Models of the iron-only hydrogenase: A comparison of chelate and bridge isomers of Fe₂(CO)₄{Ph₂PN(R)PPh₂}(μ -pdt) as proton-reduction catalysts

Shishir Ghosh^a, Graeme Hogarth^{a*}, Nathan Hollingsworth^a, Katherine B. Holt^{a*}, Idris Richards^a, Michael G. Richmond^b, Ben E. Sanchez^a and David Unwin^a

Supporting Information

Crystal data and structure refinement for 2a	pages 2-10
Crystal data and structure refinement for 2b	pages 11-19
Crystal data and structure refinement for 3a	pages 20-28
Crystal data and structure refinement for 3b	pages 29-37
Crystal data and structure refinement for 3e	pages 38-48
Crystal data and structure refinement for 6	pages 49-159
Parameters for DigiSim	page 60

Table 1. Crystal data and structure refinement for $\mathbf{2a}$

Identification code Chemical formula Formula weight Temperature Radiation, wavelength Crystal system, space group Unit cell parameters	str0459 $C_{34}H_{31}Fe_2NO_4P_2S_2$ 755.36 150(2) K MoK α , 0.71073 Å monoclinic, P21/n a = 9.8036(6) Å b = 17.9672(12) Å c = 18.4965(12) Å	$\alpha = 90^{\circ}$ $\beta = 100.9190(10)^{\circ}$ $\gamma = 90^{\circ}$	
Cell volume	3199.0(4) Å ³	1 ,0	
Z	4		
Calculated density	1.568 g/cm^3		
Absorption coefficient µ	1.178 mm^{-1}		
F(000)	1552		
Crystal colour and size	red, $0.18 \times 0.16 \times 0.04 \text{ mm}^3$		
Data collection method	Bruker SMART APEX di	ffractometer	
	ω rotation with narrow fra	mes	
θ range for data collection	1.59 to 28.29°		
Index ranges	h -12 to 12, k -23 to 23, 1 -24 to 23		
Completeness to $\theta = 26.00^{\circ}$	99.8 %		
Reflections collected	27778		
Independent reflections	7641 ($R_{int} = 0.0281$)		
Reflections with $F^2 > 2\sigma$	6556		
Absorption correction	semi-empirical from equiv	alents	
Min. and max. transmission	0.8159 and 0.9544		
Structure solution	direct methods		
Refinement method	Full-matrix least-squares of	on F^2	
Weighting parameters a, b	0.0451, 1.2266		
Data / restraints / parameters	7641 / 0 / 406		
Final R indices $[F^2>2\sigma]$	R1 = 0.0330, wR2 = 0.081	13	
R indices (all data)	R1 = 0.0401, wR2 = 0.084	13	
Goodness-of-fit on F^2	1.057		
Largest and mean shift/su	0.001 and 0.000		
Largest diff. peak and hole	0.746 and $-0.352 \text{ e} \text{ Å}^{-3}$		

Table 2. Ato	omic coordinates and equivalent isotropic displacement parameter	ers ($Å^2$)
for str0459.	U_{eq} is defined as one third of the trace of the orthogonalized U^{ij}	tensor.

	Х	у	Z	U_{eq}
Fe(1)	0.65872(3)	0.678835(14)	0.215303(14)	0.01544(7)
Fe(2)	0.54249(3)	0.614895(15)	0.092700(14)	0.01765(7)
P(1)	0.87033(5)	0.63464(3)	0.25595(2)	0.01520(10)
P(2)	0.65150(5)	0.60552(3)	0.31093(2)	0.01530(10)
S (1)	0.43198(5)	0.67838(3)	0.17030(3)	0.02083(11)
S(2)	0.68892(5)	0.71357(3)	0.10416(3)	0.02077(10)
N(1)	0.82373(15)	0.58311(8)	0.32540(8)	0.0167(3)
O(1)	0.67460(19)	0.83051(8)	0.26881(9)	0.0364(4)
O(2)	0.32712(17)	0.62616(9)	-0.04110(8)	0.0354(4)
O(3)	0.74895(16)	0.53793(10)	0.02516(9)	0.0374(4)
O(4)	0.4524(2)	0.46845(9)	0.13421(9)	0.0448(5)
C(1)	0.6728(2)	0.76839(11)	0.25248(10)	0.0234(4)
C(2)	0.4128(2)	0.62311(11)	0.01039(11)	0.0238(4)
C(3)	0.6710(2)	0.56772(11)	0.05337(11)	0.0243(4)
C(4)	0.4871(2)	0.52699(12)	0.12230(11)	0.0269(4)
C(5)	0.3799(2)	0.77099(12)	0.13309(12)	0.0309(5)
C(6)	0.4371(2)	0.79567(12)	0.06620(12)	0.0312(5)
C(7)	0.5940(2)	0.79988(11)	0.07695(12)	0.0297(5)
C(8)	0.9092(2)	0.56109(11)	0.39669(10)	0.0225(4)
C(9)	1.0264(2)	0.51031(13)	0.39082(11)	0.0301(5)
C(10)	1.1563(3)	0.5240/(17)	0.42118(13)	0.0465(7)
C(11)	0.95009(18)	0.57279(10)	0.19/85(10) 0.14641(11)	0.0175(4)
C(12) C(12)	1.0222(2) 1.0702(2)	0.00290(11) 0.55602(12)	0.14041(11) 0.10000(12)	0.0250(4)
C(13)	1.0793(2) 1.0635(2)	0.33093(13) 0.48107(13)	0.10000(12) 0.10306(12)	0.0304(3)
C(14)	1.0033(2) 0.0880(2)	0.48107(13) 0.45061(12)	0.10300(12) 0.15150(12)	0.0302(3)
C(15)	0.9880(2) 0.9308(2)	0.43001(12) 0.49641(11)	0.13130(12) 0.19860(11)	0.0288(4) 0.0229(4)
C(10) C(17)	1.01622(19)	0.49041(11) 0.69144(10)	0.19800(11) 0.30270(10)	0.0229(4) 0.0183(4)
C(17)	1.01022(17) 1.1532(2)	0.09144(10) 0.68114(12)	0.30270(10) 0.29400(14)	0.0105(4)
C(10)	1.1332(2) 1 2597(2)	0.00114(12) 0.72415(14)	0.29400(14) 0.33339(15)	0.0330(5) 0.0404(6)
C(20)	1.2377(2) 1.2313(2)	0.72413(14) 0.77651(12)	0.33339(13) 0.38289(12)	0.0404(0) 0.0318(5)
C(21)	1.0963(2)	0.78825(12)	0.39107(12)	0.0291(5)
C(22)	0.9895(2)	0.74636(12)	0.35085(11)	0.0271(4)
C(23)	0.61247(19)	0.64100(10)	0.39814(10)	0.0183(4)
C(24)	0.6223(2)	0.71694(11)	0.41415(11)	0.0229(4)
C(25)	0.5815(2)	0.74529(12)	0.47611(11)	0.0255(4)
C(26)	0.5302(2)	0.69884(12)	0.52399(11)	0.0276(4)
C(27)	0.5249(3)	0.62334(13)	0.51090(12)	0.0352(5)
C(28)	0.5646(3)	0.59464(12)	0.44808(11)	0.0308(5)
C(29)	0.55785(19)	0.51755(10)	0.30414(10)	0.0182(4)
C(30)	0.6243(2)	0.44875(11)	0.30741(10)	0.0219(4)
C(31)	0.5479(2)	0.38329(11)	0.29942(11)	0.0276(4)
C(32)	0.4042(2)	0.38577(12)	0.28721(11)	0.0300(5)
C(33)	0.3368(2)	0.45377(13)	0.28369(12)	0.0309(5)
C(34)	0.4132(2)	0.51938(12)	0.29250(11)	0.0255(4)

