1672(7) 0.	064(8)
	014	0.5905(8) 0.8	706(8)	-0.1671(7) 0.	062(8)
	015	0.5000(8) 0.80) 51(8)	-0.0671(7) 0.	059(8)
	016	0.7339(1	0) 0.83	77(10)		0 0.0	52(10)
	017	0.9110(7) 0.6	709(7)	-0.1684(6) 0.	046(7)
	018	0.9318(1	0) 0.55	57(10)		0 0.0	49(10)
	019	0.8377(1	0) 0.734	10(10)		0 0.0	51(10)
	020	0.6102(7) 0.6	737(7)	-0.2037(6) 0.	052(7)
	021	0.8588(9) 0.74	193(9)	-0.1707(8) 0.0	79(10)
	022	0.6553(7) 0.76	559(7)	-0.1002(6) 0.	048(7)
	023	0.7082(7) 0.80	015(7)	-0.1532(6) 0.	051(7)
	024	0.8012(7) 0.70	382(7)	-0.1530(6) 0.	053(7)
	025	0.6705(7) 0.93	109(7)	-0.1685(6) 0.	048(7)
	026	0.6203(7) 0.69	962(7)	-0.1317(6) 0.	052(7)
	027	0.6070(1	4) 0.500)3(13)	-0.2572(1	2) 0.1	35(15)
	028	0.7660(7) 0.65	553(7)	-0.1001(6) 0.	047(7)
	029	0.6965(7) 0.62	205(7)	-0.1322(6) 0.	043(6)
	030	0.5359(9) 0.73	143(9)	-0.1909(8) 0.	082(9)
	031	0.7139(9) 0.53	358(9)	-0.1915(8) 0.	077(9)
	032	0.5557(1	0) 0.930	09(10)		0 0.	045(9)
	033	0.8568(7) 0.62	291(7)	-0.1147(6) 0.	052(7)
	034	0.6709(7) 0.73	362(7)	-0.1845(6) 0.	045(7)

- 4 -

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Tab	le S2 - Final	Coordinates a	nd Equivalent	Isotropic
Displacemen	Parame for: u	ters of the n 64132 I4/m	on-Hydrogen at N R = 0	coms (continued)
Ato:	m x 	У	Z 	U(eq) [Ang^2]
035	0.6290	(7) 0.8568	(7) -0.1145(6) 0.048(7)
036	0.7360	(7) 0.6711	(7) -0.1847(6) 0.044(7)
037	0.8963	(7) 0.7375	(7) -0.0565(6) 0.044(7)
038	0.7272	(9) 0.5970	(8) -0.1472(7) 0.070(9)
039	0.6702	(7) 0.9307	(7) -0.0975(6) 0.044(6)
040	0.5970	(8) 0.7276	(8) -0.1469(7) 0.069(8)
041	0.7377	(7) 0.8965	(7) -0.0563(6) 0.043(6)
042	0.9308	(7) 0.6706	(7) -0.0974(6) 0.045(7)
043	0.7835(10) 0.9329(10)	0 0.046(9)
044	0.6705	(7) 0.8393	(7) -0.0528(6) 0.040(6)
045	0.6945	(7) 0.6954	(7) -0.1198(6) 0.042(6)
046	0.8393	(7) 0.6699	(7) -0.0526(6) 0.039(6)
047	0.9325(10) 0.7835(10)	0 0.048(10)
048	0.8081	(7) 0.8610	(7) -0.0354(6) 0.054(7)
049	0.8605	(7) 0.7125	(7) -0.1155(6) 0.051(7)
050	0.8611	(7) 0.8088	(8) -0.0352(6) 0.055(7)
051	0.7123	(7) 0.8606	(7) -0.1157(6) 0.048(7)
052	0.8049	(7) 0.6230	(7) -0.1587(6) 0.048(7)
053	0.8953	(6) 0.6045	(6) -0.0559(5) 0.032(6)
054	0.6228	(7) 0.8048	(7) -0.1587(6) 0.048(7)
055	0.6042	(6) 0.8953	(6) -0.0560(6) 0.035(6)
056	0.9146	(7) 0.7091	(7) -0.0336(6) 0.042(6)
057	0.7093	(6) 0.9149	(6) -0.0336(6) 0.039(6)
058	0.6206	(8) 0.6204	(8) -0.1454(7) 0.064(8)
059	0.8567	(7) 0.5364	(7) -0.0364(6) 0.048(7)
060	0.5365	(7) 0.8568	(7) -0.0362(6) 0.049(7)

- 5 -

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Table S7 - Final	Coordinates a Parameters for: U64L ₃₂	and Equivalen of the non-H I4/m	t Isotropic I ydrogen atoms R = 0.09	Displacement s (continued)
Atom	x 	У	Z 	U(eq) [Ang ²]
061	0.6302(6)	0.9160(6)	-0.0343(6)	0.036(6)
062	0.9161(6)	0.6296(6)	-0.0340(5)	0.033(6)
063	0.8412(9)	0.6097(9)	0	0.031(8)
064	0.6093(9)	0.8409(9)	0	0.035(8)
065	0.7492(9)	0.8591(9)	-0.1707(8)	0.079(9)
C1	0.6856(19)	0.4993(19)	-0.2445(17)	0.12(2)
C2	0.8711(17)	0.8713(17)	0	0.058(17)
C3	0.5003(14)	0.8038(14)	0	0.030(13)
C4	0.8680(12)	0.6695(12)	-0.1712(10)	0.057(12)
C5	0.6699(12)	0.8682(12)	-0.1712(10)	0.057(12)
C6	0.8579(14)	0.6688(14)	-0.2091(12)	0.077(14)
C7	0.463(2)	0.776(2)	0	0.07(2)
C8	0.8724(19)	0.9172(19)	0	0.067(18)
C9	0.6690(14)	0.8577(14)	-0.2097(12)	0.077(14)
C10	0.688(2)	0.456(2)	-0.2636(19)	0.15(3)
*O1W	0.7253(16)	0.5645(16)	-0.0819(14)	0.063(16)
*02W	0.7854(17)	0.5400(17)	-0.1370(15)	0.074(18)
*03W	0.5644(14)	0.7267(14)	-0.0815(12)	0.050(14)
*04W	0.5406(18)	0.7858(18)	-0.1370(15)	0.079(18)
*05W	0.5008(18)	0.5812(18)	-0.1479(16)	0.079(19)
*06W	0.5010(17)	0.6634(17)	-0.0835(15)	0.072(18)
*07W	0.5931(10)	0.7721(10)	-0.2193(9)	0.011(9)
*08W	0.933(2)	0.429(2)	-0.1133(17)	0.09(2)
*09W	0.9338(19)	0.5706(19)	-0.1125(17)	0.09(2)
*010W	1	1/2	0.036(2)	0.08(3)

- 6 -

*011W	0.6275(18)	0.9998(18)	-0.1439(15)	0.080(19)
*012W	0.7343(15)	0.6512(15)	-0.2572(13)	0.055(14)
*013W	0.6515(15)	0.7337(15)	-0.2576(13)	0.056(15)
*014W	0.736(2)	0.999(2)	-0.1367(18)	0.10(2)
*015W	0.6201(17)	1.0007(17)	-0.0604(15)	0.070(17)
*016W	0.7262(18)	1.0002(18)	-0.0472(16)	0.080(19)
017₩	0.7720(9)	0.5930(9)	-0.2192(8)	0.084(10)
*018W	0.6317(12)	0.7510(12)	0.0248(10)	0.030(11)
*019W	0.7512(12)	0.6317(13)	-0.0251(11)	0.036(12)
*020W	0.9276(12)	0.5005(12)	-0.0640(10)	0.028(11)
*021W	0.7443(12)	0.7998(12)	-0.0770(10)	0.030(11)
022W	0.7997(11)	0.7440(11)	-0.0770(9)	0.099(11)
023W	0.5909(7)	0.5908(7)	-0.2449(6)	0.042(6)
024W	0.7644(5)	0.7644(5)	-0.1885(5)	0.017(5)
Kl	0.5930(3)	0.8044(3)	-0.0688(3)	0.065(4)
К2	0.8045(3)	0.5929(3)	-0.0687(3)	0.066(4)
Nal	0.8033(6)	0.6717(6)	0	0.045(5)
Na2	0.6723(6)	0.8035(6)	0	0.045(5)
Na3	0.6800(5)	0.6799(5)	-0.2241(4)	0.062(4)
Na4	0.6758(7)	1.0002(7)	-0.1010(6)	0.107(7)
*Na5	1.0000(13)	0.5531(13)	0	0.080(13)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor Starred Atom sites have a S.O.F less than 1.0

