

Supplementary Information

The reagents used, $\text{FeCl}_2 \cdot 4\text{H}_2\text{O}$, $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$, 2-thiopheneboronic acid, cyclohexanedion-1,2-dioxime (nioxime, H_2Nx), triethylamine, sorbents and solvents were obtained commercially (Acros).

Analytical data (C, H, N content) were obtained with a Carlo Erba model 1106 microanalyzer.

The MALDI-TOF mass spectra were recorded in both the positive and negative spectral regions using a MALDI-TOF-MS Bruker Autoflex mass spectrometer in reflecto-mol mode. The ionization was induced by UV-laser with wavelength 336 nm. The sample was applied to a nickel plate, 2,5-dihydroxybenzoic acid was used as a matrix. The accuracy of measurements was 0.1%.

The IR spectra of the solid samples (KBr tablets) in the range 400 – 4000 cm^{-1} were recorded with a IR200 Thermo Nicolet FT-spectrophotometer.

The UV-vis spectra of the solutions in dichloromethane were recorded in the range 230 – 800 nm with a Lambda 9 Perkin Elmer spectrophotometer. The individual Gaussian components of these spectra were calculated using the SPECTRA program.

The ^1H and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of the complexes obtained were recorded from their CD_2Cl_2 solutions using a Bruker Avance 400 FT-spectrometer.

X-band EPR spectra were acquired on a Bruker Elexsys E580 X/Q-band EPR spectrometer equipped with ER 4118X-MD5W resonator and Oxford Instruments cryogenic system. The glassy samples for the EPR experiments were obtained from 1 mM solutions of the clathrochelate complexes in the toluene:dichloromethane (1:1, v/v) mixture. The EPR spectra were registered using the following parameters: microwave frequency 9.4 GHz, microwave power in the range 0.2 – 0.002 mW, sweep width 1800 G, modulation frequency 100 kHz, modulation amplitude 1 G, conversion time and time constant in the range 20.48 – 81.92 ms, resolution 2048 points.

CoNx₃(BThioph)₂. Anal. calc. for C₂₆H₃₀B₂CoN₆O₆S₂ (%): C, 46.78; H, 4.50; N, 12.59. Found (%): C, 46.57; H, 4.39; N, 12.43. ¹H NMR (CD₂Cl₂): δ (ppm) – 33.7 (br s, 12H, α -CH₂), 5.16 (s, 12H, β -CH₂), 6.20 (br s, 2H, thiophene-3H), 6.57 (s, 2H, thiophene-4H), 6.93 (s, 2H, thiophene-5H). ¹³C{¹H} NMR (CD₂Cl₂): δ (ppm) 22.4 (s, β -CH₂), 129.0, 129.9, 132.0 (all s, thiophene). MS (MALDI-TOF): *m/z* (positive range) 667 [M]⁺; (negative range) – 667 [M]⁻. IR (cm⁻¹, KBr): 930, 1035, 1061, 1164 ν (N – O), 1225m ν (B – O), 1579 ν (C=N). UV-Vis (CH₂Cl₂): λ_{max} ($\varepsilon \times 10^{-3}$, mol⁻¹ L cm⁻¹): 238 (19), 265 (11), 292 (6.4), 360 (4.9), 460 (2.0), 480 (3.1).

FeNx₃(BThioph)₂. Anal. calc. for C₂₆H₃₀B₂FeN₆O₆S₂ (%): C, 46.78; H, 4.50; N, 12.59. Found (%): C, 46.66; H, 4.36; N, 12.39. MS (MALDI-TOF): *m/z* (positive range) 664 [M]⁺; (negative range) – 664 [M]⁻. ¹H NMR (CD₂Cl₂): δ (ppm) 1.68 (s, 12H, β -CH₂), 2.79 (s, 12H, α -CH₂), 7.00 (m, 2H, thiophene-3H), 7.18 (m, 2H, thiophene-4H), 7.30 (m, 2H, thiophene-5H). ¹³C{¹H} NMR (CD₂Cl₂): δ (ppm) 23.5 (s, β -CH₂), 28.2 (s, α -CH₂), 128.8, 129.2, 131.9 (all s, thiophene), 154.2 (s, C=N). IR (cm⁻¹, KBr): 932, 1033, 1058, 1163 ν (N – O), 1224m ν (B – O), 1582 ν (C=N). UV-Vis (CH₂Cl₂): λ_{max} ($\varepsilon \times 10^{-3}$, mol⁻¹ L cm⁻¹): 233 (23), 252 (11), 283 (5.7), 297 (4.4), 348 (1.9), 441 (6.5), 452 (11).