Fe(1)-C(1)	1.745(2)	Fe(1) - P(1)	2.2156(5)
Fe(1) - P(2)	2.2172(5)	Fe(1) - S(1)	2.2211(5)
Fe(1) - S(2)	2.2212(5)	Fe(1)– $Fe(2)$	2.6042(4)
Fe(2)-C(3)	1.784(2)	Fe(2)-C(4)	1.789(2)
Fe(2)-C(2)	1.795(2)	Fe(2)-S(1)	2.2637(5)
Fe(2) = S(2)	2,2657(5)	P(1) - N(1)	1.7143(15)
P(1)-C(11)	1.8218(18)	P(1) - C(17)	1 8348(19)
P(1) - P(2)	2 5956(7)	P(2) - N(1)	1 7069(15)
P(2) - C(29)	1.8202(19)	P(2) - C(23)	1.8408(18)
S(1) - C(5)	1.836(2)	S(2) - C(7)	1.830(2)
N(1) C(8)	1.030(2)	O(1) C(1)	1.050(2)
O(2) C(2)	1.470(2) 1.146(2)	O(1) = C(1) O(2) = C(2)	1.130(2) 1.137(2)
O(2) - C(2)	1.140(2) 1.140(3)	C(5) - C(5)	1.137(2) 1.519(2)
O(4) = C(4)	1.140(3)	C(3) = C(0)	1.318(3)
C(6) = C(7)	1.514(3)	C(8) = C(9)	1.487(3)
C(9) = C(10)	1.315(3)	C(11) - C(16)	1.386(3)
C(11) - C(12)	1.398(3)	C(12) - C(13)	1.384(3)
C(13) - C(14)	1.374(3)	C(14) - C(15)	1.379(3)
C(15)-C(16)	1.391(3)	C(17) - C(22)	1.387(3)
C(17)-C(18)	1.394(3)	C(18) - C(19)	1.390(3)
C(19)–C(20)	1.378(3)	C(20)-C(21)	1.376(3)
C(21)–C(22)	1.386(3)	C(23)–C(28)	1.390(3)
C(23)–C(24)	1.396(3)	C(24)–C(25)	1.381(3)
C(25)–C(26)	1.379(3)	C(26)–C(27)	1.377(3)
C(27)–C(28)	1.392(3)	C(29)–C(30)	1.393(3)
C(29)–C(34)	1.394(3)	C(30)–C(31)	1.387(3)
C(31)–C(32)	1.385(3)	C(32)–C(33)	1.384(3)
C(33)–C(34)	1.389(3)		
C(1)-Fe(1)-P(1)	101.41(7)	C(1)-Fe(1)-P(2)	104.21(6)
P(1)-Fe(1)-P(2)	71.683(18)	C(1)-Fe(1)-S(1)	98.62(7)
P(1)-Fe(1)-S(1)	158.77(2)	P(2)-Fe(1)-S(1)	96.65(2)
C(1)-Fe(1)-S(2)	95.24(7)	P(1)-Fe(1)-S(2)	97.72(2)
P(2)-Fe(1)-S(2)	159.26(2)	S(1) - Fe(1) - S(2)	87.34(2)
C(1) - Fe(1) - Fe(2)	137.63(6)	P(1) - Fe(1) - Fe(2)	111.375(16)
P(2) - Fe(1) - Fe(2)	110 960(17)	S(1) - Fe(1) - Fe(2)	55 269(14)
S(2) - Fe(1) - Fe(2)	55 323(15)	C(3) - Fe(2) - C(4)	89 (19)
C(3) = Fe(2) = C(2)	97 74(9)	C(4) - Fe(2) - C(2)	97.07(9)
$C(3) = F_{0}(2) = C(2)$ $C(3) = F_{0}(2) = S(1)$	163 30(6)	C(4) = C(2) = C(2) $C(4) = E_0(2) = S(1)$	97.17(9) 97.37(7)
C(2) = Fc(2) = S(1) C(2) = Fc(2) = S(1)	98 58(7)	C(3) = Fe(2) = S(2)	92.37(7) 85 75(7)
C(2) = C(2) = S(1) $C(4) = E_2(2) = S(2)$	152 22(7)	C(3) = C(2) = S(2) $C(2) = E_0(2) = S(2)$	110.45(7)
C(4) - F(2) - S(2) $S(1) = E_2(2) - S(2)$	152.55(7) 85.25(2)	C(2) = Fe(2) = S(2) C(3) = Fe(2) = Fe(1)	110.43(7) 100.78(6)
S(1) - Fe(2) - S(2) C(4) = Fe(2) - S(2)	83.23(2)	C(3) - Fe(2) - Fe(1)	109.78(0)
C(4) - Fe(2) - Fe(1)	105.30(0)	C(2) = Fe(2) = Fe(1)	145.59(0)
S(1) - Fe(2) - Fe(1)	53.742(15)	S(2) - Fe(2) - Fe(1)	55.728(14)
N(1) - P(1) - C(11)	108.52(8)	N(1) - P(1) - C(17)	103.99(8)
C(11) - P(1) - C(17)	103.53(9)	N(1) - P(1) - Fe(1)	94.73(5)
C(11) - P(1) - Fe(1)	119.83(6)	C(17) - P(1) - Fe(1)	123.83(6)
N(1) - P(1) - P(2)	40.55(5)	C(11)-P(1)-P(2)	125.95(6)
C(17) - P(1) - P(2)	123.77(6)	Fe(1)-P(1)-P(2)	54.188(16)
N(1)-P(2)-C(29)	106.08(8)	N(1)-P(2)-C(23)	107.93(8)
C(29)-P(2)-C(23)	100.10(8)	N(1)-P(2)-Fe(1)	94.89(5)
C(29)-P(2)-Fe(1)	123.56(6)	C(23)-P(2)-Fe(1)	122.45(6)
N(1)-P(2)-P(1)	40.76(5)	C(29) - P(2) - P(1)	126.26(6)
C(23)–P(2)–P(1)	126.72(6)	Fe(1)-P(2)-P(1)	54.129(16)

Table 3. Bond lengths [Å] and angles [°] for str0459.