Table S8 - (An)isotropic Displacement Parameters for: $U64L_{32}$ I4/m R = 0.09						
Atom	U(1,1) or 1	U (2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
U1	0.0443(10)	0.0331(9)	0.0370(10)	-0.0003(7)	0.0022(7)	-0.0005(7)
U2	0.0329(9)	0.0436(10)	0.0373(10)	0.0021(7)	-0.0001(7)	-0.0005(7)
U3	0.0384(13)	0.0370(13)	0.0348(13)	0	0	0.0024(10)
U4	0.0363(13)	0.0392(13)	0.0345(13)	0	0	0.0022(10)
U5	0.0436(14)	0.0344(13)	0.0497(15)	0	0.0000	-0.0004(10)
U6	0.0347(13)	0.0438(14)	0.0496(15)	0	0.0000	-0.0002(10)
U7	0.0391(10)	0.0446(10)	0.0496(11)	-0.0010(8)	-0.0055(8)	0.0062(7)
U8	0.0451(10)	0.0390(10)	0.0492(11)	-0.0061(8)	-0.0008(8)	0.0065(7)
U9	0.0432(11)	0.0382(10)	0.1021(15)	-0.0053(9)	-0.0031(10)	0.0017(8)
U10	0.0384(10)	0.0436(11)	0.1021(15)	-0.0033(10)	-0.0044(9)	0.0020(8)
P1	0.079(9)	0.061(8)	0.074(9)	-0.001(7)	-0.032(8)	-0.002(7)
Ρ2	0.065(8)	0.042(7)	0.076(9)	-0.002(6)	0.024(7)	-0.003(6)
P3	0.057(7)	0.043(7)	0.045(7)	-0.007(5)	0.016(6)	-0.006(5)
P4	0.043(7)	0.058(7)	0.045(7)	0.015(6)	-0.006(5)	-0.004(5)
P5	0.051(7)	0.053(7)	0.059(8)	0.011(6)	0.012(6)	0.001(6)
P6	0.036(6)	0.044(7)	0.048(7)	-0.018(5)	-0.001(5)	0.000(5)
P7	0.040(7)	0.049(7)	0.055(8)	-0.009(6)	-0.003(6)	0.002(5)
P8	0.047(7)	0.038(7)	0.057(8)	-0.002(6)	-0.010(6)	0.004(5)
K1	0.064(7)	0.047(6)	0.085(8)	-0.012(5)	0.025(6)	0.010(5)
K2	0.047(6)	0.069(7)	0.082(7)	0.027(6)	-0.010(5)	0.010(5)

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Table	S9 - Bond Di for: U6	stances (Ang $54L_{32}$ I4/m	(strom)	R = 0.09	
U1	-035	2.36(2)	U4	-063	1.75(3)
U1	-039	1.80(2)	U4	-053_c	2.37(2)
U1	-041	2.42(2)	U4	-059_c	2.38(2)
U1	-044	1.79(2)	U4	-062_c	2.33(2)
U1	-051	2.35(2)	U5	-016	1.82(3)
Ul	-055	2.40(2)	U5	-041	2.39(2)
U1	-057	2.32(2)	U5	-043	1.84(3)
U1	-061	2.35(2)	U5	-048	2.36(2)
U2	-033	2.37(2)	U5	-057	2.36(2)
U2	-037	2.41(2)	U5	-041_c	2.39(2)
U2	-042	1.80(2)	U5	-048_c	2.36(2)
U2	-046	1.80(2)	U5	-057_c	2.36(2)
U2	-049	2.35(2)	U6	-019	1.82(3)
U2	-053	2.39(2)	U6	-037	2.40(2)
U2	-056	2.31(2)	U6	-047	1.83(3)
U2	-062	2.37(2)	U6	-050	2.38(3)
U3	-032	1.81(3)	U6	-056	2.37(2)
U3	-055	2.38(2)	U6	-037_c	2.40(2)
U3	-060	2.37(2)	U6	-050_c	2.38(3)
U3	-061	2.35(2)	U6	-056_c	2.37(2)
U3	-064	1.76(3)	U7	-08	2.41(2)
U3	-055_c	2.38(2)	U7	-024	2.37(2)
U3	-060_c	2.37(2)	U7	-028	1.79(2)
U3	-061_c	2.35(2)	U7	-029	2.36(2)
U4	-018	1.84(3)	U7	-036	1.79(2)
U4	-053	2.37(2)	U7	-038	2.39(3)
U4	-059	2.38(2)	U7	-045	2.36(2)
U4	-062	2.33(2)	U7	-052	2.41(2)

- 10 -

U8	-08	2.41(2)	P2	-012	1.54(4)
U8	-022	1.78(2)	Ρ2	-031	1.50(3)
U8	-023	2.38(2)	Ρ2	-C1	1.80(7)
U8	-026	2.37(2)	Ρ2	-030_b	1.51(3)
U8	-034	1.78(2)	Р3	-023	1.52(3)
U8	-040	2.38(3)	Р3	-051	1.51(3)
U8	-045	2.32(2)	Р3	-065	1.52(3)
U8	-054	2.41(2)	Р3	-C5	1.85(4)
U9	-01	1.74(2)	Ρ4	-021	1.52(3)
U9	-04	2.42(3)	P4	-024	1.53(3)
U9	-05	1.79(3)	P4	-049	1.52(3)
U9	-010	2.39(3)	Ρ4	-C4	1.85(4)
U9	-029	2.33(2)	P5	-07	1.58(4)
U9	-031	2.35(3)	P5	-048	1.53(3)
U9	-038	2.36(3)	P5	-050	1.51(3)
U9	-058	2.32(3)	Ρ5	-C2	1.75(3)
U10	-04	2.41(3)	P6	-015	1.49(3)
U10	-06	1.78(3)	P6	-060	1.51(3)
U10	-011	2.39(3)	P6	-C3	1.77(3)
U10	-020	1.74(2)	P6	-059_a	1.51(3)
U10	-026	2.33(2)	P7	-013	1.52(3)
U10	-030	2.35(3)	P7	-033	1.51(3)
U10	-040	2.38(3)	P7	-052	1.53(3)
U10	-058	2.33(3)	P7	-C4	1.84(4)
P1	-010	1.47(4)	P8	-014	1.51(3)
P1	-027	1.53(5)	P8	-035	1.51(3)
P1	-C1	1.84(7)	P8	-054	1.53(3)
P1	-011_b	1.47(4)	P8	-C5	1.86(4)
02	-C1	1.67(10)	037	-056	1.47(3)
03	-C3	1.59(8)	041	-057	1.47(3)

04	-058	1.46(4)	053	-062	1.41(3)
08	-045	1.58(3)	055	-061	1.43(3)
09	-C2	1.59(8)	C1	-C10	1.66(10)
017	-C4	1.47(5)	C2	-C8	1.56(9)
025	-C5	1.46(5)	C3	-C7	1.58(8)
026	-040	1.46(4)	C4	-C6	1.56(6)
029	-038	1.45(4)	C5	-C9	1.58(6)

	Parameters for: U16L ₈	of the non-H Immm	ydrogen atom R = 0.05	5
Atom	x 	У	Z 	U(eq) [Ang ²]
U1	0	0.38972(2)	0.07873(2)	0.0106(2)
U2	0.13557(3)	1/2	0.07958(2)	0.0108(2)
U3	0.09595(2)	0.42185(2)	0.42128(1)	0.0107(1)
U4	0	0.32202(2)	0.21826(2)	0.0126(2)
U5	0.20548(3)	1/2	0.21788(2)	0.0135(2)
U6	0.14686(2)	0.37590(2)	0.28320(1)	0.0131(2)
P1	0.25335(15)	0.44351(12)	0.13550(8)	0.0137(9)
P2	0.13874(16)	0.31276(12)	0.36769(8)	0.0151(9)
P3	0.22886(15)	0.39893(12)	0.36549(8)	0.0131(9)
P4	0.06968(15)	0.29149(12)	0.13331(8)	0.0131(9)
01	0.1052(4)	0.4155(3)	0.0684(2)	0.0178(19)
02	0.1445(6)	1/2	0.4319(3)	0.016(3)
03	0.0649(4)	0.3157(3)	0.1697(2)	0.0185(19)
04	0.1142(4)	0.3318(3)	0.3324(2)	0.021(2)
05	0.1224(7)	1/2	0.2141(3)	0.025(3)
06	0.1275(4)	0.3981(3)	0.4611(2)	0.0157(18)
07	0.2153(4)	0.4475(3)	0.1693(2)	0.0173(19)
08	0.2084(4)	0.4450(4)	0.2662(2)	0.022(2)
09	0.1792(6)	1/2	0.0395(3)	0.015(3)
010	0.1054(4)	0.3397(3)	0.3971(2)	0.0165(18)
011	0.0848(5)	0.4199(4)	0.2869(3)	0.026(2)
012	0.0622(4)	0.4505(3)	0.0508(2)	0.0140(18)
013	0.1957(4)	0.4130(3)	0.3316(2)	0.0160(18)
014	0	0.3532(5)	0.0394(3)	0.019(3)
015	0.0843(6)	1/2	0.4486(3)	0.016(3)
016	0.1946(4)	0.4152(4)	0.2344(2)	0.022(2)
017	0.0684(4)	0.3319(3)	0.1053(2)	0.0189(19)

