Electronic Supplementary Information

Functionalized arene-ruthenium(II) complexes: dangling vs. tethering side chain

Beatriz Lastra-Barreira,[§] Josefina Díez,[§] Pascale Crochet,^{*,§} Israel Fernández^{*,†}

[§] Laboratorio de Compuestos Organometálicos y Catálisis (Unidad

Asociada al CSIC), Departamento de Química Orgánica e Inorgánica -

IUQOEM, Universidad de Oviedo, C/ Julián Clavería 8, E-33006 Oviedo,

Spain.

[†] Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, E-28040 Madrid, Spain.

1. General methods

2. Preparation of [RuCl(η^6 : $\kappa^1(O)$ -C₆H₅CH₂CH₂CH₂OH)(PPh₃)][SbF₆] (5c[SbF₆]).

3. X-ray crystal structure determination of complexes 2[SbF₆]₂, 3[SbF₆] and 5a[SbF₆].

4. Behavior of precursors [RuCl₂(η^6 -C₆H₅XCH₂CH₂OH){P(OEt)₃}] (X = O or CH₂) in water (NMR data).

5. Relative energies of $[RuCl_2(\eta^6-C_6H_5-X-CH_2CH_2OH)\{P(OMe)\}]$ (X = O (1M), CH₂ (4M)) in function of the dihedral angle C_{ortho}-C_{ipso}-X-C_(CH₂).

6. Cartesian coordinates and total energies of model complexes 1M and 4M.

7. References

1. General methods. The manipulations were performed under an atmosphere of dry nitrogen using vacuum-line and standard Schlenk techniques. Solvents were dried by standard methods and distilled under nitrogen before use. All reagents were obtained from commercial suppliers with the exception of compounds [RuCl₂(η^6 : $\kappa^1(O)$ - $C_{6}H_{5}CH_{2}CH_{2}CH_{2}OH)$,^{1,2} [RuCl₂(η^{6} -C₆H₅OCH₂CH₂OH)(PR₃)] (PR₃ = P(OPh)₃ (1a), P(OEt)₃ (1b), PPh₃ (1c))³ and [RuCl₂(η^6 -C₆H₅CH₂CH₂CH₂OH)(PPh₃)] (4c),² which were prepared by following the method reported in the literature. The C, H elemental analyses were carried out with a Perkin-Elmer 2400 microanalyzer. Infrared spectra were recorded with a Perkin-Elmer 1720-XFT spectrometer. NMR spectra were performed with a Bruker DPX300 instrument at 300 MHz (¹H), 121.5 MHz (³¹P) or 75.4 MHz (¹³C) using SiMe₄ or 85% H₃PO₄ as standards. Cyclovoltammetric measurements were performed at 20°C with a "µAutolab typre III" apparatus equipped with a three-electrode system. Platinum disk electrode, spiral shaped platinum wire and silver wire were used as working-, counter- and reference-electrodes, respectively. CV experiments were carried out with CH₂Cl₂ solutions of the appropriate complex (0.5 x 10^{-3} M) and [NⁿBu₄][PF₆] (0.1 M) as electrolyte. Formal CV potentials (E^o) are referenced relative to potential of the ferrocinium/ferrocene couple ($E^{\circ} = 0.184 \text{ V}$) run under identical conditions ($E^{\circ} = E^{\circ}(complex^{+}/complex) - E^{\circ}([Cp_{2}Fe]^{+}/[Cp_{2}Fe])$). A scan rate of 0.5V/s has been employed.

2. Preparation of [RuCl(η^6 : $\kappa^1(O)$ -C₆H₅CH₂CH₂CH₂OH)(PPh₃)][SbF₆] (5c[SbF₆])

A solution of **4c** (0.100 g, 0.18 mmol) in 20 mL of dichloromethane was treated with $AgSbF_6$ (0.072 g, 0.21 mmol, dissolved in 1 mL of MeOH). After stirring 0.5 h at room temperature, the suspension was filtered on Kieselguhr, and the filtrate was evaporated

