<u>Electronic Supplementary Information (ESI)</u> Inorganic-Salt-Induced Morphological Transformation and Luminescent Performance of GdF₃ Nanostructures

Qi Zhao,^{*ab*} Wei Lv, ^{*b*} Ning Guo,^{*ab*} Yongchao Jia,^{*ab*} Wenzhen Lv,^{*ab*} Baiqi Shao,^{*ab*} Mengmeng Jiao,^{*ab*} and Hongpeng You*^{*b*}

^a University of the Chinese Academy of Sciences, Beijing 100049, P. R. China.S

^b State key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

*Corresponding author: E-mail address: <u>hpyou@ciac.jl.cn</u>

Fig. S1. The typical EDS spectrum of the GdF₃ prepared with BaCl₂

Fig. S2. XRD patterns of GdF3 prepared without BaCl2 at different EG/H2O ratios

Fig. S3. XRD patterns of GdF_3 obtained with different amount of $BaCl_2$ at EG/H_2O ratio of 20/20.

Fig. S4. SEM images of samples synthesized at EG/H₂O ratio of 20/20 in the presence of (a) MgCl₂, (b) NaCl, (c) LiCl, and (d) their corresponding XRD patterns.

Fig. S5. SEM and TEM images of samples S1–S4.

Fig. S6. XRD patterns of GdF_3 obtained at EG/H₂O ratio of 20/20 reacting for different time.