Table S10 - Final Coordinates and Equivalent Isotropic Displacement

018	0.1044(4)	0.3319(3)	0.2352(2)	0.019(2)
019	0.2109(4)	0.4440(3)	0.1039(2)	0.0178(19)
020	0	0.3784(5)	0.4312(3)	0.014(3)
021	0.1979(4)	0.4223(3)	0.3968(2)	0.0158(19)
022	0	0.2544(5)	0.2200(3)	0.018(3)
023	0	0.4272(4)	0.4489(3)	0.015(3)
024	0	0.3893(5)	0.2151(3)	0.018(3)
025	0.0690(4)	0.3191(3)	0.2666(2)	0.022(2)
026	0.0670(4)	0.4432(3)	0.3796(2)	0.0145(18)
027	0.2889(6)	1/2	0.2210(3)	0.017(3)
028	0.0964(6)	1/2	0.1210(3)	0.016(3)
029	0.2098(4)	0.3313(3)	0.2812(2)	0.0182(19)
030	0	0.4237(5)	0.1190(3)	0.017(3)
031	0.1352(5)	0.2561(4)	0.3700(3)	0.027(2)
032	0.2951(4)	0.3980(3)	0.1362(2)	0.021(2)
033	0.2964(4)	0.4117(3)	0.3639(2)	0.0186(19)
034	0.1251(4)	0.2578(4)	0.1293(2)	0.022(2)
035	0	0.2126(5)	0.1519(3)	0.019(3)
036	0.2570(4)	0.3052(3)	0.3450(2)	0.0182(19)
037	0.3495(6)	1/2	0.1585(3)	0.020(3)
C1	0	0.2538(7)	0.1267(5)	0.019(4)
C2	0.2214(6)	0.3313(5)	0.3718(3)	0.014(3)
C3	0	0.2316(7)	0.0904(5)	0.022(4)
C4	0.2454(6)	0.3156(5)	0.4070(3)	0.020(3)
C5	0.3019(9)	1/2	0.1313(5)	0.018(4)
C6	0.3357(10)	1/2	0.0963(5)	0.025(4)
038	0.3265(6)	0.4286(5)	0.2939(3)	0.042(3)
039	0	0.1605(7)	0.2511(5)	0.049(5)
040	0.2758(7)	0.4415(6)	0.4521(4)	0.061(4)
041	0.2961(7)	0.3657(5)	0.2081(4)	0.056(4)
042	0.2454(10)	0.3857(8)	0.0467(5)	0.095(6)

043	0.4006(9)	0.2735(7)	0.2040(5)	0.089(6)
044	0.3451(11)	1/2	0.3893(6)	0.075(7)
045	0.2599(7)	0.3022(6)	0.1273(4)	0.064(4)
046	0.3923(7)	0.3491(6)	0.3722(4)	0.059(4)
047	0	1/2	0.3245(5)	0.020(4)
048	0.1716(4)	0.3049(4)	0.0674(2)	0.022(2)
049	0	1/2	0.1769(5)	0.017(4)
050	0.2912(4)	0.2758(3)	0.2388(2)	0.0120(17)
*051	1/2	0.3993(14)	0.3587(9)	0.046(9)
*052	0.1998(10)	0.2821(9)	0.1998(6)	0.036(5)
K1	0	1/2	1/2	0.014(2)
K2	0	1/2	0	0.017(2)
K3	0.1339(2)	1/2	0.33227(11)	0.0221(11)
K4	0.1482(3)	0.4102(2)	0	0.0447(19)
K5	0.09736(16)	0.41495(13)	0.16481(10)	0.0359(11)
K6	0	0.3481(4)	1/2	0.139(10)
K7	0	0.3710(3)	0.34112(18)	0.059(2)
K8	0	1/2	0.2519(2)	0.065(4)
*K9	0.1846(5)	1/2	1/2	0.070(5)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor Starred Atom sites have a S.O.F less than 1.0

Table S11 - (An) isotropic Displacement Parameters for: $U16L_{a}$ Immm R = 0.05							
Atom	U(1,1) or 1	U U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)	
U1	0.0106(3)	0.0102(3)	0.0109(3)	-0.0004(2)	0	0	
U2	0.0104(3)	0.0115(3)	0.0106(3)	0	0.0010(2)	0	
U3	0.0103(2)	0.0113(2)	0.0105(2)	0.0004(2)	-0.0002(2)	0.0005(2)	
U4	0.0133(3)	0.0111(3)	0.0134(3)	-0.0009(2)	0	0	
U5	0.0132(3)	0.0138(3)	0.0136(3)	0	0.0007(2)	0	
U6	0.0134(3)	0.0137(3)	0.0121(2)	-0.0009(2)	-0.0007(2)	0.0022(2)	
P1	0.0126(16)	0.0124(15)	0.0160(16)	-0.0007(12)	-0.0003(12)	0.0007(13)	
P2	0.0184(17)	0.0118(16)	0.0151(16)	-0.0008(12)	0.0015(13)	-0.0014(13)	
P3	0.0124(16)	0.0128(16)	0.0141(15)	-0.0012(12)	-0.0006(12)	0.0015(12)	
P4	0.0117(15)	0.0123(15)	0.0152(15)	-0.0003(12)	-0.0003(12)	0.0027(12)	
Kl	0.015(4)	0.015(4)	0.013(4)	0	0	0	
K2	0.018(4)	0.019(4)	0.014(4)	0	0	0	
K3	0.023(2)	0.0133(19)	0.030(2)	0	0.0074(18)	0	
K4	0.053(4)	0.054(3)	0.027(3)	0	0	0.017(3)	
K5	0.0279(18)	0.0357(19)	0.044(2)	0.0188(16)	-0.0178(15)	-0.0173(15)	
K6	0.37(3)	0.030(5)	0.016(4)	0	0	0	
K7	0.014(2)	0.096(5)	0.068(4)	-0.047(4)	0	0	
K8	0.040(5)	0.124(9)	0.031(4)	0	0	0	
К9	0.036(6)	0.154(14)	0.019(5)	0	0	0	

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Table	S12 - Bond for: U	Distances (An J16L ₈ Immm	gstrom)	R = 0.05	
U1	-01	2.412(9)	U4	-025	2.385(8)
U1	-012	2.365(8)	U4	-03_a	2.341(8)
U1	-014	1.798(12)	U4	-018_a	2.367(9)
U1	-017	2.370(8)	U4	-025_a	2.385(8)
U1	-030	1.793(12)	U5	-05	1.804(15)
U1	-01_a	2.412(9)	U5	-07	2.343(8)
U1	-012_a	2.365(8)	U5	-08	2.367(9)
U1	-017_a	2.370(8)	U5	-016	2.362(10)
U2	-01	2.388(8)	U5	-027	1.810(13)
U2	-09	1.806(12)	U5	-07_b	2.343(8)
U2	-012	2.343(8)	U5	-08_b	2.367(9)
U2	-019	2.401(8)	U5	-016_b	2.362(10)
U2	-028	1.803(12)	U6	-04	2.336(8)
U2	-01_b	2.388(8)	U6	-08	2.367(10)
U2	-012_b	2.343(8)	U6	-011	1.790(11)
U2	-019_b	2.401(8)	U6	-013	2.357(8)
U3	-02	2.371(6)	U6	-016	2.384(9)
U3	-06	1.791(8)	U6	-018	2.371(8)
U3	-010	2.390(8)	U6	-025	2.355(8)
U3	-015	2.348(5)	U6	-029	1.811(8)
U3	-020	2.409(7)	Pl	-07	1.541(9)
U3	-021	2.399(9)	Pl	-019	1.523(9)
U3	-023	2.337(5)	Pl	-032	1.514(9)
U3	-026	1.812(8)	Pl	-C5	1.845(12)
U4	-03	2.341(8)	P2	-04	1.542(8)
U4	-018	2.367(9)	P2	-010	1.521(9)
U4	-022	1.806(13)	P2	-031	1.516(11)
U4	-024	1.799(13)	P2	-C2	1.863(13)

- 9 -

Р3	-013	1.533(9)	08	-016	1.488(12)
Р3	-021	1.512(9)	018	-025	1.469(11)
Р3	-033	1.502(9)	020	-023	1.469(17)
Р3	-C2	1.828(14)	035	-C1	1.47(2)
P4	-03	1.543(8)	036	-C2	1.463(15)
P4	-017	1.524(8)	037	-C5	1.47(2)
P4	-034	1.507(10)	C1	-C3	1.52(3)
P4	-C1	1.831(11)	C2	-C4	1.508(17)
01	-012	1.482(12)	C5	-C6	1.53(3)
02	-015	1.453(18)			