to dryness. The residue was washed 3 times with 10 mL of diethylether and the resultant yellow solid was dried in vacuum. Yield: 0.110 g (81 %). Anal. Calcd for $C_{27}H_{27}ClF_6OPRuSb$: C, 42.08; H, 3.53. Found: C, 41.78; H, 3.71. ³¹P{¹H} NMR, CDCl₃, δ : 28.3 (s). ¹H NMR, CDCl₃, δ : 7.78 - 7.36 (m, 15 H, PPh₃), 5.38 (d, 2 H, ³J_{HH} = 5.9, CH_{ortho}), 5.15 (apparent t, 2 H, ³J_{HH} \approx ³J_{HH} \approx 5.6, CH_{meta}), 4.55 (td, 1 H, ³J_{HH} = 5.4, ³J_{PH} = 2.1, CH_{para}), 3.80 (very broad s, CH₂OH), 2.82 (t, 2 H, ³J_{HH} = 7.2, PhCH₂), 1.98 (m, 2 H, CH₂CH₂OH), OH not observed. IR, v_{OH} = 3456 cm⁻¹. The spectroscopic data of compound **5c[SbF₆]** are very similar to those of the BF₄-salt reported previously.²

3. X-ray crystal structure determination of compounds 2[SbF₆]₂, 3[SbF₆] and 5a[SbF₆]. Single crystals suitable for X-ray diffraction analyses were obtained by slow diffusion of diethylether through saturated solutions of 2[SbF₆]₂, 3[SbF₆] or 5a[SbF₆] in acetone. Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publications Nos. CCDC 908513 $(2[SbF_6]_2)$, 908514 $(3[SbF_6])$, 908515 $(5a[SbF_6])$. Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. The most relevant crystal and refinement data are collected in Tables S1, S3 and S5. Diffraction data of compound 2[SbF₆]₂ were recorded on a Nonius KappaCCD single crystal diffractometer, using Mo-K α radiation (λ = 0.71073 Å). Images were collected at a 35 mm fixed crystaldetector distance, using the oscillation method, with 1° oscillation and 50 s exposure time per frame. Data collection strategy was calculated with the program Collect.⁴ Data reduction and cell refinement were performed with the programs HKL Denzo and Scalepack.⁵ A semi-empirical absorption correction was applied using the program SORTAV.⁶ For derivatives **3[SbF₆]** and **5a[SbF₆]**, data collection was performed on a Oxford Diffraction Xcalibur Nova single crystal diffractometer, using Cu-Ka radiation $(\lambda = 1.5418 \text{ Å})$. Images were collected at a 63 mm fixed crystal-detector distance, using the oscillation method, with 1° oscillation and variable exposure time per image (1.5-5 s for $3[SbF_6]$ and 2-15 s for $5a[SbF_6]$). Data collection strategy was calculated with the program CrysAlis^{Pro} CCD.⁷ Data reduction and cell refinement were performed with the program CrysAlis^{Pro} RED.⁷ An empirical absorption correction was applied using the SCALE3 ABSPACK algorithm as implemented in the program CrysAlis^{Pro} RED.⁷ In all cases, the software package WINGX⁸ was used for space group determination, structure solution and refinement. The structure of complex 2[SbF₆]₂ was solved by direct methods using SIR92.⁹ For $3[SbF_6]$ and $5a[SbF_6]$, the structures were solved by Patterson interpretation and phase expansion using DIRDIF.¹⁰ The crystal of **3[SbF₆]** and **5a**[**SbF**₆] contains, respectively, two diethylether and one acetone molecules of solvatation per formula unit. Isotropic least-squares refinement on F² using SHELXL97¹¹ was performed. During the final stages of the refinements, all the positional parameters and the anisotropic temperature factors of all the non-H atoms were refined. The hydrogen atoms were geometrically located riding on their parent atoms with isotropic displacement parameters set to 1.2 times the U_{eq} of the atoms to which they are attached (1.5 for methyl groups), (except H1O for **5a**[**SbF**₆], the coordinates of this hydrogen atom were found from different Fourier maps and included in a refinement with isotropic parameters). The function minimized was ([$\Sigma wF_0^2 - F_c^2$)/ $\Sigma w(F_0^2)$]^{1/2} where w = 1/[$\sigma^2(F_0^2) + (aP)^2 + bP$] (a and b values are collected in Tables S1, S3 and S5) with $\sigma(F_0^2)$ from counting statistics and P = (Max (F_0^2 , 0) + 2 F_c^2)/3. Atomic scattering factors were taken from the International Tables for X-Ray Crystallography.¹² Geometrical calculations were made with PARST.¹³ The crystallographic plots were made with PLATON.¹⁴