Cyclic voltammetry (CV) experiments were carried out in acetonitrile solutions with 0.1M ((*n*-C₄H₉)₄N)BF₄ as a supporting electrolyte using a model Parstat 2273 (Prinston Applied Research, USA) potentiostat with a conventional one-compartment three-electrode cell (10 ml of solution). Glass carbon (GC) electrode with an active surface area of 0.125 cm² was used as a working electrode. The electrode was thoroughly polished and rinsed before measurements. A platinum counter electrode and a standard Ag/AgCl/KCl_{aq} reference electrode were applied. The measurements were performed at scan rates from 50 to 2000 mV s⁻¹. All the solutions were thoroughly deaerated by passing argon through them before the CV experiments and above them during the measurements.

Controlled-potential electrolysis. 25 mM HClO_4 acetonitrile solution with 0.1 M $((n\text{-C}_4\text{H}_9)_4\text{N})\text{BF}_4$ as a supporting electrolyte was electrolyzed for 60 min in the presence of the complexes $\text{CoNx}_3(\text{BThioph})_2$ and $\text{FeNx}_3(\text{BThioph})_2$ ($c = 1 \text{ mM}$) at -700 and -1350 mV , respectively. 50 mM $((\text{C}_2\text{H}_5)_3\text{N})\text{Cl}$ acetonitrile solution with 0.1 M $((n\text{-C}_4\text{H}_9)_4\text{N})\text{BF}_4$ as a supporting electrolyte was electrolyzed for 60 min in the presence of the complexes $\text{CoNx}_3(\text{BThioph})_2$ and $\text{FeNx}_3(\text{BThioph})_2$ ($c = 1 \text{ mM}$) at -700 and -1350 mV , respectively. The production of the molecular hydrogen was confirmed by gas chromatography analysis.

Hydrogen Detection. Gas chromatography analysis of gases evolved during the electrolysis was performed with a Varian 450 GC equipped with a pulsed discharge helium ionization detector D-4-I-VA38-R. Hydrogen production was quantitatively detected using a 30 m-in-length stainless steel column with inside diameter 250 μm at 120°C for the detector and at 80°C for the oven. The carrier gas was helium flowing at a rate of 40 ml min^{-1} . The injections ($250 \mu\text{L}$) were performed *via* a sampling loop. The retention time of gaseous H_2 was 2.48 min.

Kinetic studies. To estimate the k_{obs} values for the electrocatalytic process $2\text{H}^+/\text{H}_2$, we used an eq. 1 for the pseudo first-order reaction [S1 – S4]:

$$\frac{i_c}{i_p} = \frac{n}{0.4463} \sqrt{\frac{RTk_{\text{obs}}}{Fv}} \quad (1),$$

where i_c is the catalytic plateau current, i_p is the noncatalytic peak current (here taken from the reversible reduction peak assigned to the $\text{Co}^{2+/+}$ or $\text{Fe}^{2+/+}$ redox couple in acetonitrile), $T = 298.15 \text{ K}$, F is Faraday constant, and v is a scan rate.

To obtain the values of k_{obs} , we used the method developed in [S5]. A detailed study of a dependence of the catalytic current for the acetonitrile solutions of the complexes $\text{CoNx}_3(\text{BThioph})_2$ and $\text{FeNx}_3(\text{BThioph})_2$ *vs* scan rate was performed. A catalytic current is independent on scan rates exceed 1000 mV s^{-1} (Figs. SI3 – SI6). If we assume that two electrons are passed for each H_2 molecule produced ($n = 2$), and an acid concentration does not change significantly in the course of an

experiment, the eq. 2 can be transformed into the eq. 3 allowing to calculate the catalytic turnover frequency k_{obs} .

$$\frac{i_{\text{cat}}}{i_p} = \frac{n}{0.4463} \sqrt{\frac{RT(k[H^+])}{Fv}} \quad (2)$$

$$k_{\text{obs}} = v \cdot \left(\frac{\frac{i_{\text{cat}}}{i_p}}{0.72} \right)^2 \quad (3)$$