C(5)-S(1)-Fe(1)	108.95(8)	C(5)-S(1)-Fe(2)	110.58(7)
Fe(1)-S(1)-Fe(2)	70.989(17)	C(7)-S(2)-Fe(1)	110.04(8)
C(7)-S(2)-Fe(2)	110.92(7)	Fe(1)-S(2)-Fe(2)	70.949(17)
C(8)-N(1)-P(2)	125.49(12)	C(8)-N(1)-P(1)	128.87(13)
P(2)-N(1)-P(1)	98.70(8)	O(1)-C(1)-Fe(1)	171.82(18)
O(2)-C(2)-Fe(2)	177.29(19)	O(3)-C(3)-Fe(2)	176.78(18)
O(4) - C(4) - Fe(2)	173.09(18)	C(6)-C(5)-S(1)	116.78(15)
C(7)-C(6)-C(5)	115.50(17)	C(6)-C(7)-S(2)	116.42(15)
N(1)-C(8)-C(9)	114.51(16)	C(10)-C(9)-C(8)	123.6(2)
C(16)–C(11)–C(12)	118.57(17)	C(16)-C(11)-P(1)	121.58(14)
C(12)–C(11)–P(1)	119.60(15)	C(13)–C(12)–C(11)	120.44(19)
C(14)–C(13)–C(12)	120.33(19)	C(13)–C(14)–C(15)	119.93(19)
C(14)-C(15)-C(16)	120.1(2)	C(11)–C(16)–C(15)	120.51(18)
C(22)–C(17)–C(18)	118.15(18)	C(22)-C(17)-P(1)	118.22(15)
C(18)–C(17)–P(1)	123.60(15)	C(19)–C(18)–C(17)	120.7(2)
C(20)–C(19)–C(18)	120.1(2)	C(21)–C(20)–C(19)	119.8(2)
C(20)–C(21)–C(22)	120.15(19)	C(21)–C(22)–C(17)	121.01(19)
C(28)–C(23)–C(24)	117.60(17)	C(28)–C(23)–P(2)	121.83(15)
C(24)–C(23)–P(2)	120.46(14)	C(25)–C(24)–C(23)	121.15(18)
C(26)-C(25)-C(24)	120.53(19)	C(27)–C(26)–C(25)	119.30(19)
C(26)–C(27)–C(28)	120.3(2)	C(23)–C(28)–C(27)	121.05(19)
C(30)–C(29)–C(34)	118.76(18)	C(30)-C(29)-P(2)	122.82(14)
C(34)–C(29)–P(2)	118.38(15)	C(31)–C(30)–C(29)	120.63(19)
C(32)-C(31)-C(30)	120.1(2)	C(33)–C(32)–C(31)	119.82(19)
C(32)–C(33)–C(34)	120.1(2)	C(33)–C(34)–C(29)	120.53(19)

Table 4. Anisotropic displacement parameters (Å²) for str0459. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

	U^{11}	U^{22}	U ³³	U ²³	U^{13}	U^{12}
Fe(1)	0.01582(14)	0.01547(13)	0.01419(13)	-0.00013(9)	0.00073(10)	0.00192(9)
Fe(2)	0.01809(14)	0.01946(14)	0.01535(13)	-0.00074(10)	0.00300(10)	0.00024(10)
P(1)	0.0145(2)	0.0157(2)	0.0149(2)	-0.00003(17)	0.00173(16)	0.00069(17)
P(2)	0.0153(2)	0.0168(2)	0.0138(2)	-0.00076(17)	0.00263(17)	0.00238(17)
S(1)	0.0160(2)	0.0269(2)	0.0192(2)	-0.00088(18)	0.00228(17)	0.00450(18)
S(2)	0.0235(2)	0.0204(2)	0.0178(2)	0.00299(18)	0.00219(17)	-0.00137(18)
N(1)	0.0151(7)	0.0196(7)	0.0151(7)	0.0026(6)	0.0021(6)	0.0028(6)
O(1)	0.0563(11)	0.0196(7)	0.0333(9)	-0.0031(6)	0.0088(8)	0.0025(7)
O(2)	0.0342(9)	0.0388(9)	0.0282(8)	-0.0022(7)	-0.0069(7)	0.0012(7)
O(3)	0.0292(8)	0.0494(10)	0.0351(9)	-0.0131(8)	0.0100(7)	0.0063(7)
O(4)	0.0799(14)	0.0290(9)	0.0281(9)	-0.0025(7)	0.0165(9)	-0.0158(9)
C(1)	0.0277(10)	0.0229(10)	0.0187(9)	0.0019(7)	0.0023(8)	0.0036(8)
C(2)	0.0253(10)	0.0234(10)	0.0229(10)	-0.0017(8)	0.0050(8)	-0.0002(8)
C(3)	0.0249(10)	0.0268(10)	0.0201(9)	-0.0031(8)	0.0016(8)	-0.0015(8)
C(4)	0.0367(12)	0.0278(11)	0.0173(9)	-0.0033(8)	0.0077(8)	-0.0010(9)
C(5)	0.0282(11)	0.0316(11)	0.0292(11)	-0.0022(9)	-0.0035(9)	0.0157(9)
C(6)	0.0382(12)	0.0223(10)	0.0279(11)	0.0027(8)	-0.0069(9)	0.0080(9)
C(7)	0.0385(12)	0.0198(9)	0.0273(11)	0.0071(8)	-0.0023(9)	0.0002(9)
C(8)	0.0209(9)	0.0306(10)	0.0153(9)	0.0041(8)	0.0017(7)	0.0040(8)
C(9)	0.0346(12)	0.0325(11)	0.0219(10)	0.0055(9)	0.0023(9)	0.0144(9)
C(10)	0.0280(12)	0.077(2)	0.0336(13)	0.0062(13)	0.0043(10)	0.0212(13)
C(11)	0.0141(8)	0.0213(9)	0.0167(8)	-0.0009(7)	0.0020(7)	0.0017(7)
C(12)	0.0253(10)	0.0246(10)	0.0291(10)	0.0031(8)	0.0104(8)	-0.0013(8)
C(13)	0.0289(11)	0.0369(12)	0.0297(11)	0.0036(9)	0.0166(9)	0.0006(9)
C(14)	0.0297(11)	0.0362(12)	0.0274(11)	-0.0068(9)	0.0121(9)	0.0044(9)
C(15)	0.0375(12)	0.0227(10)	0.0287(11)	-0.0044(8)	0.0124(9)	-0.0007(9)
C(16)	0.0268(10)	0.0229(9)	0.0211(9)	-0.0013(8)	0.0097(8)	-0.0026(8)
C(17)	0.0169(9)	0.0174(8)	0.0187(9)	0.0015(7)	-0.0012(7)	0.0001(7)
C(18)	0.0203(10)	0.0307(11)	0.0467(14)	-0.0151(10)	-0.0018(9)	0.0052(8)
C(19)	0.0160(10)	0.0438(14)	0.0578(16)	-0.0159(12)	-0.0020(10)	0.0028(9)
C(20)	0.0258(11)	0.0292(11)	0.0355(12)	-0.0062(9)	-0.0066(9)	-0.0031(9)
C(21)	0.0301(11)	0.0297(11)	0.0269(11)	-0.0105(9)	0.0034(9)	-0.0015(9)
C(22)	0.0198(10)	0.0348(11)	0.0275(10)	-0.0079(9)	0.0067(8)	-0.0007(8)
C(23)	0.0171(9)	0.0224(9)	0.0152(8)	-0.0028(7)	0.0026(7)	0.0018(7)
C(24)	0.0236(10)	0.0241(10)	0.0213(9)	-0.0027(8)	0.0049(8)	-0.0028(8)
C(25)	0.0257(10)	0.0264(10)	0.0241(10)	-0.0078(8)	0.0044(8)	-0.0011(8)
C(26)	0.0289(11)	0.0359(11)	0.0190(9)	-0.0087(8)	0.0067(8)	-0.0020(9)
C(27)	0.0538(15)	0.0347(12)	0.0215(11)	-0.0024(9)	0.0184(10)	-0.0083(11)
C(28)	0.0505(14)	0.0220(10)	0.0220(10)	-0.0018(8)	0.0122(9)	-0.0013(9)
C(29)	0.0208(9)	0.0214(9)	0.0130(8)	-0.0005(7)	0.0051(7)	-0.0008(7)
C(30)	0.0221(10)	0.0225(9)	0.0227(10)	-0.0001(8)	0.0085(8)	0.0010(8)
C(31)	0.0383(12)	0.0214(10)	0.0259(10)	-0.0017(8)	0.0131(9)	-0.0030(9)
C(32)	0.0380(13)	0.0327(11)	0.0213(10)	-0.0045(8)	0.0105(9)	-0.0158(9)
C(33)	0.0219(10)	0.0436(13)	0.0272(11)	-0.0021(9)	0.0047(8)	-0.0088(9)
C(34)	0.0211(10)	0.0298(11)	0.0255(10)	-0.0008(8)	0.0039(8)	0.0000(8)