Table S13 - Final	Coordinates Parameters for: U20L ₁₀	and Equivalen of the non-Hy Pmna	t Isotropic drogen atoms R = 0.0	Displacement s 08
Atom 	x 		Z 	U(eq) [Ang [*] 2]
Ul	0.10675(3)	0.32007(6)	0.43861(6)	0.0278(4)
U2	0	0.36139(8)	0.55676(8)	0.0284(5)
U3	0.10912(3)	-0.02124(6)	0.28034(6)	0.0351(4)
U4	0	0.15224(9)	0.72635(9)	0.0364(6)
U5	0.17427(4)	0.09158(6)	0.55033(6)	0.0383(4)
U6	0.06563(3)	0.24384(6)	0.25170(6)	0.0276(3)
P1	0.0471(2)	0.3151(4)	0.7135(4)	0.036(3)
Ρ2	0.0863(2)	0.1002(4)	0.1545(4)	0.033(3)
Р3	0.1803(2)	0.2693(4)	0.5640(4)	0.034(3)
P4	0.2040(2)	0.2189(4)	0.4319(4)	0.032(3)
Р5	0.1598(2)	0.1356(4)	0.2379(4)	0.028(3)
01	0.1210(7)	0.0796(10)	0.5200(10)	0.044(6)
02	0.2271(6)	0.1067(10)	0.5771(10)	0.039(5)
03	0.1662(7)	-0.0365(11)	0.3497(11)	0.048(6)
04	0.1462(8)	-0.1012(12)	0.3441(12)	0.064(7)
05	0	0.4487(15)	0.5676(15)	0.044(8)
06	0	0.1727(14)	0.8133(14)	0.037(7)
07	0.0437(7)	0.2410(10)	0.7024(10)	0.041(5)
08	0.1988(8)	0.2948(12)	0.6274(12)	0.055(6)
09	0.1383(7)	-0.0475(10)	0.2119(10)	0.044(6)
010	0.0761(6)	0.0555(10)	0.2116(10)	0.038(5)
011	0.0439(6)	0.3748(9)	0.4653(9)	0.034(5)
012	0.0710(8)	0.1174(12)	0.7291(12)	0.057(7)
013	-0.0447(7)	0.0669(11)	0.7591(11)	0.050(6)
014	0.0802(8)	0.0079(12)	0.3504(12)	0.058(7)
015	0.1077(6)	0.2951(9)	0.3291(9)	0.031(5)
016	0.1905(6)	0.1516(10)	0.4541(10)	0.037(5)

017	0.1949(7)	0.0161(10)	0.4702(10)	0.044(6)
018	0.0848(6)	0.3034(10)	0.1942(10)	0.037(5)
019	0.1309(6)	0.3972(9)	0.4196(9)	0.033(5)
020	0.0742(7)	0.0698(11)	0.0898(11)	0.045(6)
021	0.1515(6)	0.0746(10)	0.2799(10)	0.036(5)
022	0.0482(6)	0.1823(9)	0.3087(9)	0.030(5)
023	0.1495(6)	0.3170(9)	0.5344(9)	0.034(5)
024	0.1660(6)	0.2580(9)	0.4081(9)	0.031(5)
025	0.0450(6)	0.3508(9)	0.6483(9)	0.034(5)
026	0.2380(6)	0.2163(10)	0.3803(10)	0.037(5)
027	0.0857(7)	0.3325(10)	0.7532(11)	0.046(6)
028	0.1600(7)	0.2015(11)	0.5706(11)	0.047(6)
029	0.2053(6)	0.1544(9)	0.2389(9)	0.030(5)
030	0	0.1204(13)	0.6476(13)	0.030(7)
031	0.0663(6)	0.1671(9)	0.1651(9)	0.029(5)
032	0.0826(6)	0.2432(9)	0.4575(9)	0.033(5)
033	0.1321(6)	0.1923(8)	0.2584(9)	0.026(4)
034	0.0701(6)	0.3693(9)	0.5237(9)	0.030(5)
035	0	0.2444(13)	0.1999(13)	0.029(7)
036	0.0657(6)	0.3234(9)	0.3393(9)	0.031(5)
037	0	0.2953(13)	0.2538(13)	0.033(7)
038	0	0.2734(14)	0.5505(14)	0.037(7)
039	0.1664(7)	0.0592(10)	0.1312(10)	0.042(5)
040	0.2583(7)	0.2259(10)	0.5323(10)	0.045(6)
041	0	0.3147(14)	0.8234(14)	0.039(7)
C1	0.2233(9)	0.2631(14)	0.5041(14)	0.029(7)
C2	0.1424(9)	0.1146(14)	0.1545(14)	0.031(7)
C3	0	0.342(2)	0.757(3)	0.052(13)
C4	0.2388(9)	0.3306(14)	0.4860(14)	0.032(7)
C5	0.1534(11)	0.1735(17)	0.1027(17)	0.048(9)
C6	0	0.421(3)	0.762(3)	0.067(16)

*042	0.2347(10)	0.0630(15)	0.3451(15)	0.013(7)
*043	0	0.108(4)	0.459(4)	0.07(2)
*044	0	0.098(3)	0.031(3)	0.031(13)
*045	0.3407(11)	0.2536(17)	0.5600(17)	0.027(9)
*046	0.1983(12)	0.1947(19)	0.7160(19)	0.034(10)
*047	0.1632(11)	0.4511(17)	0.5562(17)	0.026(9)
*048	0.0885(10)	0.4702(16)	0.6431(16)	0.018(8)
*049	0.0521(11)	-0.0635(16)	0.1056(16)	0.020(8)
*050	0.0463(13)	0.249(2)	0.063(2)	0.038(10)
*051	0.2245(14)	0.060(2)	0.042(2)	0.047(12)
*052	0	0.370(4)	0.128(4)	0.07(2)
*053	0.0465(13)	0.438(2)	0.285(2)	0.041(11)
*054	0.1224(19)	0	0	0.045(16)
*055	0.2336(14)	0.346(2)	0.178(2)	0.045(11)
*056	0.1134(13)	0.211(2)	0.813(2)	0.041(11)
*057	0.062(2)	0	1/2	0.053(18)
*058	0.2937(10)	0.3041(15)	0.3457(15)	0.014(8)
Kl	0.0721(3)	0.1948(5)	0.5837(4)	0.068(4)
K2	0.1871(2)	0.2954(4)	0.2830(4)	0.054(3)
K3	0	0.0679(6)	0.2821(7)	0.060(5)
K4	0.0777(3)	1/2	1/2	0.051(4)
К5	0	0.2439(6)	0.4101(5)	0.047(4)
кб	0 11205(19)	0 1339(3)	0 3910(3)	0 035(2)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor Starred Atom sites have a S.O.F less than 1.0

Table	S14 - (An)iso for: U20	Diropic Di DL ₁₀ Pm	splacement na	Parameters $R = 0.08$		
Atom	U(1,1) or U	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
U1	0.0095(5)	0.0358(7)	0.0381(7)	-0.0002(5)	0.0000(5)	-0.0003(5)
U2	0.0129(7)	0.0327(9)	0.0395(10)	-0.0011(8)	0	0
U3	0.0227(6)	0.0399(7)	0.0428(7)	0.0020(6)	-0.0010(5)	-0.0078(5)
U4	0.0297(9)	0.0392(10)	0.0402(10)	-0.0026(8)	0	0
U5	0.0232(6)	0.0473(8)	0.0443(8)	0.0111(6)	0.0022(5)	0.0061(5)
U6	0.0071(5)	0.0410(7)	0.0347(6)	0.0049(6)	0.0000(5)	0.0003(5)
P1	0.024(4)	0.041(5)	0.042(5)	0.003(4)	-0.005(4)	0.000(4)
P2	0.017(4)	0.051(5)	0.032(5)	-0.007(4)	-0.002(3)	-0.002(4)
P3	0.022(4)	0.046(5)	0.035(5)	-0.001(4)	-0.003(4)	0.003(4)
P4	0.011(4)	0.049(5)	0.036(5)	0.002(4)	-0.003(3)	0.000(3)
P5	0.005(3)	0.042(5)	0.036(5)	0.000(4)	0.003(3)	-0.003(3)
K1	0.043(5)	0.115(8)	0.046(5)	0.020(5)	0.017(4)	0.033(5)
К2	0.038(4)	0.067(5)	0.056(5)	0.002(4)	0.008(4)	-0.002(4)
K3	0.013(5)	0.069(8)	0.097(10)	-0.011(7)	0	0
K4	0.036(6)	0.033(6)	0.083(9)	0.007(6)	0	0
K5	0.010(5)	0.086(8)	0.044(6)	-0.020(6)	0	0
К6	0.021(3)	0.047(4)	0.036(4)	0.004(3)	-0.001(3)	0.002(3)

