Supporting Information for

Deuteration of boranes: catalysed versus non-catalysed processes

David J. Nelson, Jonathan B. Egbert and Steven P. Nolan*

EaStCHEM, School of Chemistry, University of St. Andrews, Purdie Building, North Haugh, St. Andrews, Fife, KY16 9ST, Scotland.

Contents	
Experimental Details	S2
General	
Deuteration Experiments	
NMR Spectra of Reaction Products	S3
Pseudostoichiometric reactions with Ir	
Preparative Reactions	

Experimental Details

General. All air-sensitive manipulations were carried out in an Argon-filled MBraun or Innovative Technologies glovebox; solutions of iridium complexes **8-10** are highly sensitive to oxygen. Dichloromethane- d_2 was dried overnight on calcium hydride, distilled, and degassed by freeze-pump-thaw cycles. Tetrahydrofuran- d_8 was dried overnight on sodium/benzophenone, distilled, and degassed by freeze-pump-thaw cycles. Tetrahydrofuran was obtained from an MBraun solvent purification system and degassed by purging with dry oxygen-free nitrogen. All boranes were obtained from commercial sources, except for BH₃·THF where both commercial and freshly-prepared borane was used (see the manuscript text). NMR analyses were conducted using either a Bruker AV300 (¹H obs. at 300 MHz; ¹¹B obs. at 96 MHz), a Bruker AV400 (¹H obs. at 400 MHz; ¹¹B obs. at 128 MHz) or a Bruker AV500 (²H obs. at 77 MHz). Chemical shifts are in ppm, relative to tetramethylsilane (for ¹H), tetramethylsilane- d_{12} (for ²H) or Et₂O·BF₃ (for ¹¹B); coupling constants are in Hertz.

Deuteration Experiments. In a glovebox, the iridium complex (when used; typically ca. 1 to 2 mg) was weighed into a vial, and the borane (typically ca. 2 mmol) was weighed into a second vial. The borane was dissolved in solvent (0.5 mL CD_2Cl_2 for pinacolborane 2, catecholborane 3, and Me₂S·BH₃ 5; 2 mL THF for 9-BBN 4; 1 was used as a 1 mol L^{-1} solution in THF; 2.5 mL CD₂Cl₂ for morpholine-borane 6 and N-methylmorpholine-borane 7) and added to the iridium complex. The solution was then transferred to a *ca*. 100 mL flask fitted with valve, containing a stirrer bar. The valve was closed, the flask was removed from the glovebox and then connected to a Schlenk line. The solution was frozen and the flask was placed under vacuum. The flask was filled with D2 and evacuated twice, before filling with D₂ to ca. 10 psi. The reaction was stirred for the specified time. Once this time had elapsed, the reactions of **2**, **3**, **5**, **6** and **7** were transferred to NMR tubes and analysed by ¹H and ¹¹B NMR spectroscopy. For 4, the solvent was stripped under vacuum and a portion of the solid was dissolved in THF- d_8 and analysed by ¹H and ¹¹B NMR spectroscopy. For these reactions, the conversion was quantified by integrating the B-H peak *versus* other peaks on the ¹H NMR spectrum. For 1, a portion of the reaction was transferred to an NMR tube, a small quantity (ca. 100 μ L) of dry CD₂Cl₂ or THF-d₈ was added, and the sample was analysed by ¹H and ¹¹B NMR spectroscopy. Conversion was estimated in this case by inspection of the ¹¹B NMR spectrum; BH₃ exhibits a distinctive quartet resonance, while BD₃ manifests as a single broad signal (see spectra).

Sample ¹H and ¹¹B NMR Spectra

Where sample spectra are integrated, $\frac{1}{2}$ of the B-H signal is often considered to avoid e.g. solvent peaks. In these cases, this is taken to represent 0.5 H and so the quoted conversions in the manuscript are correct.

Pseudostoichiometric reactions

Ir-complex and *ca.* 3-5 equiv. of HBpin combined in CD_2Cl_2 and transferred to a J. Young NMR tube for analysis, in order to probe for interesting new complexes.

9 + HBpin

10 + HBpin

8 + 9-BBN

Preparative Reactions: Sample spectra from reactions carried out under D_2 in order to show that reaction has occurred.

THF.BH₃ 1- d_3 (commercial material in THF) NB: Extra peaks are also present in a new, untouched bottle of commercial THF-BH₃, stored carefully in a glovebox at -40°C and only opened in an Argon-filled glovebox; one can be ascribed to B₂H₆.

THF.BH₃ 1-*d*₃ (freshly prepared in THF) A solution of BH_3 ·THF in THF was prepared according to the procedure of Brown (*Inorganic Chemistry*, 2000, **39**, 1795) and exposed to D_2 under the same reaction conditions as commercial material. ¹¹B NMR analysis confirmed that only BH_3 was present in the starting material; ¹¹B{¹H} analysis showed that the quartet structure arose from coupling to protons.

Pinacolborane $2-d_1$ (with Ir, in CD₂Cl₂)


```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2013
```


Catecholborane 3-d₁ (with Ir, in CD₂Cl₂)

9-BBN 4-*d*₁ (in THF)

DMS.BH₃ 5 (in THF)

Morpholine-borane 6 (in THF)

Attempted deuteration of NaBH₄

