Electronic Supplementary Information

for

Formation of a supramolecular assembly between a Na⁺-templated G-quartet and a Ni(II)-porphyrin complex

Yuji Inui,^{*a*} Shunichi Fukuzumi^{**a*, *b*} and Takahiko Kojima^{**c*}

 ^a Department of Material and Life Science, Graduate School of Engineering, Osaka University and ALCA (JST), 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
 ^b Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
 ^c Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan **Materials and methods.** CHCl₃ (Wako Pure Chemical Industries) was purified by distillation over CaH₂. CH₃OH (Wako Pure Chemical Industries) was dried using Mg and I₂. CDCl₃ was purchased from Cambridge Isotope Laboratories, Inc.. Other chemicals and solvents were purchased from Wako Pure Chemical Industries and Tokyo Chemical Industries and were used as received. 9-isopropylguanine was synthesized according to the literature method (see the reference 9 in the text). Octaethylporphinatonickel(II) (NiOEP) was synthesized by a literature method (see the references 11 and 13).

Apparatus. ¹H NMR spectra were measured on a JEOL JNM-AL300 spectrometer. UV–Vis absorption spectra were recorded on a SHIMAZU UV2450. ESI-MS measurements were made on an Applied Biosystems QStar Pulsar i (ESI-TOF; positive mode) spectrometer.

¹H NMR measurements. A mixed solvent of $CH_3OH/CDCl_3$ (1:60 v/v) was used for measurements and chemical shifts were determined relative to an internal standard (TMS). NMR measurements at 283 K was made on a sample containing 9-isopropylguanine (9.9 mM), sodium tetraphenylborate (2.5 mM) and NiOEP (1.3 mM) after incubating for over 3 minutes at certain temperature.

UV-Vis titration to determine the equilibrium constants. UV-Vis spectroscopic titrations of H_2OEP and NiOEP upon addition of ${}^iPG-4-Na^+$ were conducted in mixed solvents of CHCl₃/CH₃OH after stirring for 20 min at every addition of ${}^iPG-4-Na^+$ at each temperature. Sodium tetraphenylborate was used as the sources of the template cation and the ${}^iPG-4-Na^+$ solution was prepared from the mixture of ${}^iPG/NaBPh_4$ (4:1 mol/mol) in CH₃OH/CHCl₃ (1:40 v/v). H₂OEP and NiOEP solutions were prepared in CHCl₃ for every measurement. In order to determine *K* values (see below), absorbance at 393 nm due to the Soret band of NiOEP was monitored. The UV-Vis spectra of iPG (0.21 mM) in CH₃OH/CHCl₃ were monitored with addition of NiOEP solution in CHCl₃ due to the low solubility of iPG in CHCl₃. The UV-Vis spectrum of NiOEP upon addition of NaBPh₄ was monitored by adding NaBPh₄ solution (0–106 μ M) in CH₃OH/CHCl₃ to the solution of NiOEP (1.1 μ M) in CHCl₃. Their absorption coefficients were used for the comparison (Fig. S2).

Analysis of titration curves of the adduct formation. Data obtained from temperature-dependent UV-Vis measurements were analyzed by curve fitting for plots of $[{}^{i}PG-4-Na^{+}]^{-n} vs. 1/(A_{0}-A)$ (n=1 or 2) to determine formation constants of complexes between ${}^{i}PG-4-Na^{+}$ and NiOEP. Concerning the formation of the 1:1 complex, we assumed the following equilibrium:

i
PG-4-Na⁺ + NiOEP $\stackrel{K}{\Longrightarrow} ^{i}$ PG-4-Na⁺-NiOEP

Curve-fitting was made to estimate the formation constants of the 1:1 complex on the basis of following equation (1) for the plots in Fig. 2(b), Fig. S3(b), and Fig. S3(d) at 288 K and equation (2) for the plots in Fig. 5 and Fig. S3(e):

