Electronic Supporting Information (ESI) for

Functionalization of Large-Pore Periodic Mesoporous Silicas: Metal Silylamide and Isopropoxide Molecular Grafting and Secondary Surface Ligand Exchange

Yucang Liang,*^a Egil Sev. Erichsen^b and Reiner Anwander*^a

^a Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

^b Mr. Egil Sev. Erichsen, Laboratory for Electron Microscopy, University of Bergen, Allégaten 41, 5007 Bergen, Norway

* Corresponding author E-mail: <u>yucang.liang@uni-tuebingen.de</u> reiner.anwander@uni-tuebingen.de

Commla	Wavenumber/cm ⁻¹									
Sample	O-H	Si-O-Si	C-H	N-H	Si-H	Si-C	Si-N	C-C	C=O	C-N
1	3747	1000~1200, 810, ~670-400	-	-	-	-	-	-	-	-
1a	-	1000~1200, 810, ~670-400	2966, 2908	-	2151, 908	835, 773	-	-	-	-
1b.zn	-	1000~1200, 810, ~670-400	2953, 2898	-	-	835, 752	884	-	-	-
1c. _{Zn}	-	1000~1200, 808, 670-400	2958, 2897, 1648, 1616	3360, 3025	-	835, 756	-	1498, 915	-	-
1d _{-Zn}	-	1000~1200, 810, ~670-400	2960, 2902, 866	-	-	845, 824, 748	-	1503, 1436	1673, 1652, 1615, 1573, 1386	866
1e-zn ^a	3603	1000~1200, 810, ~670-400	2960, 2904	-	-	845, 753	-	1498	1698, 1576, 1375	-

Table S1	Characteristic	vibrations o	f Zn-grafted h	vbrid SBA-15	materials
I able b		viorations o	I ZII SIUICU II	yond DD1 15	materials

Note: SBA-15(1);

HN(SiHMe₂)₂@SBA-15 (1a);

 $Zn[N(SiMe_3)_2]_2@SBA-15 (1b_{-Zn});$

[HO(C₆H₄)OH]@Zn[N(SiMe₃)₂]₂@SBA-15 (**1c**._{Zn});

 $[HO_2C(C_6H_4)CO_2H] @Zn[N(SiMe_3)_2]_2 @SBA-15 (1d_{.zn});$

^a Data came from the activated material at 120 °C.

Sampla	Wavenumber/cm ⁻¹									
Sample	O-H	Si-O-Si	C-H	N-H	Si-H	Si-C	Si-N	C-C	C=O	C-N
2	3747	1000~1200, 810, ~670-400	-	-	-	-	-	-	-	-
2a	-	1000~1200, 810, ~670-400	2966, 2908	-	2151, 908	835, 773	-	-	-	-
2b _{-Co}	-	1000~1200, 810, ~670-400	2952, 2898	-	-	833, 752	878	-	-	-
2c _{-Co}	-	1000~1200, 808, 670-400	2959, 2893, 1652, 1616	3350, 3024	-	826	-	1498, 913	-	-
2d _{-Co}	-	1000~1200, 810, ~670-400	2961, 2905, 866	3318, 3155	-	845, 824, 748	-	1600, 1505, 1436	1670, 1652, 1608, 1393, 1380	866
2d _{-Co-}	-	1000~1200, 810, ~670-400	2962, 2903	-	-	847, 765	-	1606, 1519, 1498	1653, 1573, 1409, 1375	-

Table S2 Characteristic vibrations of Co-grafted hybrid KIT-6 materials

Note: KIT-6 (2); $HN(SiHMe_2)_2@KIT-6$ (2a); $Co[N(SiMe_3)_2]_2(THF)@KIT-6$ (2b.co); $[HO(C_6H_4)OH]@Co[N(SiMe_3)_2]_2(THF)@KIT-6$ (2c.co); $[HO_2C(C_6H_4)CO_2H]@Co[N(SiMe_3)_2]_2(THF)@KIT-6$ (2d.co); $[HO_2C(C_6H_4)_2-CO_2H]@Co[N(SiMe_3)_2]_2(THF)@KIT-6$ (2d.co-bp).

Fig. S1 Nitrogen adsorption-desorption isotherms of parent materials SBA-15 (1), KIT-6 (2), TMDS-silylated $HN(SiHMe_2)_2@SBA-15$ (1a) and $HN(SiHMe_2)_2@KIT-6$ (2a). The inset shows the BJH pore size distribution calculated from the adsorption branch of isotherm.

Fig. S2 DRIFT spectra of parent material KIT-6 (2), TMDS-silylated HN(SiHMe₂)₂@KIT-6 (2a), Co[N(SiMe₃)₂]₂(THF)@KIT-6 (2b_{-Co}), [HO(C₆H₄)OH]@Co[N(SiMe₃)₂]₂(THF)@KIT-6 (2c_{-Co}), [HO₂C(C₆H₄)CO₂H]@Co[N(SiMe₃)₂]₂(THF)@KIT-6 (2d_{-Co}) and [HO₂C(C₆H₄)₂-CO₂H]@Co[N(SiMe₃)₂]₂(THF)@KIT-6 (2d_{-Co}).