	Compound 2[SbF ₆] ₂
Empirical formula	$C_{52}H_{50}Cl_2F_{12}O_{10}P_2Ru_2Sb_2$
Formula weight	1641.4
Temperature (K)	150(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P 2 ₁ /c
Unit cell dimensions	
a (Å)	9.9387(3)
b (Å)	11.8480(4)
c (Å)	24.2871(7)
α (°)	90
β (°)	92.775(2)
γ (°)	90
Volume (Å ³)	2856.5(1)
Ζ	2
Calculated density (g.cm ⁻¹)	1.908
F(000)	1608
Crystal size (mm)	0.25 x 0.20 x 0.10
Theta range for data collected	1.91 to 25.36°
Reflections collected	18346
Independent reflections	5227 [R(int) = 0.037]
Completeness to theta max	100.0%
Data / restraints / parameters	5227 /0 / 370
Weight function (a, b)	0.0620, 0.0
Final R indices $[I > 2\sigma(I)]$	
$R_{1}^{[a]}$	0.0479
$\mathrm{w}R_2^{\mathrm{[b]}}$	0.1234
R indices (all data)	
$R_{1}^{[a]}$	0.0721
$\mathrm{w}R_2^{\mathrm{[b]}}$	0.1459
Largest diff. peak and hole	1.695 and -1.109 e.Å ³
^[a] $R_1 = \Sigma(F_o - F_c) / \Sigma F_o $. ^[b] $wR_2 = \{\Sigma [w(F_o^2 - F_o)] / \Sigma F_o \}$	$[\Gamma_{\rm c}^{2})^{2}]/\Sigma[w(F_{\rm o}^{2})^{2}]\}^{\frac{1}{2}}.$

Table S1. Crystal data and structure refinement details for $2[SbF_6]_2$.

Bond lenghts		Bond angles	
Ru(1)-Cl(1)	2.429(1)	Cl(1)-Ru(1)-Cl(1a)	79.91(5)
Ru(1)-Cl(1a)	2.436(1)	Cl(1)-Ru(1)-P(1)	88.75(5)
Ru(1)-P(1)	2.284(2)	Cl(1a)-Ru(1)-P(1)	92.93(5)
Ru(1)-C*	1.7488(4)	Cl(1)-Ru(1)-C*	128.66(4)
C(4)-O(1)	1.327(7)	P(1)-Ru(1)-C*	127.56(4)
O(1)-C(7)	1.451(8)	Cl(1a)-Ru(1)-C*	124.93(4)
C(8)-O(2)	1.421(9)	Ru(1)-Cl(1)-Ru(1a)	100.09(5)
Ru(1)-C(1)	2.229(6)	C(4)-O(1)-C(7)	119.3(5)
Ru(1)-C(2)	2.183(5)		
Ru(1)-C(3)	2.214(5)	Torsion angles	
Ru(1)-C(4)	2.340(6)	C(3)-C(4)-O(1)-C(7)	-0.6(8)
Ru(1)-C(5)	2.302(6)	$P(1)-Ru(1)-C^*-C(4)$	131.3
Ru(1)-C(6)	2.228(6)		
C*: centroid of the are	ne ring $(C(1), C(2))$	C(3) $C(4)$ $C(5)$ and $C(4)$	6) carbon atoms)

Table S2. Selected bond lengths ((\AA) and angles (°) for $2[\mathbf{SbF}_6]_2$.
-----------------------------------	---

*: centroid of the arene ring (C(1), C(2), C(3), C(4), C(5)) and C(6) carbon atoms). C

	Compound 3 [SbF ₆]	
Empirical formula	$C_{52}H_{50}Cl_3F_6O_4P_2Ru_2Sb\cdot 2OC_4H_{10}$	
Formula weight	1493.34	
Temperature (K)	100(2)	
Wavelength (Å)	1.5418	
Crystal system	Monoclinic	
Space group	C 2/c	
Unit cell dimensions		
a (Å)	31.342(1)	
b (Å)	14.4711(7)	
c (Å)	15.0960(5)	
α (°)	90	
β (°)	114.850(4)	
γ (°)	90	
Volume (Å ³)	6213.0(4)	
Ζ	4	
Calculated density (g.cm ⁻¹)	1.597	
F(000)	3008	
Crystal size (mm)	0.316 x 0.085 x 0.037	
Theta range for data collected	3.11 to 66.98°	
Reflections collected	17101	
Independent reflections	5479 [R(int) = 0.0401]	
Completeness to theta max	99.2%	
Data / restraints / parameters	5479 /0 / 341	
Weight function (a, b)	0.0805, 0	
Final R indices $[I > 2\sigma(I)]$		
$R_{1}^{[a]}$	0.0423	
$\mathrm{w}R_2^{\mathrm{[b]}}$	0.1165	
R indices (all data)		
$R_{1}^{[a]}$	0.0526	
$\mathrm{w}R_2^{\mathrm{[b]}}$	0.1206	
Largest diff. peak and hole	1.885 and -2.202 e.Å ³	
^[a] $R_1 = \Sigma(F_o - F_c) / \Sigma F_o $. ^[b] $wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\}^{\frac{1}{2}}$.		