Table 5.	Hydrogen coordinates and isotropic displacement parameters ($Å^2$)
for str045	59.	

	х	У	Z	U
H(5A)	0.2793	0.7723	0.1203	0.037
H(5B)	0.4080	0.8072	0.1719	0.037
H(6A)	0.4041	0.7615	0.0261	0.037
H(6B)	0.3994	0.8444	0.0513	0.037
H(7A)	0.6260	0.8373	0.1141	0.036
H(7B)	0.6182	0.8170	0.0313	0.036
H(8A)	0.8498	0.5369	0.4260	0.027
H(8B)	0.9464	0.6057	0.4228	0.027
H(9A)	1.0067	0.4664	0.3642	0.036
H(10A)	1.1790	0.5675	0.4481	0.056
H(10B)	1.2257	0.4903	0.4158	0.056
H(12A)	1.0319	0.6543	0.1433	0.031
H(13A)	1.1287	0.5775	0.0666	0.036
H(14A)	1.1037	0.4503	0.0725	0.036
H(15A)	0.9753	0.3994	0.1527	0.035
H(16A)	0.8793	0.4756	0.2308	0.028
H(18A)	1.1734	0.6451	0.2615	0.040
H(19A)	1.3504	0.7176	0.3263	0.048
H(20A)	1.3031	0.8039	0.4107	0.038
H(21A)	1.0767	0.8244	0.4236	0.035
H(22A)	0.8984	0.7552	0.3562	0.032
H(24A)	0.6570	0.7490	0.3825	0.028
H(25A)	0.5887	0.7961	0.4856	0.031
H(26A)	0.4995	0.7183	0.5647	0.033
H(27A)	0.4946	0.5914	0.5442	0.042
H(28A)	0.5590	0.5436	0.4394	0.037
H(30A)	0.7207	0.4467	0.3150	0.026
H(31A)	0.5933	0.3376	0.3023	0.033
H(32A)	0.3530	0.3419	0.2814	0.036
H(33A)	0.2403	0.4555	0.2754	0.037
H(34A)	0.3674	0.5649	0.2906	0.031

Table 6. Torsion angles [°] for str0459.