Fig. S3 DRIFT spectra of the Co-modified hexagonal $Co[N(SiMe_3)_2]_2(THF)@SBA-15$ (**1b**. Co), [HO(C₆H₄)OH]@Co[N(SiMe_3)_2]_2(THF)@SBA-15 (**1c**.Co) and [HO₂C(C₆H₄)CO₂H]@-Co[N(SiMe_3)_2]_2(THF)@SBA-15 (**1d**.Co).

Fig. S4 Nitrogen adsorption-desorption isotherms of $Co[N(SiMe_3)_2]_2(THF)@KIT-6$ (**2b**_{-Co}), [HO(C₆H₄)OH]@Co[N(SiMe_3)_2]_2(THF)@KIT-6 (**2c**_{-Co}), [HO₂C(C₆H₄)CO₂H]@Co[N(Si-Me_3)_2]_2(THF)@KIT-6 (**2d**_{-Co}) and [HO₂C(C₆H₄)_2CO₂H]@Co[N(SiMe_3)_2]_2(THF)@KIT-6 (**2d**_{-Co}). The inset shows the BJH pore size distribution calculated from the adsorption branch of isotherm.

Fig. S5 A) The solid state ²⁹Si CP MAS NMR and B) liquid-phase ¹H NMR (THF-d₈) of organic complex Me₃SiO₂C(C₆H₄)CO₂SiMe₃.

Fig. S6 DRIFT spectra of the Al-hybrid materials $\{Al(OCHMe_2)_3\} @SBA-15$ (**1f**_{.Al}), $[HO_2C(C_6H_4)CO_2H]@\{Al(OCHMe_2)_3\}@SBA-15$ (**1g**_{.Al}), $\{Al(OCHMe_2)_3\}@[HO_2C(C_6H_4)-CO_2H]@\{Al(OCHMe_2)_3\}@SBA-15$ (**1h**_{.Al}), $[HO_2C(C_6H_4)CO_2H]@\{Al(OCHMe_2)_3\}@-[HO_2C(C_6H_4)CO_2H]@\{Al(OCHMe_2)_3\}@SBA-15$ (**1i**_{.Al}) and $[HO_2C(C_6H_4)CO_2]_yAl(OH)_x-@SBA-15$ (**1j**_{.Al}).

Sampla	Wavenumber/cm ⁻¹									
Sample	O-H	Si-O-Si	C-H	Al-O	Si-O-Al	C-C	C=O			
1	3747	1000~1200, 810, ~670-400	-	-	-	-	-			
1f. _{Al}	3706	1000~1200, 810, ~670-400	2968, 2934, 2870	949	835, 704	-	-			
1g _{-Al}	-	1000~1200, 816, ~670-400	2972, 2938,2877	962	751, 707	1607, 1507, 1436	1663, 1374,			
1h _{-Al}	-	1000~1200, 816, ~670-400	2972, 2938,2877	962	751, 707	1607, 1507, 1436	1663, 1374,			
1i. _{Al}	-	1000~1200, 816, ~670-400	2972, 2938,2877	962	751, 707	1607, 1507, 1436	1663, 1374,			
1j _{-Al} ^a	3740	1000~1200, 816, ~670-400	2983, 2878	962	751, 707	1602, 1506, 1420	1557			

Note: SBA-15 (1);

 ${Al(OCHMe_2)_3}@SBA-15 (1f_{-Al});$

 $[HO_2C(C_6H_4)CO_2H]@{Al(OCHMe_2)_3}@SBA-15 (1g_{-Al});$

 ${Al(OCHMe_2)_3}@[HO_2C(C_6H_4)CO_2H]@{Al(OCHMe_2)_3}@SBA-15 (1h_A);$

 $[HO_{2}C(C_{6}H_{4})CO_{2}H] @ \{ Al(OCHMe_{2})_{3} \} @ [HO_{2}C(C_{6}H_{4})CO_{2}H] @ \{ Al(OCHMe_{2})_{3} \} @ SBA-15 (1i_{Al}); \\ (Ii_{Al}) = (Ii_{Al})^{2} (Ii_{Al})^{2$

 $[HO_2C(C_6H_4)CO_2]_yAl(OH)_x@SBA-15 (1j_{-Al}).$

^a Data came from the activated material at 50 °C.

Fig. S7 Nitrogen adsorption-desorption isotherms (left) and the BJH pore size distribution (right) calculated from the adsorption branch of isotherm for materials $[HO_2C(C_6H_4)CO_2H]$ - $@{Al(OCHMe_2)_3}@[HO_2C(C_6H_4)CO_2H]@{Al(OCHMe_2)_3}@SBA-15$ (**1i**._{Al}) and $[HO_2C(C_6H_4)CO_2]_yAl(OH)_x@SBA-15$ (**1j**._{Al}, dried at 50 °C and 120 °C).