Table S3. Crystal data and structure refinement details for 3[SbF₆].

Bond lenght		Bond angles	
Ru(1)-Cl(1)	2.4271(8)	Cl(2)-Ru(1)-Cl(1)	91.45(3)
Ru(1)-Cl(2)	2.414(1)	Cl(1)-Ru(1)-P(1)	86.80(4)
Ru(1)-P(1)	2.341(1)	Cl(2)-Ru(1)-P(1)	86.28(4)
Ru(1)-C*	1.722(3)	Cl(1)-Ru(1)-C*	124.82(2)
C(4)-O(1)	1.341(8)	Cl(2)-Ru(1)-C*	124.38(3)
O(1)-C(7)	1.429(9)	P(1)-Ru(1)-C*	130.53(3)
C(8)-O(2)	1.414(9)	Ru(1)-Cl(1)-Ru(1a)	117.59(6)
Ru(1)-C(1)	2.215(5)	C(4)-O(1)-C(7)	119.6(6)
Ru(1)-C(2)	2.164(4)		
Ru(1)-C(3)	2.174(5)	Torsion angles	
Ru(1)-C(4)	2.304(5)	C(3)-C(4)-O(1)-C(7)	4.6(9)
Ru(1)-C(5)	2.267(5)	$P(1)-Ru(1)-C^*-C(4)$	139.9
Ru(1)-C(6)	2.184(4)		
C*: centroid of the a	rene ring $(C(1), C(2))$, C(3), C(4), C(5) and C(6) carbon atoms).

Table S4. Selected bond lengths (Å) and angles (°) for $3[SbF_6]$.

	Compound 5a[SbF ₆]	
Empirical formula	$C_{28}H_{23}ClF_6O_4PRuSb\cdot OC_2H_{10}$	
Formula weight	876.80	
Temperature (K)	293(2)	
Wavelength (Å)	1.5418	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions		
a (Å)	11.7393(1)	
b (Å)	19.5779(2)	
c (Å)	15.0206(1)	
α (°)	90	
β (°)	99.505(1)	
γ (°)	90	
Volume (Å ³)	3404.80(5)	
Ζ	4	
Calculated density (g.cm ⁻¹)	1.710	
F(000)	1736	
Crystal size (mm)	0.167 x 0.127 x 0.087	
Theta range for data collected	3.74 to 73.98°	
Reflections collected	23902	
Independent reflections	6878 [R(int) = 0.0218]	
Completeness to theta max	99.5 %	
Data / restraints / parameters	6878 / 11 / 392	
Weight function (a, b)	0.099, 7.3304	
Final R indices $[I > 2\sigma(I)]$		
$R_{1}^{[a]}$	0.0583	
$\mathrm{w}{R_2}^{\mathrm{[b]}}$	0.1673	
R indices (all data)		
$R_1^{[a]}$	0.0607	
$\mathrm{w}R_2^{[\mathrm{b}]}$	0.1701	
Largest diff. peak and hole	2.422 and -1.824 e.Å ⁻³	
^[a] $R_1 = \Sigma(F_o - F_c) / \Sigma F_o $. ^[b] $wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\}^{\frac{1}{2}}$.		

Table S5. Crystal data and structure refinement details for 5a[SbF	`6] .
--	--------------

Bond lenght		Bond angles	
Ru(1)-Cl(1)	2.384(2)	Cl(1)-Ru(1)-O(1)	84.0(2)
Ru(1)-O(1)	2.145(5)	Cl(1)-Ru(1)-P(1)	84.41(5)
Ru(1)-P(1)	2.297(1)	O(1)-Ru(1)-P(1)	88.3(2)
Ru(1)-C*	1.7006(4)	Cl(1)-Ru(1)-C*	127.95(5)
Ru(1)-C(1)	2.188(7)	O(1)-Ru(1)-C*	126.5(1)
Ru(1)-C(2)	2.187(7)	P(1)-Ru(1)-C*	130.45(4)
Ru(1)-C(3)	2.213(6)		
Ru(1)-C(4)	2.227(7)		
Ru(1)-C(5)	2.209(7)		
Ru(1)-C(6)	2.182(6)		
C*: centroid of the arene ring (C(1), C(2), C(3), C(4), C(5) and C(6) carbon atoms).			