C(1)-Fe(1)-Fe(2)-C(3)	122.38(12)	P(1)-Fe(1)-Fe(2)-C(3)	-15.72(7)
P(2)-Fe(1)-Fe(2)-C(3)	-93.51(7)	S(1)-Fe(1)-Fe(2)-C(3)	-176.92(7)
S(2)-Fe(1)-Fe(2)-C(3)	68.81(7)	C(1)-Fe(1)-Fe(2)-C(4)	-143.71(12)
P(1)-Fe(1)-Fe(2)-C(4)	78.19(7)	P(2)-Fe(1)-Fe(2)-C(4)	0.40(7)
S(1)-Fe(1)-Fe(2)-C(4)	-83.02(7)	S(2)-Fe(1)-Fe(2)-C(4)	162.71(8)
C(1)-Fe(1)-Fe(2)-C(2)	-18.71(16)	P(1)-Fe(1)-Fe(2)-C(2)	-156.81(12)
P(2)-Fe(1)-Fe(2)-C(2)	125.40(12)	S(1)-Fe(1)-Fe(2)-C(2)	41.98(12)
S(2)-Fe(1)-Fe(2)-C(2)	-72.28(12)	C(1)-Fe(1)-Fe(2)-S(1)	-60.69(10)
P(1)-Fe(1)-Fe(2)-S(1)	161.21(2)	P(2)-Fe(1)-Fe(2)-S(1)	83.42(2)
S(2)-Fe(1)-Fe(2)-S(1)	-114.26(2)	C(1)-Fe(1)-Fe(2)-S(2)	53.57(10)
P(1)-Fe(1)-Fe(2)-S(2)	-84.53(2)	P(2)-Fe(1)-Fe(2)-S(2)	-162.32(2)
S(1)-Fe(1)-Fe(2)-S(2)	114.26(2)	C(1)-Fe(1)-P(1)-N(1)	101.73(8)
P(2)-Fe(1)-P(1)-N(1)	0.37(5)	S(1)-Fe(1)-P(1)-N(1)	-58.61(8)
S(2)-Fe(1)-P(1)-N(1)	-161.30(5)	Fe(2)-Fe(1)-P(1)-N(1)	-105.60(5)
C(1)-Fe(1)-P(1)-C(11)	-143.75(10)	P(2)-Fe(1)-P(1)-C(11)	114.88(7)
S(1)-Fe(1)-P(1)-C(11)	55.91(10)	S(2)-Fe(1)-P(1)-C(11)	-46.78(7)
Fe(2)-Fe(1)-P(1)-C(11)	8.92(7)	C(1)-Fe(1)-P(1)-C(17)	-8.60(10)
P(2)-Fe(1)-P(1)-C(17)	-109.97(8)	S(1) - Fe(1) - P(1) - C(17)	-168.95(8)
S(2)-Fe(1)-P(1)-C(17)	88.36(8)	Fe(2)-Fe(1)-P(1)-C(17)	144.07(7)
C(1) - Fe(1) - P(1) - P(2)	101.37(7)	S(1) - Fe(1) - P(1) - P(2)	-58.98(6)
S(2) - Fe(1) - P(1) - P(2)	-161.67(2)	Fe(2) - Fe(1) - P(1) - P(2)	-105.966(19)
C(1) - Fe(1) - P(2) - N(1)	$-97\ 90(9)$	P(1) = Fe(1) = P(2) = N(1)	-0.37(5)
S(1) - Fe(1) - P(2) - N(1)	161.43(5)	S(2) - Fe(1) - P(2) - N(1)	61.29(8)
Fe(2)-Fe(1)-P(2)-N(1)	106.15(5)	C(1)-Fe(1)-P(2)-C(29)	149.12(10)
P(1)-Fe(1)-P(2)-C(29)	-113.35(8)	S(1) - Fe(1) - P(2) - C(29)	48.45(8)
S(2)-Fe(1)-P(2)-C(29)	-51.69(10)	Fe(2) - Fe(1) - P(2) - C(29)	-6.83(8)
C(1) - Fe(1) - P(2) - C(23)	16.96(10)	P(1)-Fe(1)-P(2)-C(23)	114.49(7)
S(1)-Fe(1)-P(2)-C(23)	-83.71(7)	S(2)-Fe(1)-P(2)-C(23)	176.15(8)
Fe(2)-Fe(1)-P(2)-C(23)	-138.99(7)	C(1)-Fe(1)-P(2)-P(1)	-97.53(7)
S(1)-Fe(1)-P(2)-P(1)	161.80(2)	S(2)-Fe(1)-P(2)-P(1)	61.66(6)
Fe(2)-Fe(1)-P(2)-P(1)	106.518(18)	C(11)-P(1)-P(2)-N(1)	75.88(11)
C(17)-P(1)-P(2)-N(1)	-70.48(11)	Fe(1)-P(1)-P(2)-N(1)	179.43(8)
N(1)-P(1)-P(2)-C(29)	-71.04(11)	C(11)-P(1)-P(2)-C(29)	4.84(11)
C(17)-P(1)-P(2)-C(29)	-141.52(10)	Fe(1)-P(1)-P(2)-C(29)	108.39(8)
N(1)-P(1)-P(2)-C(23)	73.90(11)	C(11)-P(1)-P(2)-C(23)	149.78(10)
C(17)-P(1)-P(2)-C(23)	3.42(11)	Fe(1)-P(1)-P(2)-C(23)	-106.66(8)
N(1)-P(1)-P(2)-Fe(1)	-179.43(8)	C(11)-P(1)-P(2)-Fe(1)	-103.56(7)
C(17)-P(1)-P(2)-Fe(1)	110.09(7)	C(1)-Fe(1)-S(1)-C(5)	37.58(10)
P(1)-Fe(1)-S(1)-C(5)	-161.90(9)	P(2)-Fe(1)-S(1)-C(5)	143.11(7)
S(2)-Fe(1)-S(1)-C(5)	-57.32(8)	Fe(2)-Fe(1)-S(1)-C(5)	-105.95(8)
C(1)-Fe(1)-S(1)-Fe(2)	143.53(7)	P(1)-Fe(1)-S(1)-Fe(2)	-55.95(6)
P(2)-Fe(1)-S(1)-Fe(2)	-110.939(19)	S(2)-Fe(1)-S(1)-Fe(2)	48.637(17)
C(3)-Fe(2)-S(1)-C(5)	113.9(2)	C(4)-Fe(2)-S(1)-C(5)	-151.40(10)
C(2)-Fe(2)-S(1)-C(5)	-53.78(10)	S(2) - Fe(2) - S(1) - C(5)	56.22(8)
Fe(1)-Fe(2)-S(1)-C(5)	103.74(8)	C(3)-Fe(2)-S(1)-Fe(1)	10.1(2)
C(4)-Fe(2)-S(1)-Fe(1)	104.86(7)	C(2)-Fe(2)-S(1)-Fe(1)	-157.52(7)
S(2)-Fe(2)-S(1)-Fe(1)	-47.521(17)	C(1)-Fe(1)-S(2)-C(7)	-40.98(10)
P(1)-Fe(1)-S(2)-C(7)	-143.27(8)	P(2)-Fe(1)-S(2)-C(7)	159.25(9)
S(1)-Fe(1)-S(2)-C(7)	57.44(8)	Fe(2)-Fe(1)-S(2)-C(7)	106.03(8)
C(1)-Fe(1)-S(2)-Fe(2)	-147.01(7)	P(1)-Fe(1)-S(2)-Fe(2)	110.700(18)