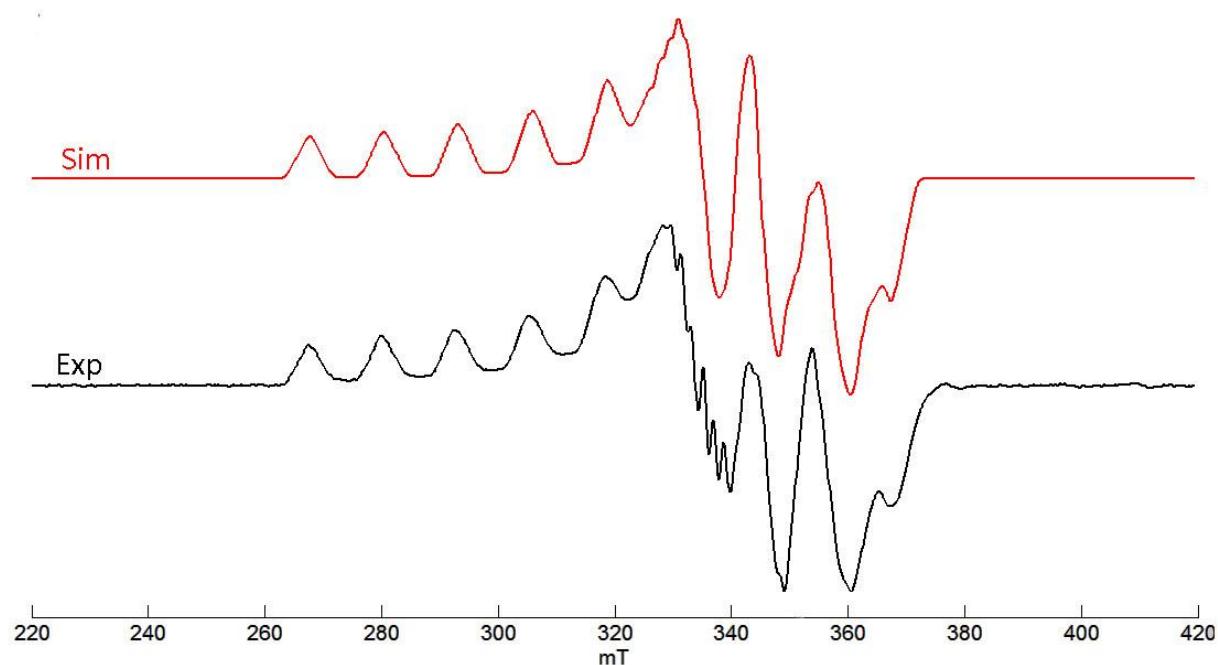
X-ray crystallography. The details of crystal data collection and refinement for the complexes $\text{CoNx}_3(\text{BThioph})_2 \cdot \text{CHCl}_3$ and $\text{FeNx}_3(\text{BThioph})_2 \cdot \text{CH}_2\text{Cl}_2$ complexes are listed in Table S1. Single-crystal X-ray diffraction experiments were carried out at 100(2) K with a Bruker Apex II CCD area detector (graphite monochromated Mo-K α radiation for the cobalt clathrochelate and Cu-K α radiation with microfocus tube with multilayer optics for the iron macrobicycle). Reflections intensities were corrected by a semi-empirical method using SADABS program [S6]. The structures were solved by the direct method and refined by full-matrix least squares against F^2 on all data using SHELXTL software [S7]. Nonhydrogen atoms were refined in anisotropic approximation except the disordered ones in the clathrochelate molecules of 2-thiopheneboron-capped macrobicycle, one of the two apical substituents is disordered (with the site occupancies equal to 0.7 : 0.3 and 0.8 : 0.2, respectively); both of these disordered 2-thiophene substituents are situated in the same plane. Positions of the hydrogen atoms were calculated and refined using the riding model with isotropic temperature factors $U_{\text{iso}} = 1.2U_{\text{eq}}(\text{C})$, where U_{eq} values are the equivalent isotropic parameters of parent atoms.