Table S6. Selected bond lengths (\AA) and angles $(^{\circ})$ for $5a[SbF_6]$.

4. Behavior of precursors [RuCl₂(η^6 -C₆H₅XCH₂CH₂OH){P(OEt)₃}] (X = O or CH₂)

in water.

Aqueous solutions of $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}]$ (**1b**) and $[RuCl_2(\eta^6-C_6H_5CH_2CH_2CH_2OH)\{P(OEt)_3\}]$ (**4b**) were prepared with 20 mg of **1b** or **4b** in 0.6 mL of D₂O, and ¹H and ³¹P{¹H} spectra were recorded on a Bruker DPX300 apparatus.

³¹P{¹H} NMR spectra:

¹H (and ¹³C{¹H}) NMR data are in complete agreement with the presence of both [RuCl₂(η^6 -C₆H₅OCH₂CH₂OH){P(OEt)₃}] and [RuCl(D₂O)(η^6 -C₆H₅OCH₂CH₂OH){P(OEt)₃}][Cl] in the sample (a) and with the presence of [RuCl₂(η^6 - $C_{6}H_{5}CH_{2}CH_{2}CH_{2}OH)\{P(OEt)_{3}\}], [RuCl(D_{2}O)(\eta^{6}-C_{6}H_{5}CH_{2}CH_{2}OH)\{P(OEt)_{3}\}][Cl] \text{ and} \\ [RuCl(\eta^{6}:\kappa^{l}(O)-C_{6}H_{5}CH_{2}CH_{2}CH_{2}OH)\{P(OEt)_{3}\}][Cl] \text{ in the sample (b). Data are the following:}$

Spectroscopic data of $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2CH_2OH)\{P(OEt)_3\}]$.

³¹P{¹H} NMR, D₂O, δ: 118.0 (s).

¹H NMR, D₂O, & 6.12 (broad s, 2 H, CH_{meta}), 5.58 (broad s, 2 H, CH_{ortho}), 5.22 (broad

s, 1 H, CH_{para}), 4.35 (broad s, 2 H, OCCH₂), 4.15 (m, 6 H, CH₂CH₃), 4.00 (broad s, 2 H,

OCH₂), 1.35 (t, 9 H, ${}^{3}J_{\text{HH}} = 6.2$, CH₂CH₃), the OH signal was not observed.

Spectroscopic data of $[RuCl(D_2O)(\eta^6-C_6H_5OCH_2CH_2CH_2OH)\{P(OEt)_3\}][Cl]$.

³¹P{¹H} NMR, D₂O, δ: 117.4 (s).

¹H NMR, D₂O, δ : 6.12 (m, 1 H, CH_{meta}), 6.00 (m, 1 H, CH_{meta}), 5.84 (d, 1 H, ³J_{HH} = 6.4, CH_{ortho}), 5.27 (dd, 1 H, ³J_{HH} = 6.4, ⁴J_{PH} = 2.0, CH_{ortho}), 5.23 (t, 1 H, ³J_{HH} = 5.2, CH_{para}), 4.26 (t, 2 H, ³J_{HH} = 3.6, OCH₂), 4.07 (dq, 6 H, ³J_{PH} = 14.4, ³J_{HH} = 6.8, CH₂CH₃), 3.90 (m, 2 H, OCH₂), 1.24 (dt, 9 H, ⁴J_{PH} = ³J_{HH} = 6.8, CH₂CH₃), the OH signal was not observed.

Spectroscopic data of $[RuCl_2(\eta^6-C_6H_5CH_2CH_2CH_2CH_2OH)\{P(OEt)_3\}].$

³¹P{¹H} NMR, D₂O, *δ*: 115.3 (s).

¹H NMR, D₂O, δ : 6.12 (m, 2 H, CH_{meta}), 6.01 (d, 2 H, ³J_{HH} = 5.7, CH_{ortho}), 5.85 (m, 1 H, CH_{para}), 4.35 (dq, 6 H, ³J_{PH} = 7.1, ³J_{HH} = 7.1, POCH₂), 3.92 (t, 2 H, ³J_{HH} = 6.5, CH₂OH), 2.76 (t, 2 H, ³J_{HH} = 7.5, PhCH₂), 2.16 (m, 2 H, CH₂), 1.55 (t, 3 H, ³J_{HH} = 7.1, CH₃), the OH signal was not observed.