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

$$\Delta A = \Delta \varepsilon \frac{[G4]_{add} + [Por]_0 + \frac{1}{K} - \sqrt{([G4]_{add} + [Por]_0 + \frac{1}{K})^2 - 4[G4]_{add}[Por]_0}}{2}$$
(1)

$$\frac{1}{\Delta A} = \left(\frac{1}{\Delta \varepsilon K[G4]_{add}} + \frac{1}{\Delta \varepsilon}\right) \left(\frac{1}{[Por]_0}\right)$$
(2)

As for the formation constant of the 2:1 complex between ^{*i*}PG-4-Na⁺ and NiOEP, we assumed the following equilibrium:

$$K_2$$

 $i^{P}G-4-Na^+$
 $i^{P}G-4-Na^+$
 $i^{P}G-4-Na^+$
 $i^{P}G-4-Na^+$
 $i^{P}G-4-Na^+$
 $i^{P}G-4-Na^+$
 $i^{P}G-4-Na^+$

The calculation of the formation constant for the 2:1 complex was made on the basis of following equation (3) for the plots in Fig. S3(b) and Fig. S3(d) at 298 K and equation (4) for the plots in Fig. S3(c) and Fig. S3(f):

$$[G4]_{add} = 2(\Delta A / \Delta \varepsilon) + \sqrt{\frac{(\Delta A / \Delta \varepsilon)}{K([Por]_0 - (\Delta A / \Delta \varepsilon))}}$$

$$(K = K_1 K_2)$$

$$\frac{1}{\Delta A} = \left(\frac{1}{\Delta \varepsilon K [G4]_{add}^2} + \frac{1}{\Delta \varepsilon}\right) \left(\frac{1}{[Por]_0}\right)$$
(4)

Fig. S1 (a) Spectral change in the course of the addition of ${}^{i}PG-4-Na^{+}$ to the solution of H₂OEP (1.6 μ M). The baseline was adjusted by subtracting the absorbance of ${}^{i}PG-4-Na^{+}$ at each concentration. (b) A plot of absorbance at 400 nm relative to [${}^{i}PG-4-Na^{+}$] in the corrected absorption spectra depicted in (a).

Fig. S2 Titration curves for temperature-dependent UV-Vis measurements on the adduct formation of ^{*i*}PG-4-Na⁺ with NiOEP. ^{*i*}PG-4-Na⁺ prepared by ^{*i*}PG and NaBPh₄ (4:1 mol/mol) was added to the NiOEP (1.4 μ M) at 283 K (–×–), 288K (–––), 293 K (– Δ –) and 298 K (– \circ –) in the mixed solvent of CH₃OH/CHCl₃. At 293 K, NiOEP (1.6 μ M) solution was prepared and then the absorbance at 393 nm of NiOEP was normalized by the ratio of the concentration of NiOEP (Abs. (393 nm) × 1.4/1.6).

Fig. S3 Analysis of the UV-Vis spectral change for the adduct formation in CHCl₃/CH₃OH: (a) spectral change of NiOEP (1.4 μ M) by adding ^{*i*}PG-4-Na⁺ (0 to 0.46 mM) at 298 K; (b) curve fitting for the absorption change at 393 nm observed for the adduct of ^{*i*}PG-4-Na⁺ with NiOEP at 288 K (\blacksquare) and at 298 K (\bigcirc); (c) a plot of 1/(A_0 -A) at 393 nm vs. [^{*i*}PG-4-Na⁺]⁻² at 298 K; (d) curve fitting for the absorption change at 553 nm observed for the adduct of ^{*i*}PG-4-Na⁺]⁻¹ at 288 K (\blacksquare) and at 298 K (\bigcirc) at 553 nm; (e) a plot of 1/(A_0 -A) vs. [^{*i*}PG-4-Na⁺]⁻¹ at 288 K; (f) a plot of 1/(A_0 -A) vs. [^{*i*}PG-4-Na⁺]⁻¹ at 288 K; (f) a plot of 1/(A_0 -A) vs. [^{*i*}PG-4-Na⁺]⁻² at 298 K.