Fig. S8 Low-angle PXRD patterns of hybrid materials $[HO(C_6H_4)OH]@Zn[N(Si-Me_3)_2]_2@SBA-15$ (**1c**.*z***n**), $[HO_2C(C_6H_4)CO_2H]@Zn[N(SiMe_3)_2]_2@SBA-15$ (**1d**.*z***n**), $[HO_2C-(C_6H_4)CO_2]Zn(DMF)_y(H_2O)_x@SBA-15$ (**1e**.*z***n**), $[HO(C_6H_4)OH]@Co[N(SiMe_3)_2]_2(THF)@-SBA-15$ (**1c**.*c***o**) and $[HO_2C(C_6H_4)CO_2H]@Co[N(SiMe_3)_2]_2(THF)@SBA-15$ (**1d**.*c***o**).

Fig. S9 Low-angle PXRD patterns of hybrid materials $[HO(C_6H_4)OH]@Co[N(SiMe_3)_2]_2$ -(THF)@KIT-6 (**2c.**_{Co}), $[HO_2C(C_6H_4)CO_2H]@Co[N(SiMe_3)_2]_2(THF)@KIT-6$ (**2d.**_{Co}) and $[HO_2C(C_6H_4)_2CO_2H]@Co[N(SiMe_3)_2]_2(THF)@KIT-6$ (**2d.**_{Co}-bp).

Fig. S10Low-anglePXRDpatternsofhybridmaterials $[HO_2C(C_6H_4)CO_2H]@ \{Al(OCHMe_2)_3\}@[HO_2C(C_6H_4)CO_2H]@\{Al(OCHMe_2)_3\}@SBA-15$ (1i.Al)and $[HO_2C(C_6H_4)CO_2]_yAl(OH)_x@SBA-15$ (1j.Al)and

Fig. S11 Wide-angle PXRD patterns of hybrid materials $[HO(C_6H_4)OH]@Zn[N(SiMe_3)_2]_2-@SBA-15$ (**1c**.*z***n**), $[HO_2C(C_6H_4)CO_2H]@Zn[N(SiMe_3)_2]_2@SBA-15$ (**1d**.*z***n**), $[HO_2C(C_6H_4)-CO_2]Zn(DMF)_y(H_2O)_x@SBA-15$ (**1e**.*z***n**), $[HO(C_6H_4)OH]@Co[N(SiMe_3)_2]_2(THF)@SBA-15$ (**1c**.*c***o**) and $[HO_2C(C_6H_4)CO_2H]@Co[N(SiMe_3)_2]_2(THF)@SBA-15$ (**1d**.*c***o**).

Fig. S12 Wide-angle PXRD patterns of hybrid materials $[HO(C_6H_4)OH]@Co[N(SiMe_3)_2]_2$ -(THF)@KIT-6 (**2c**._{Co}), $[HO_2C(C_6H_4)CO_2H]@Co[N(SiMe_3)_2]_2(THF)@KIT-6$ (**2d**._{Co}) and $[HO_2C(C_6H_4)_2CO_2H]@Co[N(SiMe_3)_2]_2(THF)@KIT-6$ (**2d**._{Co}-bp).

Fig. S13 wide-angle PXRD patterns of hybrid materials $[HO_2C(C_6H_4)CO_2H]@-$ {Al(OCHMe₂)₃}@[HO₂C(C₆H₄)CO₂H]@{Al(OCHMe₂)₃}@SBA-15 (**1i**_{-Al}) and [HO₂C-(C₆H₄)CO₂]_yAl(OH)_x@SBA-15 (**1j**_{-Al}).

Fig. S14 The representative TEM images taken along the direction perpendicular to the pore axis (A) for hybrid material $[HO(C_6H_4)OH]@Co[N(SiMe_3)_2]_2(THF)@SBA-15$ (**1c**._{Co}), (B) for hybrid material $[HO_2C(C_6H_4)CO_2H]@Co[N(SiMe_3)_2]_2(THF)@SBA-15$ (**1d**._{Co}) and the direction of the pore axis (C) for material **1d**._{Co}.

Fig. S15 The representative TEM images taken along [110] direction (A) and high-resolution TEM image (B) for hybrid material $[HO(C_6H_4)OH]@Co[N(SiMe_3)_2]_2(THF)@KIT-6$ (**2c**._{Co}), [110] (C) and [311] (D) for hybrid material $[HO_2C(C_6H_4)CO_2H]@Co[N(SiMe_3)_2]_2$ -(THF)@KIT-6 (**2d**._{Co}).

Fig. S16 The representative TEM images taken along [100] (A), [111] (B) direction and high-resolution TEM image (C) for hybrid material $[HO_2C(C_6H_4)_2CO_2H]@Co[N(SiMe_3)_2]_2$ -(THF)@KIT-6 (**2d**._{Co-bp}).

Fig. S17 The representative TEM images taken along the direction perpendicular to the pore axis (A) and the pore axis (B) for hybrid materials $[HO_2C(C_6H_4)CO_2H]@$ -{Al(OCHMe₂)₃}@[HO₂C(C₆H₄)CO₂H]@{Al(OCHMe₂)₃}@SBA-15 (**1i**._{Al}), and direction perpendicular to the pore axis (C) and the pore axis (D) for hybrid materials $[HO_2C(C_6H_4)CO_2]_yAl(OH)_x@SBA-15 ($ **1j**._{Al}).