Supporting Information References

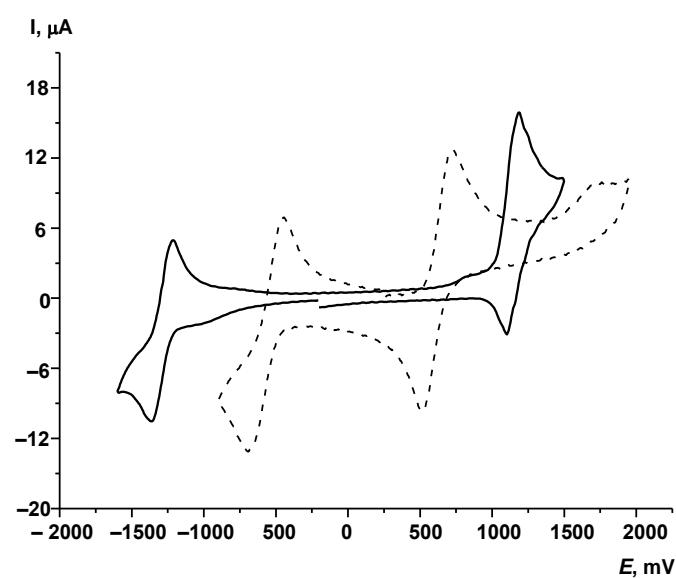
[S1] C.P. Andrieux, J.M. Dumas-Bouchiat, J.M. Saveant, *J. Electroanal. Chem.* 1980, 113, 1–18.

[S2] J.M. Saveant, E. Vianello, *Electrochim. Acta* 1965, 10, 905–920.

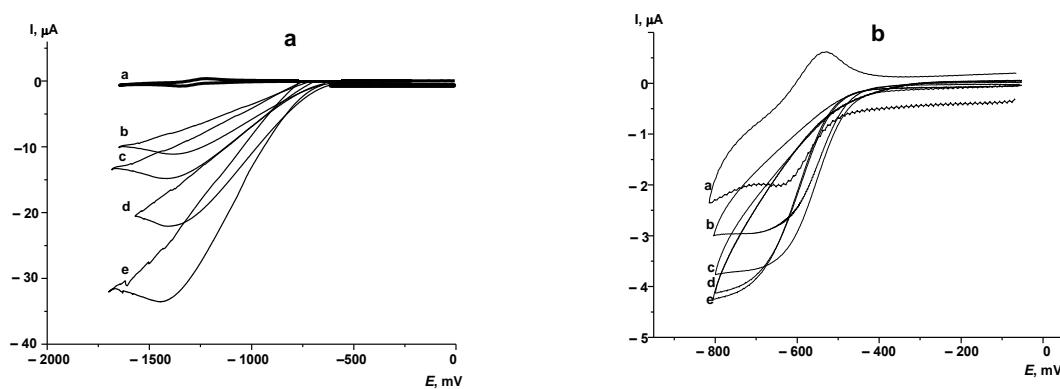
[S3] J.M. Saveant, E. Vianello, *Electrochim. Acta* 1967, 12, 629– 646.

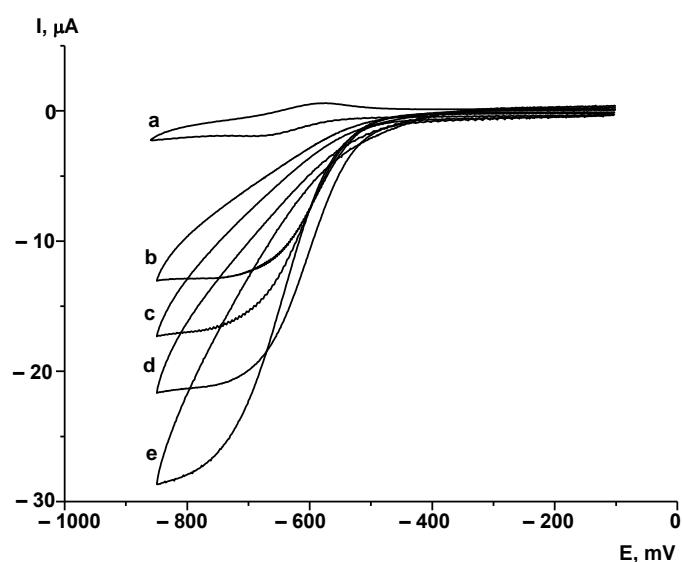

[S4] J.M. Saveant, *Chem. Rev.* 2008, 108, 2348–2378.