P(2)-Fe(1)-S(2)-Fe(2)	53.22(6)	S(1)-Fe(1)-S(2)-Fe(2)	-48.594(17)
C(3)-Fe(2)-S(2)-C(7)	136.78(10)	C(4)-Fe(2)-S(2)-C(7)	-143.34(17)
C(2)-Fe(2)-S(2)-C(7)	40.09(11)	S(1)-Fe(2)-S(2)-C(7)	-57.30(8)
Fe(1)-Fe(2)-S(2)-C(7)	-104.84(8)	C(3)-Fe(2)-S(2)-Fe(1)	-118.38(6)
C(4) - Fe(2) - S(2) - Fe(1)	-38.51(15)	C(2) - Fe(2) - S(2) - Fe(1)	144.93(7)
S(1) - Fe(2) - S(2) - Fe(1)	47.532(17)	C(29) - P(2) - N(1) - C(8)	-79.81(16)
C(23)-P(2)-N(1)-C(8)	26.76(17)	Fe(1)-P(2)-N(1)-C(8)	153.18(15)
P(1)-P(2)-N(1)-C(8)	152.72(19)	C(29)-P(2)-N(1)-P(1)	127.48(8)
C(23)-P(2)-N(1)-P(1)	-125.96(8)	Fe(1)-P(2)-N(1)-P(1)	0.46(7)
C(11)-P(1)-N(1)-C(8)	84.54(17)	C(17)-P(1)-N(1)-C(8)	-25.20(17)
Fe(1) - P(1) - N(1) - C(8)	-151.82(15)	P(2)-P(1)-N(1)-C(8)	-151.4(2)
C(11)-P(1)-N(1)-P(2)	-124.11(8)	C(17) - P(1) - N(1) - P(2)	126.15(8)
Fe(1) - P(1) - N(1) - P(2)	-0.46(7)	P(1) - Fe(1) - C(1) - O(1)	132.7(14)
P(2) - Fe(1) - C(1) - O(1)	-1536(14)	S(1) - Fe(1) - C(1) - O(1)	-544(14)
S(2) - Fe(1) - C(1) - O(1)	337(14)	Fe(2) - Fe(1) - C(1) - O(1)	-7.9(14)
C(3)-Fe(2)-C(2)-O(2)	105(4)	C(4) - Fe(2) - C(2) - O(2)	15(4)
S(1) - Fe(2) - C(2) - O(2)	-78(4)	S(2) - Fe(2) - C(2) - O(2)	-166(4)
Fe(1) - Fe(2) - C(2) - O(2)	-111(4)	C(4) - Fe(2) - C(3) - O(3)	100(3)
C(2) - Ee(2) - C(3) - O(3)	3(3)	S(1) - Fe(2) - C(3) - O(3)	-164(3)
S(2) - Fe(2) - C(3) - O(3)	-107(3)	$F_{e}(1) - F_{e}(2) - C(3) - O(3)$	-156(3)
C(3) - Ee(2) - C(4) - O(4)	-45.8(18)	$C(2) = E_{e}(2) = C(4) = O(4)$	51 9(18)
S(1) - Fe(2) - C(4) - O(4)	150.8(18)	$S(2) - F_{e}(2) - C(4) - O(4)$	-124.9(17)
S(1) = IC(2) = C(4) = O(4) $F_{0}(1) = F_{0}(2) = C(4) = O(4)$	-155.0(18)	S(2) - C(2) - C(4) - O(4) $E_{2}(1) S(1) C(5) C(6)$	-124.9(17)
$F_{0}(2) = F(2) - C(4) - O(4)$	-133.9(10)	S(1) = C(5) = C(6) = C(7)	60.23(17)
$\Gamma(2) = S(1) = C(3) = C(0)$	-9.93(19)	S(1) - C(3) - C(0) - C(7) $E_2(1) S(2) C(7) C(6)$	-00.1(2)
C(3) = C(0) = C(7) = S(2) $E_0(2) = S(2) = C(7) = C(6)$	39.0(2) 11 51(10)	P(1) = S(2) = C(7) = C(0) P(2) = N(1) = C(8) = C(0)	-03.04(17) 150.01(15)
P(1) = N(1) = C(2) = C(1) = C(0)	11.31(19) 64.7(2)	$\Gamma(2) = \Gamma(1) = C(0) = C(0)$	130.91(13) 125.6(2)
P(1) - N(1) - C(3) - C(9) N(1) P(1) C(11) C(16)	-04.7(2) 18.77(18)	N(1) = C(8) = C(9) = C(10) C(17) P(1) C(11) C(16)	123.0(2) 128.82(16)
R(1) = F(1) = C(11) = C(10) $E_{2}(1) = P(1) = C(11) = C(16)$	18.77(10) 88.23(16)	P(2) P(1) C(11) C(16)	128.82(10) 22.00(10)
N(1) P(1) C(11) C(12)	-68.23(10) 167.00(15)	$\Gamma(2) = \Gamma(1) = C(11) = C(10)$ C(17) = D(1) = C(11) = C(12)	-22.90(19) 57.03(17)
R(1) - F(1) - C(11) - C(12) $F_{P}(1) P(1) C(11) C(12)$	-107.09(13) 85.01(16)	P(2) P(1) C(11) C(12)	-57.03(17) 151 24(13)
C(16) C(11) C(12) C(12)	3.31(10)	P(1) C(11) C(12) C(12)	131.24(13) 17773(16)
C(10)-C(11)-C(12)-C(13)	-3.4(3) 1 2(3)	C(12) - C(13) - C(14) - C(15)	-177.73(10) 1 3(3)
C(13) C(14) C(15) C(16)	-1.2(3)	C(12) - C(13) - C(14) - C(15)	1.3(3)
P(1) C(11) C(16) C(15)	=1.7(3) 177 29(16)	C(12) = C(11) = C(10) = C(13)	-0.6(3)
N(1) = C(11) = C(10) = C(13)	177.29(10) 67.04(17)	C(14) - C(13) - C(10) - C(11) C(11) P(1) C(17) C(22)	-0.0(3)
R(1) - F(1) - C(17) - C(22) $E_2(1) P(1) - C(17) - C(22)$	-07.94(17) 27.69(19)	P(1) = P(1) = C(17) = C(22)	178.08(10) 28.70(18)
Fe(1) - F(1) - C(17) - C(22)	57.00(10) 110.29(19)	$\Gamma(2) - \Gamma(1) - C(17) - C(22)$	-26.79(10)
N(1)-F(1)-C(17)-C(18)	110.20(16) 144.00(16)	C(11) - F(1) - C(17) - C(18) P(2) P(1) C(17) C(18)	-5.1(2)
Fe(1) = F(1) = C(17) = C(18)	-144.09(10)	P(2) = P(1) = C(17) = C(10) P(1) = C(17) = C(18) = C(10)	149.44(10) 177.24(10)
C(22) = C(17) = C(18) = C(19)	0.9(5)	P(1) = C(17) = C(18) = C(19)	-1/7.54(19)
C(17) = C(18) = C(19) = C(20)	1.3(4)	C(18)-C(19)-C(20)-C(21)	-2.0(4)
C(19) - C(20) - C(21) - C(22)	1.3(4)	C(20)-C(21)-C(22)-C(17)	0.9(3)
C(18) - C(17) - C(22) - C(21)	-2.1(5)	P(1) = C(17) = C(22) = C(21)	1/0.23(17) 17.81(10)
N(1)-P(2)-C(23)-C(28)	-92.89(18)	C(29) - P(2) - C(23) - C(28)	17.81(19)
Fe(1) - P(2) - C(23) - C(28)	158.94(15)	P(1) - P(2) - C(23) - C(28)	-134.13(16)
N(1) - P(2) - C(23) - C(24)	91.02(16)	C(29) - P(2) - C(23) - C(24)	-158.29(16)
re(1)-P(2)-U(23)-U(24)	-1/.15(18)	P(1)-P(2)-U(23)-U(24)	49.//(18)
C(28) - C(23) - C(24) - C(25)	-2.1(3)	P(2)-C(23)-C(24)-C(25)	1/4.11(16)
C(25) - C(24) - C(25) - C(26)	0.2(5)	C(24) = C(25) = C(26) = C(27)	2.4(3)
C(25)-C(26)-C(27)-C(28)	-5.1(4)	C(24)-C(23)-C(28)-C(27)	1.5(3)
P(2)-C(23)-C(28)-C(27)	-1/4./2(19)	C(26) - C(27) - C(28) - C(23)	1.1(4)
N(1)-P(2)-C(29)-C(30)	-2.68(17)	C(23) - P(2) - C(29) - C(30)	-114.81(16)