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Table	S15 - Bond for:	d Distances $U20L_{10}$	(Angstrom) Pmna	R = 0.08	
U1	-011	2.362(19)	U4	-030	1.74(3)
U1	-015	2.294(18)	U4	-07_c	2.34(2)
U1	-019	1.796(19)	U4	-012_c	2.38(3)
Ul	-023	2.387(19)	U4	-013_c	2.35(2)
U1	-024	2.362(19)	U5	-01	1.83(2)
U1	-032	1.791(19)	U5	-02	1.801(19)
U1	-034	2.324(19)	U5	-016	2.37(2)
U1	-036	2.416(19)	U5	-017	2.34(2)
U2	-05	1.80(3)	U5	-028	2.33(2)
U2	-011	2.352(19)	U5	-03_a	2.35(2)
U2	-025	2.368(19)	U5	-04_a	2.34(2)
U2	-034	2.345(19)	U5	-017_a	2.33(2)
U2	-038	1.80(3)	U6	-015	2.324(19)
U2	-011_c	2.352(19)	U6	-018	1.80(2)
U2	-025_c	2.368(19)	U6	-022	1.801(18)
U2	-034_c	2.345(19)	U6	-031	2.363(18)
U3	-03	2.33(2)	U6	-033	2.375(19)
U3	-04	2.40(2)	U6	-035	2.349(12)
U3	-09	1.76(2)	U6	-036	2.417(18)
U3	-010	2.35(2)	U6	-037	2.346(12)
U3	-014	1.80(2)	P1	-07	1.53(2)
U3	-021	2.38(2)	Pl	-025	1.52(2)
U3	-012_a	2.32(2)	Pl	-027	1.52(2)
U3	-013_b	2.40(2)	P1	-C3	1.83(3)
U4	-06	1.82(3)	Ρ2	-010	1.52(2)
U4	-07	2.34(2)	Ρ2	-020	1.51(2)
U4	-012	2.38(3)	Ρ2	-031	1.52(2)
U4	-013	2.35(2)	P2	-C2	1.82(3)

- 8 -

Р3	-08	1.52(3)	03	-04	1.47(3)
Р3	-023	1.51(2)	011	-034	1.46(3)
Р3	-028	1.54(2)	012	-013_c	1.47(3)
Р3	-C1	1.84(3)	015	-036	1.48(3)
P4	-016	1.51(2)	017	-017_a	1.38(3)
P4	-024	1.53(2)	035	-037	1.51(4)
P4	-026	1.51(2)	039	-C2	1.45(4)
P4	-C1	1.84(3)	O40	-C1	1.47(4)
P5	-021	1.54(2)	041	-C3	1.47(7)
P5	-029	1.50(2)	C1	-C4	1.51(4)
P5	-033	1.516(19)	C2	-C5	1.64(5)
P5	-C2	1.84(3)	C3	-C6	1.62(7)

Table S16 - Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms for: $U16L_{_9}P_4$ P1 R = 0.05

Atom	x 	У	Z 	U(eq) [Ang [^] 2]
U1	0.70383(8)	0.48799(8)	0.85083(8)	0.0127(4)
U2	0.51788(8)	0.24655(8)	0.75411(8)	0.0138(4)
U3	0.56043(8)	0.61424(8)	0.56965(8)	0.0140(4)
U4	0.66845(8)	0.50964(9)	1.05180(8)	0.0156(4)
U5	0.06479(8)	0.42755(9)	0.50566(8)	0.0144(4)
U6	0.02946(8)	0.44953(9)	0.70575(8)	0.0139(4)
U7	0.21562(9)	0.69101(8)	0.80299(8)	0.0137(4)
U8	0.45001(8)	0.66946(9)	1.12262(8)	0.0146(4)
U9	0.28405(9)	0.26819(9)	0.43488(8)	0.0142(4)
U10	0.17292(9)	0.32293(9)	0.98774(8)	0.0139(4)
U11	0.25321(9)	0.66643(9)	0.60189(8)	0.0166(4)
U12	0.47988(9)	0.27080(9)	0.95483(8)	0.0158(4)
U13	0.60032(9)	0.82376(9)	1.05995(8)	0.0163(4)
U14	0.64448(9)	0.78175(9)	0.76779(9)	0.0190(5)
U15	0.13319(9)	0.11371(9)	0.49733(9)	0.0171(5)
U16	0.08886(10)	0.15561(9)	0.78897(9)	0.0196(5)
P1	0.7294(5)	0.5626(6)	0.6933(6)	0.014(3)
P2	0.1063(6)	0.3263(7)	0.3587(6)	0.018(3)
P3	0.0038(7)	0.3748(6)	0.8644(6)	0.015(3)
P4	0.6248(7)	0.6078(6)	1.1988(6)	0.015(3)
P5	0.4421(6)	0.1951(6)	0.5374(6)	0.016(3)
P6	0.2911(6)	0.7437(7)	1.0167(6)	0.016(3)
P7	-0.0112(7)	0.2110(7)	0.4110(6)	0.020(3)
P8	0.2695(7)	0.1146(7)	0.9001(6)	0.018(3)
P9	0.3262(7)	0.0763(7)	0.5900(6)	0.019(3)
P10	0.3431(6)	0.2517(6)	1.0558(6)	0.014(2)
P11	0.2635(6)	0.5215(6)	1.1337(5)	0.016(3)

P12	0.4073(6)	0.8597(6)	0.9634(6)	0.014(3)
P13	0.3898(7)	0.6868(7)	0.5021(6)	0.020(2)
P14	0.7450(7)	0.7280(7)	1.1471(7)	0.020(3)
P15	-0.0626(6)	0.2411(7)	0.7082(6)	0.019(3)
P16	0.4698(6)	0.4167(6)	0.4251(6)	0.015(3)
P17	0.4641(6)	0.8242(6)	0.6517(6)	0.016(3)
P18	0.8001(6)	0.6958(7)	0.8472(6)	0.016(3)
P19	0.0358(8)	0.0103(8)	0.6083(8)	0.044(3)
P20	0.6952(9)	0.9263(7)	0.9469(7)	0.037(3)
01	0.5416(16)	0.7266(16)	0.6295(15)	0.0212(2)
02	0.2424(14)	0.3943(14)	0.9553(14)	0.0212(2)
03	0.1905(17)	0.2099(17)	0.9255(16)	0.0212(2)
04	0.0535(15)	0.4308(16)	0.8290(14)	0.0212(2)
05	0.1331(12)	0.3918(13)	0.4340(12)	0.0212(2)
06	0.4961(14)	0.5473(15)	0.5992(14)	0.0212(2)
07	0.4145(12)	0.5949(14)	1.0311(14)	0.0212(2)
08	0.6793(16)	0.5067(16)	0.7236(14)	0.0212(2)
09	0.0599(16)	0.2577(16)	0.8504(15)	0.0212(2)
010	0.0928(16)	0.5801(15)	0.7973(15)	0.0212(2)
011	0.5558(14)	0.7485(13)	0.9731(13)	0.0212(2)
012	0.5369(15)	0.6059(15)	1.1963(15)	0.0212(2)
013	0.1947(16)	0.3346(16)	0.3589(15)	0.0212(2)
014	0.6112(12)	0.5468(14)	1.1310(12)	0.0212(2)
015	0.4349(13)	0.6310(14)	0.4829(13)	0.0212(2)
016	0.6579(15)	0.3456(15)	0.8381(15)	0.0212(2)
017	0.1837(14)	0.1984(13)	0.5902(13)	0.0212(2)
018	0.5054(14)	0.8917(14)	0.9895(14)	0.0212(2)
019	0.8089(13)	0.5447(13)	0.7009(13)	0.0212(2)
020	-0.0832(14)	0.3838(13)	0.8521(14)	0.0212(2)
021	0.2716(13)	0.7492(14)	0.7249(11)	0.0212(2)
022	0.1450(16)	0.2175(16)	0.4282(16)	0.0212(2)