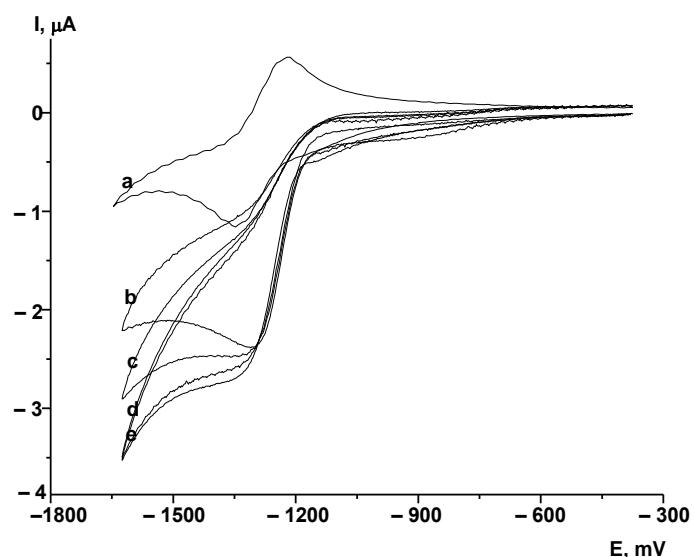
[S5] M.L. Helm, M.P. Stewart, R.M. Bullock, M.R. DuBois, D.L. DuBois, *Science* 2011, 333, 863–866.

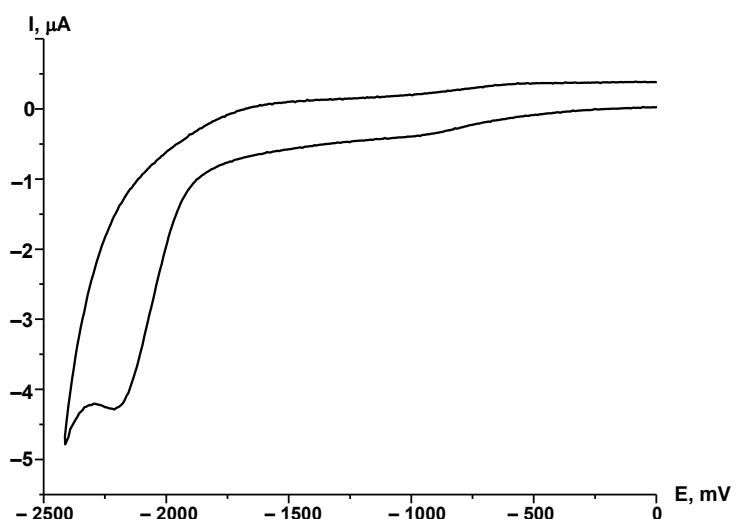

[S6] G.M. Sheldrick (1998). SADABS v.2.01, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA.

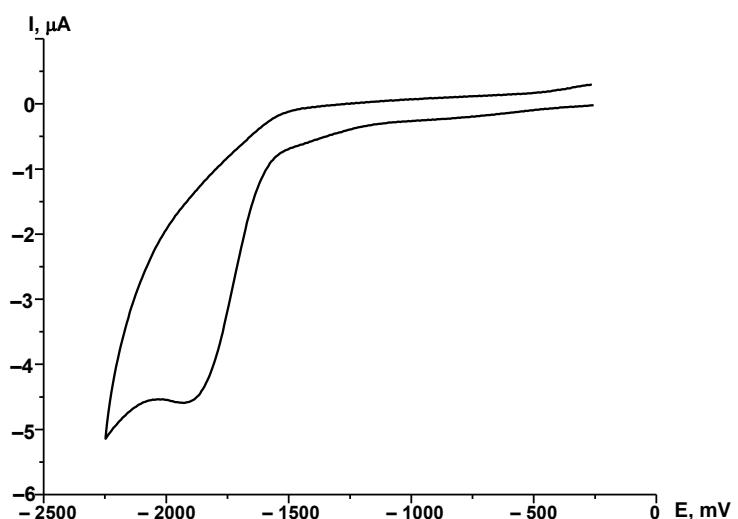
[S7] G.M. Sheldrick, *Acta Cryst. A* 64 (2008) 112.