¹³C{¹H} NMR, D₂O, δ : 113.7 (d, ²*J*_{PC} = 7.1, C_{ipso}), 89.7 (d, ²*J*_{PC} = 7.0, CH_{meta} or CH_{ortho}), 89.4 (s, CH_{meta} or CH_{ortho}), 81.6 (s, CH_{para}), 63.5 (d, ²*J*_{PC} = 6.0, POCH₂), 60.8 (s, CH₂OH), 30.9 and 29.1 (both s, PhCH₂CH₂), 15.3 (d, ³*J*_{PC} = 6.3, CH₃).

Spectroscopic data of $[RuCl(D_2O)(\eta^6-C_6H_5CH_2CH_2CH_2CH_2OH)\{P(OEt)_3\}][Cl]$.

³¹P{¹H} NMR, D₂O, δ: 114.8 (s).

¹H NMR, D₂O, & 5.87-5.76 (m, 3 H, CH_{arene}), 5.63 (m, 1 H, CH_{arene}), 5.59 (m, 1 H, CH_{arene}), 4.35 (m, 6 H, POCH₂), 3.62 (t, 2 H, ${}^{3}J_{HH} = 6.3$, CH₂), 2.49 (m, 2 H, CH₂), 1.86 (m, 2 H, CH₂), 1.55 (m, 3 H, CH₃), the OH signal was not observed.

¹³C{¹H} NMR, D₂O, δ : 114.1 (d, ²*J*_{PC} = 7.1, C_{ipso}), 91.3 (d, ²*J*_{PC} = 9.1, CH meta or CH_{ortho}), 89.2 and 87.0 (s, CH_{meta} or CH_{ortho}), 84.8 (d, ²*J*_{PC} = 5.0, CH_{meta} or CH_{ortho}), 80.9 (s, CH_{para}), 63.8 (d, ²*J*_{PC} = 6.2, POCH₂), 60.7 (s, CH₂OH), 30.8 and 29.1 (both s, PhCH₂CH₂), 15.3 (d, ³*J*_{PC} = 6.3, CH₃).

Spectroscopic data of $[RuCl(\eta^6:\kappa^1(O)-C_6H_5OCH_2CH_2CH_2OH)\{P(OEt)_3\}][Cl].$

³¹P{¹H} NMR, D₂O, *δ*: 114.7 (s).

¹H NMR, D₂O, δ: 6.43 (m, 1 H, CH_{arene}), 6.28 (m, 1 H, CH_{arene}), 5.94 (m, 1 H, CH_{arene}), 5.50 (m, 1 H, CH_{arene}), 5.19 (m, 1 H, CH_{arene}), 4.35 (m, 6 H, POCH₂), 4.10 (m, 1 H, CH₂), 3.51 (m, 1 H, CH₂), 3.12 (m, 1 H, CH₂), 2.66 (m, 1 H, CH₂), 2.39 (m, 1 H, CH₂), 1.86 (m, 1 H, CH₂), 1.61 (m, 3 H, CH₃), the OH signal was not observed.

¹³C{¹H} NMR, D₂O, δ : 103.3 (d, ²*J*_{PC} = 10.1, CH_{ortho} or CH_{meta}), 84.8 (d, ²*J*_{PC} = 17.1, CH_{ortho} or CH_{meta}), 86.7 and 82.1 (both s, CH_{meta}), 73.3 (CH_{para}), 64.0 (s, CH₂OH), 28.6 and 27.1 (both s, Ph*C*H₂*C*H₂), 15.3 (d, ³*J*_{PC} = 6.3, CH₃).

Signal attributions have been made with the help of ¹H-¹H and ¹H-¹³C correlations NMR spectroscopy and on the basis of the following observations:

(a) When NaCl was added to aqueous solution of **1b**, only the signals corresponding to the dichloro-complex [RuCl₂(η^6 -C₆H₅OCH₂CH₂OH){P(OEt)₃}] were observed. In particular, under these conditions the ³¹P{¹H} NMR spectra showed only one singlet resonance at 117.9 ppm.

(b) When NaCl was added to aqueous solution of **4b**, only the signals corresponding to the dichloro-complex [RuCl₂(η^6 -C₆H₅CH₂CH₂CH₂OH){P(OEt)₃}] were observed. In particular, under these conditions the ³¹P{¹H} NMR spectra showed only one singlet resonance at 115.3 ppm.