023	0.4583(15)	0.7712(15)	1.0605(14)	0.0212(2)
024	0.5904(17)	0.7214(17)	1.1304(16)	0.0212(2)
025	0.1727(12)	0.6887(13)	0.6701(13)	0.0212(2)
026	0.3280(13)	0.3417(14)	0.5269(14)	0.0212(2)
027	0.0751(16)	0.5866(15)	0.7170(15)	0.0212(2)
028	0.6296(14)	0.3736(12)	1.0223(14)	0.0212(2)
029	-0.0122(15)	0.3078(13)	0.6884(14)	0.0212(2)
030	0.6719(16)	0.6774(16)	0.7050(16)	0.0212(2)
031	0.3316(12)	0.1702(14)	0.8828(12)	0.0212(2)
032	0.1565(11)	0.5529(12)	0.4955(12)	0.0212(2)
033	0.4346(13)	0.3355(14)	0.9002(13)	0.0212(2)
034	0.4285(11)	0.8845(12)	0.6183(11)	0.0212(2)
035	0.0086(13)	0.4704(14)	0.5853(13)	0.0212(2)
036	0.2223(14)	0.0490(15)	0.5642(14)	0.0212(2)
037	0.2719(15)	0.1625(15)	0.4986(15)	0.0212(2)
038	-0.0222(15)	0.3783(15)	0.5693(15)	0.0212(2)
039	0.3776(13)	0.9303(14)	0.9663(12)	0.0212(2)
040	0.6677(16)	0.5529(15)	0.6080(15)	0.0212(2)
041	0.5509(12)	0.2510(14)	0.8835(13)	0.0212(2)
042	0.4673(14)	0.1889(14)	0.8420(11)	0.0212(2)
043	0.1094(14)	0.5734(13)	0.5358(14)	0.0212(2)
044	0.2921(13)	0.6014(15)	0.6604(13)	0.0212(2)
045	0.4611(15)	0.3149(15)	0.7482(14)	0.0212(2)
046	0.3072(13)	0.3118(15)	1.0795(14)	0.0212(2)
047	0.7521(16)	0.5547(16)	0.9848(15)	0.0212(2)
048	0.2682(15)	0.6193(16)	0.8034(14)	0.0212(2)
049	0.3921(13)	0.7613(14)	0.6668(12)	0.0212(2)
050	0.3783(16)	0.1441(17)	0.6704(16)	0.0212(2)
051	0.7093(13)	0.6488(13)	1.0738(11)	0.0212(2)
052	0.0666(16)	0.3805(15)	0.9505(15)	0.0212(2)

053	0.3769(14)	0.3765(14)	0.4060(14)	0.0212(2)
054	0.3630(14)	0.0112(15)	0.5996(12)	0.0212(2)
055	0.2917(11)	0.0453(13)	0.9294(11)	0.0212(2)
056	0.6386(16)	0.3525(15)	0.7580(15)	0.0212(2)
057	0.3789(11)	0.2136(14)	1.1225(13)	0.0212(2)
058	0.1119(14)	0.2582(15)	1.0261(12)	0.0212(2)
059	0.7666(16)	0.5194(16)	1.1371(14)	0.0212(2)
060	0.2516(11)	0.6892(12)	0.9344(11)	0.0212(2)
061	0.7331(13)	0.4678(15)	0.9785(13)	0.0212(2)
062	0.3573(17)	0.7931(17)	0.8866(16)	0.0212(2)
063	-0.0830(15)	0.4418(15)	0.6782(13)	0.0212(2)
064	0.0403(13)	0.3278(11)	0.2807(13)	0.0212(2)
065	0.7290(14)	0.7961(15)	1.1075(13)	0.0212(2)
066	0.6275(14)	0.6803(15)	0.5383(13)	0.0212(2)
067	0.6400(11)	0.8999(13)	1.1465(12)	0.0212(2)
068	0.0166(13)	0.2821(14)	0.4718(11)	0.0212(2)
069	0.3432(12)	0.7205(14)	0.4341(13)	0.0212(2)
070	0.7458(15)	0.6231(14)	0.8675(15)	0.0212(2)
071	0.2324(14)	0.4332(12)	1.1062(13)	0.0212(2)
072	0.3275(14)	0.6411(14)	0.5311(13)	0.0212(2)
073	0.5896(12)	0.3944(12)	1.0707(12)	0.0212(2)
074	0.8145(15)	0.4919(16)	0.8726(13)	0.0212(2)
075	-0.0340(16)	0.4171(16)	0.4154(14)	0.0212(2)
076	0.6889(14)	0.5976(11)	1.2759(13)	0.0212(2)
077	0.5040(14)	0.5144(12)	0.4560(13)	0.0212(2)
078	0.5011(11)	0.1525(11)	0.5285(9)	0.0212(2)
079	0.5244(11)	0.2035(13)	1.0139(12)	0.0212(2)
080	-0.0016(14)	0.1380(15)	0.4430(13)	0.0212(2)
081	0.3631(14)	0.5680(14)	1.1520(14)	0.0212(2)
082	-0.0361(14)	0.1732(12)	0.6964(13)	0.0212(2)
083	0.4827(14)	0.7386(14)	1.2094(12)	0.0212(2)

084	0.2440(14)	0.1940(15)	0.3393(12)	0.0212(2)
085	0.1617(15)	0.7646(16)	0.8025(15)	0.0212(2)
086	0.7745(14)	0.7740(13)	0.8643(14)	0.0212(2)
087	0.5702(16)	0.1759(16)	0.7541(15)	0.0212(2)
088	0.1632(16)	0.4347(16)	0.5884(15)	0.0212(2)
089	0.4954(11)	0.2439(12)	0.6247(12)	0.0212(2)
090	0.4099(15)	0.2930(15)	1.0314(13)	0.0212(2)
091	0.5899(13)	0.4790(12)	0.8210(13)	0.0212(2)
092	0.1363(13)	0.4478(12)	0.7322(13)	0.0212(2)
093	0.2471(11)	0.7880(11)	1.0460(9)	0.0212(2)
094	0.3138(14)	0.6846(12)	1.0699(13)	0.0212(2)
096	0.4194(14)	0.2437(13)	0.4814(13)	0.0212(2)
098	0.4747(11)	0.3885(12)	0.3459(9)	0.0212(2)
099	0.5715(16)	0.5050(16)	0.9662(15)	0.0212(2)
0100	0.5599(12)	0.8592(13)	0.7364(12)	0.0212(2)
0101	0.1727(10)	0.2431(10)	0.7800(10)	0.0212(2)
0102	-0.1041(12)	0.1855(12)	0.3376(10)	0.0212(2)
0103	0.8370(12)	0.7478(12)	1.2052(10)	0.0212(2)
0104	0.0799(11)	0.0325(13)	0.4048(12)	0.0212(2)
0105	0.5782(10)	0.7104(10)	0.7894(10)	0.0212(2)
0106	0.1839(12)	0.0755(13)	0.8286(12)	0.0212(2)
0109	0.2210(11)	0.7321(13)	0.5486(12)	0.0212(2)
0110	0.8905(11)	0.7123(11)	0.8915(12)	0.0212(2)
0111	0.2443(11)	0.5452(12)	1.1954(9)	0.0212(2)
0112	0.5230(12)	0.3863(14)	0.4961(13)	0.0212(2)
0113	-0.1696(11)	0.2122(11)	0.6649(12)	0.0212(2)
0114	0.2008(13)	0.5457(14)	1.0597(14)	0.0212(2)
0115	0.0427(11)	0.0274(12)	0.5313(9)	0.0212(2)
0117	0.6789(11)	0.9023(12)	1.0094(9)	0.0212(2)
0119	0.0108(11)	0.0729(11)	0.7935(9)	0.0212(2)

0.7175(11)	0.8569(11)	0.7445(9)	0.0212(2)
0.6493(10)	0.8346(9)	0.8840(9)	0.0212(2)
0.0517(10)	0.0724(9)	0.6721(9)	0.0212(2)
0.6739(10)	0.9894(9)	0.9212(9)	0.0212(2)
-0.0699(9)	-0.0098(9)	0.5783(8)	0.0212(2)
0.7910(9)	0.9964(9)	0.9860(8)	0.0212(2)
0.1032(10)	-0.0345(9)	0.6468(9)	0.0212(2)
0.757(2)	0.671(2)	0.7434(18)	0.0167(10)
0.0703(19)	0.227(2)	0.3748(16)	0.0167(10)
-0.023(2)	0.269(2)	0.8207(18)	0.0167(10)
0.669(2)	0.713(2)	1.1919(16)	0.0167(10)
0.3257(16)	0.1188(19)	0.5096(17)	0.0167(10)
0.3959(17)	0.814(2)	1.0413(18)	0.0167(10)
0.2496(18)	0.172(2)	0.9694(18)	0.0167(10)
0.4925(18)	0.768(2)	0.5854(19)	0.0167(10)
0.7062(16)	0.7681(14)	1.2678(15)	0.0167(10)
0.2020(14)	0.1158(16)	1.0096(13)	0.0167(10)
0.8197(18)	0.7246(18)	0.7130(13)	0.0167(10)
0.0249(17)	0.1532(14)	0.2930(15)	0.0167(10)
-0.0914(18)	0.2080(18)	0.8300(13)	0.0167(10)
0.5482(15)	0.8309(16)	0.5643(13)	0.0167(10)
0.4363(17)	0.8911(15)	1.1241(15)	0.0167(10)
0.2972(17)	0.0597(15)	0.4406(16)	0.0167(10)
0.9666(14)	0.5852(14)	0.8365(12)	0.0212(2)
0.5050(10)	0.5979(12)	0.3456(11)	0.0212(2)
-0.2306(14)	0.3509(14)	0.7127(12)	0.0212(2)
0.2444(10)	0.3410(12)	1.2196(11)	0.0212(2)
0.4420(11)	0.4347(12)	1.2214(11)	0.0212(2)
0.3053(11)	0.5099(13)	0.3461(11)	0.0212(2)
-0.1956(9)	0.3044(9)	0.9073(8)	0.0212(2)
0.0784(11)	0.7101(11)	1.0015(9)	0.0212(2)
	0.7175(11) 0.6493(10) 0.0517(10) 0.6739(10) -0.0699(9) 0.7910(9) 0.1032(10) 0.757(2) 0.0703(19) -0.023(2) 0.669(2) 0.3257(16) 0.3257(16) 0.3959(17) 0.2496(18) 0.7062(16) 0.2020(14) 0.8197(18) 0.0249(17) -0.0914(18) 0.5482(15) 0.4363(17) 0.2972(17) 0.9666(14) 0.5050(10) -0.2306(14) 0.2444(10) 0.3053(11) -0.1956(9) 0.0784(11)	0.7175(11) $0.8569(11)$ $0.6493(10)$ $0.8346(9)$ $0.0517(10)$ $0.0724(9)$ $0.6739(10)$ $0.9894(9)$ $-0.0699(9)$ $-0.0098(9)$ $0.7910(9)$ $0.9964(9)$ $0.7910(9)$ $0.9964(9)$ $0.1032(10)$ $-0.0345(9)$ $0.757(2)$ $0.671(2)$ $0.0703(19)$ $0.227(2)$ $-0.023(2)$ $0.269(2)$ $0.669(2)$ $0.713(2)$ $0.3257(16)$ $0.1188(19)$ $0.3959(17)$ $0.814(2)$ $0.2496(18)$ $0.172(2)$ $0.4925(18)$ $0.768(2)$ $0.7062(16)$ $0.7681(14)$ $0.2020(14)$ $0.1158(16)$ $0.8197(18)$ $0.7246(18)$ $0.0249(17)$ $0.1532(14)$ $-0.0914(18)$ $0.2080(18)$ $0.5482(15)$ $0.8309(16)$ $0.4363(17)$ $0.8911(15)$ $0.2972(17)$ $0.0597(15)$ $0.9666(14)$ $0.5852(14)$ $0.5050(10)$ $0.5979(12)$ $-0.2306(14)$ $0.3509(14)$ $0.2444(10)$ $0.3410(12)$ $0.4420(11)$ $0.4347(12)$ $0.3053(11)$ $0.5099(13)$ $-0.1956(9)$ $0.3044(9)$ $0.0784(11)$ $0.7101(11)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