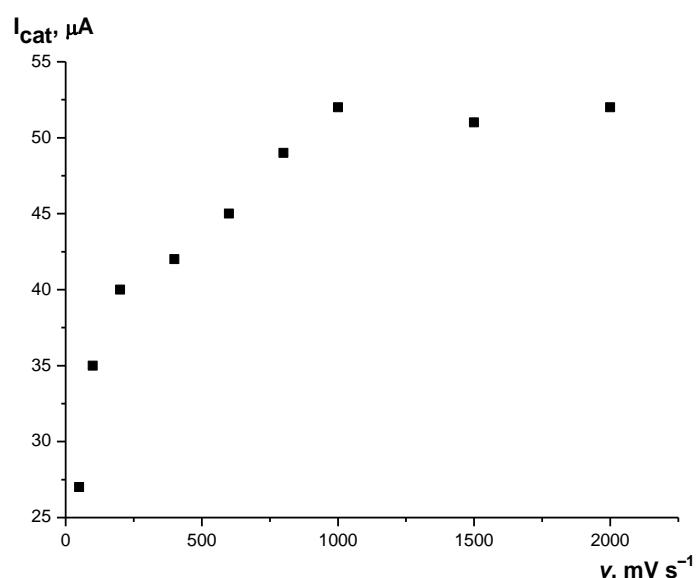

[S8] Y.Z. Voloshin, A.Y. Lebedev, V.V. Novikov, A.V. Dolganov, A.V. Vologzhanina, E.G. Lebed, A.A. Pavlov, Z.A. Starikova, M.I. Buzin, Y.N. Bubnov, *Inorg. Chim. Acta*, 2012, submitted, ICA-D-12-00696.

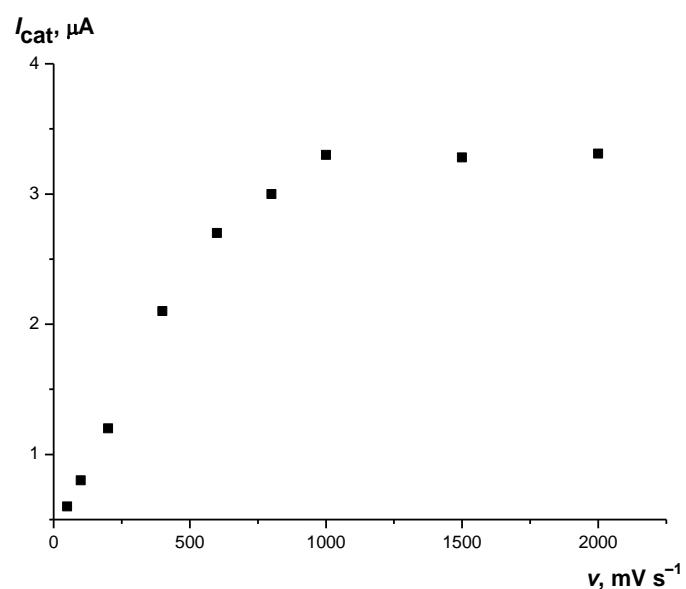

Fig. S1. The experimental and simulated EPR spectra of the clathrochelate $\text{CoNx}_3(\text{BThioph})_2$ at 30K. The simulation parameters are as follows: $g_{xx} = 1.950$, $g_{yy} = 2.090$, $g_{zz} = 2.215$, $A_{xx} = 50$, $A_{yy} = 23$, $A_{zz} = 395$ MHz.