Fe(1)-P(2)-C(29)-C(30) N(1)-P(2)-C(29)-C(34) Fe(1)-P(2)-C(29)-C(34) C(34)-C(29)-C(30)-C(31) C(29)-C(30)-C(31)-C(32) C(31)-C(32)-C(33)-C(34)	$104.64(15) \\ 179.71(14) \\ -72.98(16) \\ -0.2(3) \\ 0.7(3) \\ -0.1(3)$	$P(1)-P(2)-C(29)-C(30) C(23)-P(2)-C(29)-C(34) P(1)-P(2)-C(29)-C(34) P(2)-C(29)-C(30)-C(31) C(30)-C(31)-C(32)-C(33) C(32)-C(33)-C(34)-C(29) P(2)-C(29)-C(34)-C(29) C(32)-C(33)-C(34)-C(29) P(3)-C(34)-C(29) P(3)-C(34)-C(29) P(3)-C(34)-C(34)-C(29) P(3)-C(34)-C(34)-C(34) P(3)-C(34)-C(34)-C(34) P(3)-C(34)-C(34)-C(34) P(3)-C(34)-C(34)-C(34) P(3)-C(34)-C(34)-C(34) P(3)-C(34)-C(34) P(3)-C(34)-C(34)-C(34) P(3)-C(34)-C(34)-C(34)-C(34) P(3)-C(34)-C(34)-C(34)-C(34)-C(34) P(3)-C(34)-C(34)-C(34)-C(34)-C(34)-C(34)-C(34) \\ P(3)-C(34)-C(3$	$\begin{array}{r} 37.31(18) \\ 67.58(16) \\ -140.31(13) \\ -177.76(15) \\ -0.6(3) \\ 0.7(3) \end{array}$
$\begin{array}{c} C(31) - C(32) - C(33) - C(34) \\ C(30) - C(29) - C(34) - C(33) \end{array}$	-0.1(3)	C(32)-C(33)-C(34)-C(29)	0.7(3)
	-0.6(3)	P(2)-C(29)-C(34)-C(33)	177.14(15)

Table 1. Crystal data and structure refinement for 2b.

Identification code Chemical formula	str0540 $C_{34}H_{33}Fe_2NO_4P_2S_2$	
Formula weight	/5/.3/ 150(2) V	
Padiation wavelength	130(2) K MoKa 0.71073 Å	
Crystal system space group	triclinic Plbar	
Unit call parameters	a = 0.7227(10) Å	$\alpha = 84.013(2)^{\circ}$
Onit cen parameters	a = 9.7227(10) A b = 10.3850(11) Å	$a = 80.645(2)^{\circ}$
	0 = 10.3639(11) A	p = 60.043(2) $n = 62.560(2)^{\circ}$
Call valuma	C = 18.3203(19) A 1652 7(2) Å ³	$\gamma = 05.309(2)$
7	1052.7(5) A	
Calculated density	1.522 g/cm^3	
Absorption coefficient u	$1 141 \text{ mm}^{-1}$	
F(000)	780	
Crystal colour and size	brown, $0.24 \times 0.16 \times 0.14$ m	1m ³
Data collection method	Bruker SMART APEX diffi	actometer
	ω rotation with narrow fram	les
θ range for data collection	2.75 to 28.31°	
Index ranges	h -12 to 12, k -13 to 13, 1 -	24 to 23
Completeness to $\theta = 26.00^{\circ}$	98.0 %	
Reflections collected	14333	
Independent reflections	7563 ($R_{int} = 0.0250$)	
Reflections with $F^2 > 2\sigma$	6917	
Absorption correction	semi-empirical from equival	lents
Min. and max. transmission	0.7714 and 0.8566	
Structure solution	direct methods	2
Refinement method	Full-matrix least-squares on	\mathbf{F}^2
Weighting parameters a, b	0.0557, 2.8501	
Data / restraints / parameters	7563 / 0 / 406	
Final R indices $[F^2 > 2\sigma]$	R1 = 0.0421, wR2 = 0.1095	
R indices (all data)	R1 = 0.0453, wR2 = 0.1122	
Goodness-of-fit on F^2	1.030	
Largest and mean shift/su	0.000 and 0.000	
Largest diff. peak and hole	2.451 and $-0.726 \text{ e} \text{ \AA}^{-3}$	

Table 2. At	omic coordinates and equivalent isotropic displacement parameters (Å	²)
for str0540.	U_{eq} is defined as one third of the trace of the orthogonalized U ^{ij} tensor	: .