0123	0.2263(9)	-0.0771(9)	0.7849(8)	0.0212(2)
0124	0.6592(11)	0.2268(11)	0.5379(9)	0.0212(2)
0125	0.2105(9)	0.9163(9)	0.9980(9)	0.0212(2)
0126	0.4955(10)	0.0057(9)	0.5266(9)	0.0212(2)
0127	0.6838(9)	0.6708(9)	1.4060(8)	0.0212(2)
0128	0.3391(10)	0.8725(9)	0.4391(9)	0.0212(2)
0129	0.4289(10)	0.0817(9)	1.1140(9)	0.0212(2)
0133	0.2703(9)	-0.1006(9)	0.6584(9)	0.0212(2)
0134	0.4334(9)	1.0394(9)	0.8611(9)	0.0212(2)
0135	0.0638(9)	0.7894(9)	0.8703(8)	0.0212(2)
0136	-0.1824(9)	0.2536(9)	0.5140(8)	0.0212(2)
0137	0.1520(9)	-0.1151(9)	0.5424(8)	0.0212(2)
0138	0.8403(9)	0.8148(9)	1.0354(8)	0.0212(2)
0139	0.7425(9)	0.5768(9)	1.5066(8)	0.0212(2)
0140	0.2859(9)	0.2105(9)	1.2085(8)	0.0212(2)
0141	0.2991(9)	0.4165(9)	0.8451(8)	0.0212(2)
0142	0.3929(10)	0.6969(9)	1.3178(9)	0.0212(2)
0143	0.8675(9)	0.6752(9)	1.3304(8)	0.0212(2)
0145	0.6713(9)	0.1724(9)	0.9485(8)	0.0212(2)
0146	0.8800(9)	0.4447(10)	1.0551(8)	0.0212(2)
0147	-0.1761(9)	0.4437(10)	0.4875(8)	0.0212(2)
0148	0.4596(9)	0.5445(9)	0.2342(8)	0.0212(2)
0149	0.7987(9)	0.1245(9)	1.0916(8)	0.0212(2)
0150	0.4435(9)	0.5837(9)	0.8755(8)	0.0212(2)
Kl	0.2282(5)	0.5271(6)	0.9103(5)	0.028(3)
К2	0.3049(4)	0.4887(4)	0.5353(6)	0.044(3)
КЗ	0.4301(7)	0.4478(7)	1.0250(6)	0.048(3)
K4	0.0879(8)	0.2756(8)	0.6306(7)	0.056(3)
К5	0.6501(8)	0.6721(8)	0.9316(6)	0.053(4)

K6	0.4556(8)	0.7624(10)	0.8215(7)	0.072(4)
K7	0.2814(7)	0.1867(10)	0.7360(6)	0.070(5)
K8	0.4314(4)	0.4430(3)	0.8133(3)	0.0351(17)
К9	0.5029(6)	0.4077(5)	0.6459(5)	0.021(3)
K10	0.7087(6)	0.3932(6)	0.5541(6)	0.086(3)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor

Table	S17 - (An)isot for: U161	cropic Dis L _s P ₄ P1	splacement R	Parameters = 0.05		
Atom	U(1,1) or U	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
U1	0.0138(6)	0.0154(8)	0.0129(7)	0.0038(6)	0.0081(5)	0.0085(6)
U2	0.0188(6)	0.0127(8)	0.0161(7)	0.0055(6)	0.0117(6)	0.0086(6)
U3	0.0195(6)	0.0132(8)	0.0154(7)	0.0063(6)	0.0096(6)	0.0117(6)
U4	0.0177(7)	0.0189(9)	0.0126(7)	0.0045(6)	0.0089(6)	0.0077(6)
U5	0.0185(7)	0.0145(8)	0.0139(7)	0.0042(6)	0.0102(6)	0.0076(6)
U6	0.0173(7)	0.0156(8)	0.0154(7)	0.0064(6)	0.0114(6)	0.0087(6)
U7	0.0206(7)	0.0109(8)	0.0140(7)	0.0040(6)	0.0108(6)	0.0079(6)
U8	0.0167(6)	0.0146(8)	0.0147(7)	0.0060(6)	0.0082(6)	0.0072(6)
U9	0.0191(7)	0.0128(8)	0.0155(8)	0.0062(6)	0.0096(6)	0.0097(6)
U10	0.0178(7)	0.0144(8)	0.0151(7)	0.0071(6)	0.0102(6)	0.0090(6)
U11	0.0247(7)	0.0151(8)	0.0156(7)	0.0059(6)	0.0130(6)	0.0094(7)
U12	0.0235(7)	0.0128(8)	0.0168(8)	0.0061(6)	0.0129(6)	0.0088(7)
U13	0.0209(7)	0.0155(8)	0.0178(7)	0.0060(6)	0.0116(6)	0.0099(6)
U14	0.0241(7)	0.0211(9)	0.0183(8)	0.0074(7)	0.0105(6)	0.0161(7)
U15	0.0200(7)	0.0149(9)	0.0220(8)	0.0074(7)	0.0130(6)	0.0089(7)
U16	0.0271(8)	0.0175(9)	0.0197(8)	0.0040(7)	0.0130(7)	0.0137(7)
P1	0.006(4)	0.023(6)	0.016(5)	0.006(4)	0.007(4)	0.008(4)
P2	0.012(4)	0.024(6)	0.016(5)	0.007(4)	0.003(4)	0.010(4)
P3	0.028(5)	0.012(5)	0.016(5)	0.009(4)	0.014(4)	0.014(4)
P4	0.028(5)	0.015(5)	0.015(5)	0.008(4)	0.018(4)	0.012(4)
P5	0.018(4)	0.012(5)	0.014(5)	-0.001(4)	0.008(4)	0.004(4)
P6	0.021(5)	0.017(6)	0.023(5)	0.015(4)	0.014(4)	0.017(4)
P7	0.019(5)	0.017(6)	0.022(5)	0.009(5)	0.009(4)	0.006(4)
P8	0.030(5)	0.018(5)	0.014(4)	0.007(4)	0.013(4)	0.014(4)
Р9	0.025(5)	0.014(5)	0.022(5)	0.003(4)	0.015(4)	0.009(4)
P11	0.020(4)	0.028(6)	0.004(4)	0.009(4)	0.005(3)	0.015(4)
P12	0.019(4)	0.010(5)	0.016(5)	0.007(4)	0.009(4)	0.009(4)
P13	0.034(4)	0.021(4)	0.021(3)	0.013(2)	0.017(3)	0.025(3)
P14	0.018(5)	0.016(6)	0.026(6)	0.001(5)	0.012(5)	0.008(5)
P15	0.021(4)	0.019(6)	0.018(5)	0.004(4)	0.011(4)	0.009(4)
P16	0.018(4)	0.004(5)	0.030(6)	0.005(4)	0.018(4)	0.005(4)
P17	0.016(4)	0.011(5)	0.026(5)	0.010(4)	0.012(4)	0.008(4)
P18	0.018(4)	0.016(6)	0.019(5)	0.006(4)	0.009(4)	0.013(4)
P20	0.067(6)	0.019(4)	0.024(4)	-0.001(3)	0.038(4)	-0.008(3)
K1	0.018(4)	0.035(5)	0.029(5)	0.025(4)	0.002(3)	0.015(4)
K2	0.008(2)	-0.006(2)	0.115(7)	-0.002(3)	0.018(3)	0.0040(17)