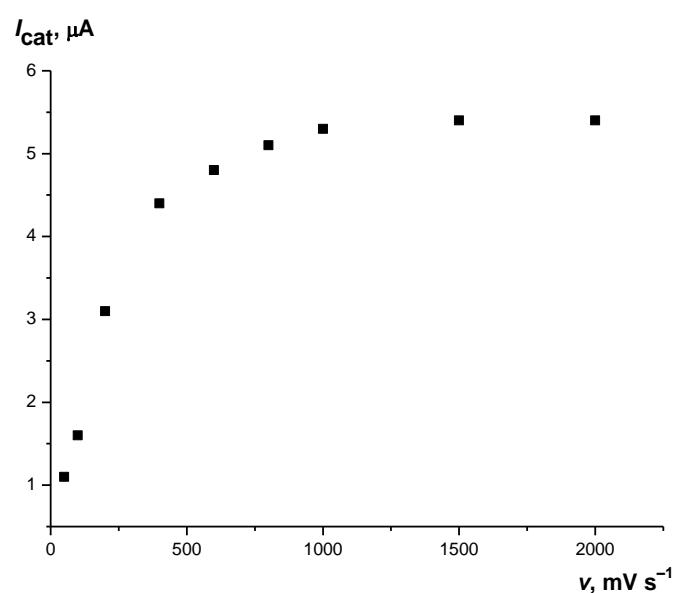

Fig. S2. CV for 3 mM acetonitrile solution of the clathrochelates $\text{FeNx}_3(\text{BTioph})_2$ (solid line) and $\text{CoNx}_3(\text{BTioph})_2$ (dashed line) at scan rate 200 mV s^{-1} on GC electrode.


Fig. S3. CVs of the clathrochelates $\text{FeNx}_3(\text{BTioph})_2$ **(a)** and $\text{CoNx}_3(\text{BTioph})_2$ **(b)** ($c = 1 \text{ mM}$) on GC electrode in $0.1 \text{ M} ((n\text{-C}_4\text{H}_9)_4\text{N})\text{BF}_4$ acetonitrile solution in the absence (a) and in the presence of $((\text{C}_2\text{H}_5)_3\text{NH})\text{Cl}$: 5 (b), 10 (c), 15 (d), and 25 mM (e) at scan rate 100 mV s^{-1} .


Fig. S4. CVs of 1 mM clathrochelate $\text{CoNx}_3(\text{BTioph})_2$ on GC electrode in 0.1M $((n\text{-C}_4\text{H}_9)_4\text{N})\text{BF}_4$ acetonitrile solution in the absence (a) and in the presence of HClO_4 : 5 (b), 10 (c), 15 (d), and 25 mM (e) at scan rate 100 mV s^{-1} .


Fig. S5. CVs of 1 mM clathrochelate $\text{FeN}_x_3(\text{BTioph})_2$ on GC electrode in 0.1 M $((n\text{-C}_4\text{H}_9)_4\text{N})\text{BF}_4$ acetonitrile solution in the absence (**a**) and in the presence of HClO_4 : 5 (**b**), 10 (**c**), 15 (**d**), and 25 mM (**e**) at scan rate 100 mV s^{-1} .


Fig. S6 CV for 1 mM acetonitrile solution of the $(\text{Et}_3\text{NH})\text{Cl}$ at scan rate 200 mV s^{-1} on GC.


Fig. S7. CV for 1 mM acetonitrile solution of the HClO_4 at scan rate 200 mV s^{-1} on GC.

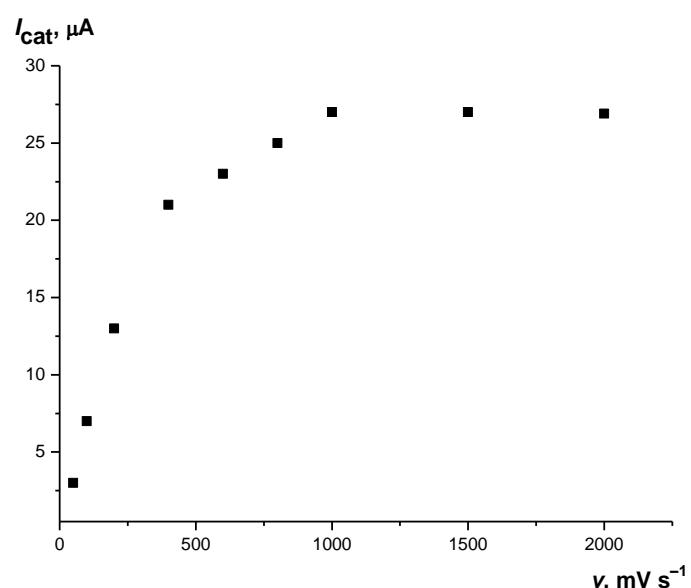

Fig. S8. Plot of I_{cat} vs scan rate for 1 mM acetonitrile solution of the complex $\text{FeN}_x_3(\text{BTioph})_2$ in the presence of 25 mM $((\text{C}_2\text{H}_5)_3\text{NH})\text{Cl}$.

Fig. S9. Plot of I_{cat} vs scan rate for 1 mM acetonitrile solution of the complex $\text{FeN}_x(\text{BTioph})_2$ in the presence of 25 mM $(\text{C}_2\text{H}_5)_3\text{NHCl}$.