(c) NMR spectra of aqueous solution of $[RuCl_2(\eta^6:\kappa^1(O)-C_6H_5CH_2CH_2CH_2OH)\{P(OEt)_3\}][SbF_6]$ showed signals corresponding to the tethered cation $[RuCl_2(\eta^6:\kappa^1(O)-C_6H_5CH_2CH_2CH_2OH)\{P(OEt)_3\}]^+$ and the aquo-derivative $[RuCl(D_2O)(\eta^6-C_6H_5CH_2CH_2CH_2OH)\{P(OEt)_3\}]^+$.

5. Relative energies of $[RuCl_2(\eta^6-C_6H_5-X-CH_2CH_2OH)\{P(OMe)\}]$ (X = O, CH₂) in function of the dihedral angle C_{ortho}-C_{ipso}-X-C_(CH₂).

Table S7. Relative energies, C_{ipso} -O bond distances and C_{ipso} -O bond order as a function of the θ values.^a

θ	$E_{\rm rel}$ / kcal mol ⁻¹	r (C-O) / Å	C-O Wiberg Index
0	0.0	1.337	1.093
9.2	-0.2	1.337	1.092
15	-0.1	1.337	1.091
30	1.0	1.340	1.082
45	2.8	1.344	1.066
60	3.5	1.349	1.043
90	4.3	1.358	1.001
All data have been computed at the BP86/def2-SVP level. ^a $\theta = C_{ortho}$ -C _{ipso} -O-C dihedral angle.			

Table S8. Relative energies, C_{ipso} -CH₂ bond distances and C_{ipso} -CH₂ bond order as a function of the θ values.^a

θ	$E_{\rm rel}$ / kcal mol ⁻¹	r (C-CH ₂) / Å	C-CH ₂ Wiberg Index
0	0.0	1.513	1.027
15	0.2	1.512	1.028
30	0.8	1.512	1.028
45	1.5	1.512	1.027
60	1.2	1.515	1.022
75	0.5	1.515	1.014
90	0.4	1.515	1.014
All data have been computed at the BP86/def2-SVP level. ^a $\theta = C_{ortho}$ -C _{ipso} -CH ₂ -C dihedral angle.			

6. Cartesian coordinates and total energies of model complexes 1M and 4M.

Cartesian coordinates (in Å) and total energies (in a. u., ZPVE included) of all the stationary points discussed in the text. All calculations have been performed at the BP86/def2-SVP level of theory.

С	1.560215000	-2.066960000	0.331937000
Н	2.071924000	-2.376901000	1.252871000
С	0.350509000	-2.699613000	-0.098510000
Н	-0.075647000	-3.504166000	0.519819000
С	-0.329561000	-2.290434000	-1.283554000
Н	-1.235511000	-2.810043000	-1.622695000
С	0.136512000	-1.101652000	-1.943998000
Н	-0.423339000	-0.688341000	-2.797576000
С	1.329263000	-0.424680000	-1.511369000
Н	1.657627000	0.481016000	-2.036508000
С	2.087195000	-0.963075000	-0.407558000
С	3.658275000	0.859828000	-0.410917000
Н	2.836468000	1.591304000	-0.246024000
Н	3.894675000	0.800594000	-1.500195000
С	4.895244000	1.262237000	0.383477000
Н	5.116951000	2.330216000	0.130867000
Н	4.641748000	1.232162000	1.463594000
С	-0.947390000	2.744697000	-1.850188000
Н	-0.061025000	2.613102000	-1.192440000
Н	-1.521459000	3.626614000	-1.498153000
Н	-0.623142000	2.910238000	-2.896936000
С	-2.765000000	1.925873000	1.890144000