K4	0.092(6)	0.083(6)	0.063(6)	0.051(5)	0.062(5)	0.076(5)
K5	0.098(7)	0.098(8)	0.028(4)	0.045(4)	0.048(4)	0.087(6)
K6	0.056(5)	0.162(11)	0.037(6)	0.047(6)	0.033(5)	0.070(7)
K7	0.060(6)	0.183(12)	0.029(5)	0.060(6)	0.038(4)	0.092(7)
K8	0.040(3)	0.035(3)	0.040(3)	0.015(3)	0.024(2)	0.018(3)
К9	0.024(4)	0.005(4)	0.025(5)	0.002(3)	0.009(4)	-0.001(3)

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Table	S18 - Bond Di for: U16	stances (Ang L ₈ P ₄ P1	strom)	R = 0.05	
U1	-08	2.40(2)	U4	-061	2.36(3)
U1	-016	2.39(3)	U4	-073	2.31(2)
U1	-047	2.38(3)	U4	-099	1.80(3)
U1	-056	2.45(3)	U5	-05	2.35(2)
U1	-061	2.40(2)	U5	-032	2.45(2)
U1	-070	2.26(3)	U5	-035	2.34(3)
U1	-074	1.82(3)	U5	-038	2.41(3)
U1	-091	1.82(3)	U5	-043	2.42(2)
U2	-016	2.31(3)	U5	-068	2.40(2)
U2	-041	2.31(2)	U5	-075	1.83(3)
U2	-042	2.45(2)	U5	-088	1.77(3)
U2	-045	1.79(3)	U6	-04	2.33(2)
U2	-050	2.33(3)	U6	-010	2.38(3)
U2	-056	2.39(3)	U6	-027	2.30(3)
U2	-087	1.78(3)	U6	-029	2.37(2)
U2	-089	2.36(2)	U6	-035	2.30(2)
U3	-01	2.38(3)	U6	-038	2.43(3)
U3	-06	1.74(3)	U6	-063	1.81(3)
U3	-015	2.31(2)	U6	-092	1.77(3)
U3	-030	2.39(3)	U7	-010	2.45(3)
U3	-040	2.39(3)	U7	-021	2.33(2)
U3	-066	1.78(3)	U7	-025	2.35(2)
U3	-077	2.28(2)	U7	-027	2.36(3)
U4	-014	2.31(2)	U7	-048	1.80(3)
U4	-028	2.26(2)	U7	-060	2.358(19)
U4	-047	2.40(3)	U7	-062	2.35(3)
U4	-051	2.32(2)	U7	-085	1.85(3)
U4	-059	1.78(3)	U8	-07	1.82(2)

- 15 -

U8	-012	2.31(3)	U12	-028	2.42(3)
U8	-023	2.31(3)	U12	-031	2.39(2)
U8	-024	2.35(3)	U12	-033	1.81(2)
U8	-081	2.33(3)	U12	-041	2.30(2)
U8	-083	1.72(2)	U12	-042	2.37(2)
U8	-094	2.33(3)	U12	-073	2.52(2)
U9	-013	2.39(3)	U12	-079	1.88(2)
U9	-022	2.33(3)	U12	-090	2.38(3)
U9	-026	1.78(2)	U13	-011	1.73(2)
U9	-037	2.39(3)	U13	-018	2.43(3)
U9	-053	2.45(3)	U13	-023	2.45(3)
U9	-084	1.86(2)	U13	-024	2.43(3)
U9	-096	2.40(3)	U13	-065	2.33(3)
U10	-02	1.87(3)	U13	-067	1.75(2)
U10	-03	2.40(3)	U13	-0117	2.30(2)
U10	-09	2.42(3)	U14	-01	2.39(3)
U10	-046	2.40(3)	U14	-030	2.39(3)
U10	-052	2.32(3)	U14	-086	2.35(3)
U10	-058	1.80(3)	U14	-0100	2.29(2)
U10	-071	2.43(2)	U14	-0105	1.699(19)
U11	-021	2.49(2)	U14	-0120	1.83(2)
U11	-025	2.41(2)	U14	-0130	2.291(17)
U11	-032	2.30(2)	U15	-017	1.88(2)
U11	-043	2.29(3)	U15	-022	2.44(3)
U11	-044	1.81(3)	U15	-036	2.30(3)
U11	-049	2.25(2)	U15	-037	2.37(3)
U11	-072	2.37(3)	U15	-080	2.39(3)
U11	-0109	1.73(2)	U15	-0104	1.83(2)
U15	-0115	2.27(2)	P6	-060	1.51(2)
U16	-03	2.36(3)	P6	-093	1.49(2)

U16	-09	2.36(3)	P6	-094	1.59(2)
U16	-082	2.35(2)	P6	-C6	1.75(4)
U16	-0101	1.913(19)	P7	-068	1.43(2)
U16	-0106	2.48(2)	P7	-080	1.54(3)
U16	-0119	1.76(2)	P7	-0102	1.55(2)
U16	-0131	2.265(16)	P7	-C2	1.84(4)
P1	-08	1.49(3)	P8	-031	1.45(3)
P1	-019	1.50(3)	P8	-055	1.52(3)
P1	-040	1.51(3)	P8	-0106	1.45(2)
P1	-C1	1.88(4)	P8	-C7	1.81(4)
P2	-05	1.55(2)	P9	-036	1.61(3)
P2	-013	1.55(3)	P9	-050	1.56(3)
P2	-064	1.49(2)	P9	-054	1.50(3)
P2	-C2	1.82(4)	Р9	-C5	1.82(3)
Р3	-04	1.56(3)	P10	-046	1.52(3)
Р3	-020	1.54(3)	P10	-057	1.53(3)
Р3	-052	1.54(3)	P10	-090	1.50(3)
Р3	-C3	1.81(4)	P10	-C7	1.82(3)
P4	-012	1.55(3)	P11	-071	1.46(2)
P4	-014	1.49(2)	P11	-081	1.59(3)
P4	-076	1.53(3)	P11	-0111	1.43(2)
P4	-C4	1.87(4)	P11	-0114	1.61(3)
P5	-078	1.53(2)	P12	-018	1.51(3)
P5	-089	1.53(2)	P12	-039	1.51(3)
P5	-096	1.47(3)	P12	-062	1.51(3)
P5	-C5	1.93(3)	P12	-C6	1.86(3)
P13	-015	1.56(3)	P20	-0117	1.45(2)
P13	-069	1.54(3)	P20	-0130	1.66(2)
P13	-072	1.53(3)	P20	-0132	1.38(2)
P13	-C8	1.86(4)	P20	-0151	1.59(2)
P14	-051	1.63(2)	01	-C8	1.40(5)

P14	-065	1.55(3)	03	-C7	1.45(5)
P14	-0103	1.45(2)	09	-C3	1.44(5)
P14	-C4	1.88(4)	010	-027	1.48(4)
P15	-029	1.47(3)	016	-056	1.47(4)
P15	-082	1.46(3)	021	-025	1.57(3)
P15	-0113	1.62(3)	022	-C2	1.38(4)
P15	-C3	1.93(3)	023	-C6	1.48(5)
P16	-053	1.46(3)	024	-C4	1.48(5)
P16	-077	1.62(2)	028	-073	1.47(4)
P16	-098	1.60(2)	030	-C1	1.44(5)
P16	-0112	1.58(3)	032	-043	1.46(4)
P17	-034	1.49(2)	035	-038	1.53(4)
P17	-049	1.60(3)	037	-C5	1.38(4)
P17	-0100	1.67(2)	041	-042	1.39(3)
P17	- C8	1.86(4)	047	-061	1.47(4)
P18	-070	1.58(3)	C1	-C11	1.61(5)
P18	-086	1.64(3)	C2	-C12	1.64(4)
P18	-0110	1.39(3)	C3	-C13	1.48(5)
P18	-C1	1.77(3)	C4	-C9	1.42(4)
P19	-0115	1.61(2)	C5	-C16	1.39(4)
P19	-0131	1.43(2)	C6	-C15	1.71(4)
P19	-0144	1.64(2)	C7	-C10	1.61(4)
P19	-0152	1.62(2)	C8	-C14	1.50(5)