Vapour and mechanically induced chromic behaviour of platinum complexes with a dimer-of-dimer motif and the effects of hetero metal ions

Tadashi Ohba, Atsushi Kobayashi, Ho-Chol Chang, Masako Kato*

Supplementary Information

Contents

Fig. S1 ¹ H NMR spectral changes showing the isomerization from <i>syn</i> -[PdPt] to <i>anti</i> -[PdPt] in CD ₃	CN2-
Fig. S2. FAB-MS spectra of <i>anti-</i> [PdPt](PF ₆) ₂ .	2-
Fig. S3 Adsorption isotherm of syn-[PdPt]	3-
Fig. S4 Thermogravimatric analysis for CH ₃ CN included form of <i>syn</i> -[PdPt] and <i>syn</i> -[PtPt]	3-
Fig. S5 ¹ H NMR spectra of red and orange forms of <i>syn</i> -[PdPt] in DMSO-d ₆	3-
Fig. S6 Molecular and packing structures of the light-red form of syn-[PtPt](PF ₆) ₂ .	4-
Fig. S7 Reversible vapochromic response of syn-[PdPt].	5-
Fig. S8 PXRD patterns of syn-[PtPt] and syn-[PdPt] under various vapours.	5-
Fig. S9 UV-vis diffuse reflectance spectral changes by grinding the samples for syn-[PtPt] and syn-	[PdPt] 6-
Fig. S10 Changes in PXRD patterns by grinding the samples for <i>syn</i> -[PtPt] and <i>syn</i> -[PdPt]	6-

Fig. S1 ¹H NMR spectral changes showing the isomerization from *syn*-[**PdPt**] to *anti*-[**PdPt**] in CD₃CN (0 h – 5 d). The spectra at the top and bottom were those of crystalline samples used for X-ray analysis, *anti*-[**PdPt**] and *syn*-[**PdPt**], respectively.

Fig. S2. FAB-MS spectra of anti-[PdPt](PF₆)₂.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Fig. S3 CH₃CN vapour-adsorved isotherm of syn-[PdPt] at 298 K.

Fig. S4 Thermogravimatric analyses for the CH₃CN-included forms of *syn*-[PdPt] (blue) and *syn*-[PtPt] (red).

Fig. S5 ¹H NMR spectra of the red CH₃CN-included form and orange desorbed form of *syn*-[PdPt] in DMSO-d₆.

Fig. S6 (A) Molecular and (B) packing structures of the light-red form of syn-[PtPt](PF₆)₂.

Crystal data: Formula = $C_{30}H_{24}F_{12}N_6P_2S_2Pt_2$, fw = 1212.79, crystal system = orthorhombic, space group = *Pbcn* (#60), *a* = 25.22(2), *b* = 13.43(1), *c* = 21.32(2) Å, *V* = 7219(11) Å³, *T* = 273 K, *Z* = 8, *D*_{calc} = 2.232 g cm⁻³, *R*₁ = 0.222 (I > 2 σ (I)). Pt2–S1 = 2.25(1), Pt2–S2 = 2.27(1), Pt1–N1 = 1.999(1), Pt1–N2 = 2.041(2), Pt1–N5 = 2.041(2), Pt1–N6 = 2.148(2), Pt2–N3 = 2.218(2), Pt2–N4 = 1.938(2), Pt1…Pt2 (intramolecular) = 2.876(2), Pt2…Pt2' (intermolecular) = 5.508(2) Å

Fig. S7 Reversible vapochromic response of *syn*-[**PdPt**]. Left: The PXRD pattern changes in the repeated cycles of CH₃CN vapour exposure (A and C) and after heating at 50°C (B and D). The pattern at the bottom is for the calculated one on the basis of the single-crystal structures of the red form of *syn*-[**PdPt**] and the top pattern shows that of the light-red form of *syn*-[**PdPt**] for comparison. Right: The diffuse reflectance spectra of the samples corresponding to the PXRD data.

Fig. S8 PXRD patterns of (a) *syn*-[**PtPt**] and (b) *syn*-[**PdPt**] under various vapours. Exposure times were in the minutes to days range, depending on the species.

Fig. S9 UV–vis diffuse reflectance spectral changes by grinding the samples for *syn*-[**PtPt**] (a–d) and *syn*-[**PdPt**] (e–h): (a) and (e) desorbed forms (starting materials), (b) and (f) after grinding, (c) and (g) after exposure of acetonitrile vapour to ground samples, (d) and (h) re-grinding.

Fig. S10 Changes in PXRD patterns by grinding the samples for *syn*-[**PtPt**] (a–d) and *syn*-[**PdPt**] (e–h): (a) and (e) desorbed forms (starting materials), (b) and (f) after grinding, (c) and (g) after exposure of acetonitrile vapour to ground samples, (d) and (h) re-grinding.