1M: E=	-2162.	471666
---------------	--------	--------

Н	-1.855371000	1.670317000	2.468242000
Н	-3.555881000	1.174255000	2.088935000
Н	-3.128703000	2.934108000	2.169754000
С	-3.675397000	-1.386267000	-0.724295000
Н	-3.477471000	-1.878735000	-1.701153000
Н	-4.755718000	-1.485152000	-0.497296000
Н	-3.086004000	-1.864444000	0.085485000
Cl	0.618502000	1.356790000	1.342826000
Cl	-1.530388000	-1.195662000	2.017853000
0	3.221879000	-0.431933000	0.058986000
0	6.008573000	0.409007000	0.203383000
Н	6.312780000	0.504592000	-0.718844000
0	-1.783300000	1.573894000	-1.849300000
0	-3.400809000	0.016905000	-0.807243000
0	-2.466110000	1.995124000	0.483994000
Р	-1.977257000	0.742607000	-0.438299000
Ru	-0.182115000	-0.563698000	0.113673000
4M:	E= -2126.574145		
С	1.443965000	-2.140292000	0.294822000
Н	1.878680000	-2.533466000	1.225571000
С	0.217162000	-2.698798000	-0.207439000
Н	-0.269543000	-3.510964000	0.353438000
С	-0.390140000	-2.202206000	-1.395870000
Н	-1.309341000	-2.656970000	-1.789494000
С	0.166927000	-1.018840000	-1.993369000
Н	-0.342419000	-0.542486000	-2.845445000
С	1.364296000	-0.427983000	-1.474775000
Н	1.753362000	0.488732000	-1.936918000
С	2.033710000	-1.006184000	-0.333736000
С	3.831576000	0.872404000	-0.385440000
Н	3.095493000	1.700076000	-0.289634000
Н	3.991788000	0.703894000	-1.476787000
С	5.163578000	1.308604000	0.241992000
Н	5.500878000	2.265391000	-0.227288000
	0.00000000		

0	5.105570000	1.300004000	0.241992000
Н	5.500878000	2.265391000	-0.227288000
Н	5.015769000	1.519149000	1.323092000
С	-1.003369000	2.748895000	-1.850175000
Н	-0.090522000	2.603391000	-1.233165000
Н	-1.560993000	3.624403000	-1.458432000
Н	-0.722860000	2.931895000	-2.906290000
С	-2.789333000	1.916677000	1.911867000
Н	-1.872717000	1.666443000	2.481112000
Н	-3.574217000	1.160693000	2.117958000
Н	-3.156090000	2.922869000	2.194744000
С	-3.727369000	-1.389598000	-0.671213000
Н	-3.576335000	-1.901543000	-1.646385000
Н	-4.799079000	-1.468717000	-0.399333000
Н	-3.114562000	-1.864700000	0.122591000
Cl	0.577840000	1.365989000	1.325621000
Cl	-1.525506000	-1.192144000	2.017828000
0	6.172480000	0.305237000	0.179233000
Н	6.386803000	0.169142000	-0.763389000
0	-1.841778000	1.579078000	-1.837465000
0	-3.434745000	0.006959000	-0.792829000
0	-2.503616000	1.987625000	0.503287000
Р	-2.015830000	0.742763000	-0.429212000
Ru	-0.196237000	-0.556927000	0.095853000
С	3.272991000	-0.391049000	0.276941000
Н	4.070908000	-1.166509000	0.296997000
Н	3.034495000	-0.163741000	1.339629000

7. References

- (1) Although this compound has been initially described as the dimer [{RuCl(μ -Cl)(η^6 -C₆H₅CH₂CH₂CH₂OH)}₂], its monomeric structure, at least in solid state, has been recently evidenced. See, Čubrilo, J.; Hartenbach, I.; Schleid, T.; Winter, R. F. Z. Anorg. Allg. Chem. **2006**, 632, 400.
- (2) Miyaki, Y.; Onishi, T.; Kurosawa, H. *Inorg. Chim. Acta* **2000**, *300-302*, 369.
- (3) Lastra-Barreira, B.; Díez, J.; Crochet, P. Green. Chem. 2009, 11, 1681.
- (4) *Collect* data collection software, Bruker AXS, Delft, The Netherlands, **2004**.
- (5) Otwinowski, Z.; Minor, W. *Methods Enzymol.* **1997**, *276*, 307.
- (6) SORTAV. Blessing, R. H. Acta Cryst. **1995**, A51, 33.
- (7) CrysAlis^{Pro} CCD & CrysAlis^{Pro} RED Oxford Diffraction Ltd.: Oxford, UK, 2008.
- (8) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.
- (9) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.;
 Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.
- Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; García-Granda,
 S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. *The DIRDIF Program System*;
 Technical Report of the Crystallographic Laboratory; University of Nijmegen:
 Nijmegen, The Netherlands, **1999**.
- (11) Sheldrick, G. M. SHELXL97: Program for the Refinement of Crystal Structures;
 University of Göttingen: Göttingen, Germany, 1997.
- (12) International Tables for X-Ray Crystallography; Kynoch Press; Birminghan,
 UK, 1974; Vol. IV (present distributor: Kluwer Academic Publishers;
 Dordrecht, The Netherlands).
- (13) PARST. Nardelli, M. Comput. Chem. 1983, 7, 95.

(14) Spek, A. L. PLATON: A Multipurpose Crystallographic Tool; University of

Utrecht, The Netherlands, 2007.