Fig. S10. Plot of I_{cat} vs scan rate for 1 mM acetonitrile solution of the complex $\text{FeN}_x(\text{BTioph})_2$ in the presence of 25 mM HClO_4 .

Fig. S11. Plot of I_{cat} vs scan rate for the 1 mM acetonitrile solution of the complex $\text{CoNx}_3(\text{BTioph})_2$ in the presence of 25 mM HClO_4 .

Table S1. Crystallographic data and refinement parameters for the 2-thiopheneboron-capped cobalt and iron(II) tris-nioximates

	CoNx ₃ (BThioph) ₂ · CHCl ₃	FeNx ₃ (BThioph) ₂ · CH ₂ Cl ₂
Empirical formula	C ₂₆ H ₃₀ B ₂ FeN ₆ O ₆ S ₂ · CHCl ₃	C ₂₆ H ₃₀ B ₂ FeN ₆ O ₆ S ₂ · CH ₂ Cl ₂
Fw	786.60	749.08
Color, habit	dark-brown, plate	dark-orange, prism
Crystal size (mm ³)	0.43 × 0.26 × 0.07	0.16 × 0.15 × 0.09
<i>a</i> (Å)	11.1528 (8)	11.6442 (2)
<i>b</i> (Å)	18.4231 (14)	11.9248 (2)
<i>c</i> (Å)	15.9011 (13)	13.3359 (2)
$\alpha\Box$ (°)	90	92.188 (1)
$\beta\Box$ (°)	91.971 (2)	104.060 (1)
$\gamma\Box$ (°)	90	115.847 (1)
<i>V</i> (Å ³)	3265.3 (4)	1594.41 (5)
<i>Z</i>	4	2
Crystal system	monoclinic	triclinic
Space group	<i>P</i> 2 ₁ /c	<i>P</i> 1̄
<i>d</i> _{calc} (g · cm ⁻³)	1.600	1.560
μ (mm ⁻¹)	0.951	7.001
Min. / max. transmission coeff.	0.745, 0.936	0.376, 0.530
2θ max (°)	56	128
Independent reflections (<i>R</i> _{int})	7887 (0.066)	5148 (0.033)
Obs.refl./restraints/ parameters	5580 / 6 / 416	4886 / 20 / 427
<i>R</i> , ^a % [$F^2 > 2\sigma(F^2)$]	0.044	0.029
<i>R</i> _w , ^b % (F^2)	0.093	0.086
GOF ^c	1.01	1.00
Largest diff. peak and hole (e Å ⁻³)	1.57 and -0.86	0.41 and -0.57
<i>F</i> (000)	1612	772

Supporting Information_Thiophene_2-1

Table S2. The main geometrical parameters of the macrobicyclic cobalt and iron(II) tris-nioximates

Parameter	CoNx ₃ (BThioph) ₂	CoNx ₃ (Bn-C ₄ H ₉) ₂ [S8]	FeNx ₃ (BThioph) ₂	FeNx ₃ (Bn-C ₄ H ₉) ₂ [S8]
Co – N (Å)	1.885(2) – 2.115 (2)	1.876(4) – 2.063(4)	1.904(2) – 1.920(2)	1.898 – 1.913
av. Co – N (Å)	1.970	1.943	1.912	1.906
Δ (Å)	0.23	0.19	0.02	0.02
B – O (Å)	1.492(3) – 1.507(3) av. 1.498	1.502	1.484(3) – 1.503(3) av. 1.493	1.499
N – O (Å)	1.367(2) – 1.382(2) av. 1.375	1.330	1.371(2) – 1.380(2) av. 1.378	1.371
C=N (Å)	1.283(3) – 1.303(3) av. 1.297	1.295	1.301(3) – 1.309(3) av. 1.305	1.302
C – C (Å)	1.444(3) – 1.479(3) av. 1.458	1.412	1.434(3) – 1.443(3) av. 1.439	1.434
B – C (Å)	1.581(4) – 1.585(4) av. 1.583	1.545	1.582(3) – 1.588(3) av. 1.586	1.587
φ (°)	4.3	7.0	18.6	20.3
α (°)	38.5	37.5	39.1	39.1
h (Å)	2.45	2.36	2.36	2.36