	Х	У	Z	U_{eq}
$\mathbf{F}_{0}(1)$	0.51744(4)	0.36202(3)	0 272386(17)	0.01080(0)
Fe(1)	0.31744(4) 0.44438(4)	0.30202(3) 0.27286(4)	0.272380(17) 0.403438(18)	0.01089(9) 0.01320(0)
P(1)	0.44430(4) 0.77021(7)	0.27280(4) 0.20405(6)	0.403436(10) 0.24022(2)	0.01320(9)
$\mathbf{P}(1)$ $\mathbf{P}(2)$	0.77021(7) 0.62387(7)	0.29493(0) 0.17307(6)	0.24932(3) 0.10005(3)	0.01170(12) 0.01232(13)
$\mathbf{F}(2)$ $\mathbf{S}(1)$	0.02367(7)	0.17397(0) 0.24150(6)	0.19993(3) 0.21004(2)	0.01232(13) 0.01597(13)
S(1)	0.29930(7)	0.34130(0) 0.47571(6)	0.31094(3) 0.27575(2)	0.01387(13)
S(2)	0.47346(7) 0.9102(2)	0.47371(0) 0.1519(2)	0.57575(5) 0.10667(11)	0.01388(13)
$\mathbf{N}(1)$	0.8105(2) 0.2750(2)	0.1318(2) 0.6158(2)	0.19007(11) 0.18172(10)	0.0148(4) 0.0222(4)
O(1)	0.3750(2)	0.0158(2) 0.2484(2)	0.181/2(10) 0.52867(11)	0.0232(4)
O(2)	0.2227(2) 0.7204(2)	0.3464(2) 0.1524(2)	0.33807(11) 0.47764(12)	0.0288(4)
O(3)	0.7204(3)	0.1534(3)	0.47764(13)	0.0345(5)
O(4)	0.4666(3)	-0.0185(2)	0.40865(11)	0.0270(4)
C(1)	0.4404(3)	0.5110(3)	0.21455(13)	0.0146(4)
C(2)	0.30/5(3)	0.3215(3)	0.48557(13)	0.01/8(5)
C(3)	0.616/(3)	0.2016(3)	0.44650(14)	0.0212(5)
C(4)	0.4596(3)	0.0941(3)	0.40197(13)	0.0174(5)
C(5)	0.1388(3)	0.5205(3)	0.3247(2)	0.0318(7)
C(6)	0.1392(4)	0.6052(4)	0.3825(2)	0.03/9(7)
C(/)	0.2825(3)	0.6322(3)	0.38309(17)	0.028/(6)
C(8)	0.9547(3)	0.0757(3)	0.14429(15)	0.0287(6)
C(9)	0.9512(3)	0.1483(3)	0.06958(14)	0.0222(5)
C(10)	1.0131(4)	-0.0809(4)	0.1419(2)	0.0435(8)
C(11)	0.8607(3)	0.3998(3)	0.19396(13)	0.0152(4)
C(12)	1.0157(3)	0.3696(3)	0.19598(15)	0.0228(5)
C(13)	1.0862(3)	0.4415(4)	0.14912(16)	0.0307(7)
C(14)	1.0040(4)	0.5451(4)	0.10003(16)	0.0303(6)
C(15)	0.8503(4)	0.5766(3)	0.09744(16)	0.0276(6)
C(16)	0.7800(3)	0.5044(3)	0.14412(14)	0.0208(5)
C(17)	0.8908(3)	0.2296(3)	0.32218(13)	0.0146(4)
C(18)	0.9848(4)	0.0857(3)	0.33491(17)	0.0285(6)
C(19)	1.0729(4)	0.0444(3)	0.39202(18)	0.0335(7)
C(20)	1.0675(3)	0.1466(3)	0.43731(15)	0.0226(5)
C(21)	0.9739(3)	0.2904(3)	0.42483(13)	0.0171(5)
C(22)	0.8852(3)	0.3326(3)	0.36783(13)	0.0147(4)
C(23)	0.5890(3)	0.1809(3)	0.10479(13)	0.0155(5)
C(24)	0.6396(3)	0.0560(3)	0.06480(14)	0.0195(5)
C(25)	0.6225(3)	0.0646(3)	-0.00891(14)	0.0220(5)
C(26)	0.5525(4)	0.1969(3)	-0.04319(14)	0.0258(6)
C(27)	0.4997(4)	0.3210(3)	-0.00392(15)	0.0278(6)
C(28)	0.5178(3)	0.3137(3)	0.06962(14)	0.0211(5)
C(29)	0.6148(3)	0.0063(3)	0.23047(13)	0.0160(5)
C(30)	0.4810(3)	-0.0069(3)	0.22290(14)	0.0204(5)
C(31)	0.4654(4)	-0.1306(3)	0.24701(15)	0.0250(6)
C(32)	0.5835(4)	-0.2424(3)	0.27833(16)	0.0268(6)
C(33)	0.7155(3)	-0.2293(3)	0.28700(17)	0.0299(6)
C(34)	0.7304(3)	-0.1047(3)	0.26377(15)	0.0235(5)
-()		0.1017(0)	0.20077(10)	5.0200(0)

Fe(1)-C(1)	1.743(2)	Fe(1) - P(1)	2.2124(7)
Fe(1) - P(2)	2.2137(7)	Fe(1)-S(2)	2.2203(7)
Fe(1)-S(1)	2.2214(7)	Fe(1)– $Fe(2)$	2.6236(5)
Fe(2)-C(3)	1.793(3)	Fe(2)-C(2)	1.794(3)
Fe(2)-C(4)	1.798(3)	Fe(2)-S(2)	2.2524(7)
Fe(2)-S(1)	2.2598(7)	P(1) - N(1)	1.712(2)
P(1)-C(17)	1.817(2)	P(1)-C(11)	1.837(2)
P(1) - P(2)	2.5803(8)	P(2) - N(1)	1.714(2)
P(2)-C(29)	1.818(2)	P(2)-C(23)	1.838(2)
S(1)-C(5)	1.825(3)	S(2)-C(7)	1.838(3)
N(1)-C(8)	1,498(3)	O(1)-C(1)	1.163(3)
O(2) - C(2)	1.143(3)	O(3) - C(3)	1.136(3)
O(4) - C(4)	1.138(3)	C(5) - C(6)	1.446(5)
C(6) - C(7)	1.540(5)	C(8) - C(10)	1.466(5)
C(8) - C(9)	1.514(4)	C(11) - C(16)	1.395(3)
C(11)-C(12)	1.401(3)	C(12) - C(13)	1.389(4)
C(13)-C(14)	1.386(4)	C(14) - C(15)	1.389(4)
C(15)-C(16)	1.388(4)	C(17) - C(18)	1.384(4)
C(17)-C(22)	1.399(3)	C(18) - C(19)	1.388(4)
C(19)-C(20)	1.389(4)	C(20)-C(21)	1.382(4)
C(21)-C(22)	1.388(3)	C(23) - C(28)	1.394(3)
C(23)-C(24)	1.399(3)	C(24) - C(25)	1.393(4)
C(25)-C(26)	1.381(4)	C(26)-C(27)	1.382(4)
C(27)-C(28)	1.393(4)	C(29) - C(34)	1.386(4)
C(29) - C(30)	1.397(4)	C(30) - C(31)	1.388(4)
C(31)-C(32)	1.383(4)	C(32) - C(33)	1.385(4)
C(33)-C(34)	1.388(4)		
C(1) - Fe(1) - P(1)	103.57(8)	C(1) - Fe(1) - P(2)	105.18(8)
P(1)-Fe(1)-P(2)	71.32(2)	C(1) - Fe(1) - S(2)	98.94(8)
P(1)-Fe(1)-S(2)	97.43(2)	P(2)-Fe(1)-S(2)	155.14(3)
C(1)-Fe(1)-S(1)	97.35(8)	P(1)-Fe(1)-S(1)	157.69(3)
P(2)-Fe(1)-S(1)	95.92(3)	S(2)-Fe(1)-S(1)	86.77(3)
C(1)-Fe(1)-Fe(2)	138.66(8)	P(1)-Fe(1)-Fe(2)	110.44(2)
P(2)-Fe(1)-Fe(2)	107.44(2)	S(2) - Fe(1) - Fe(2)	54.656(19)
S(1) - Fe(1) - Fe(2)	54.848(18)	C(3)-Fe(2)-C(2)	97.06(12)
C(3)-Fe(2)-C(4)	89.11(12)	C(2)-Fe(2)-C(4)	94.50(11)
C(3)-Fe(2)-S(2)	89.11(8)	C(2)-Fe(2)-S(2)	101.91(8)
C(4)-Fe(2)-S(2)	163.59(8)	C(3)-Fe(2)-S(1)	157.61(9)
C(2)-Fe(2)-S(1)	105.29(8)	C(4)-Fe(2)-S(1)	90.40(8)
S(2)-Fe(2)-S(1)	85.09(2)	C(3)– $Fe(2)$ – $Fe(1)$	106.30(8)
C(2)-Fe(2)-Fe(1)	144.71(8)	C(4)-Fe(2)-Fe(1)	111.62(8)
S(2)-Fe(2)-Fe(1)	53.519(18)	S(1)-Fe(2)-Fe(1)	53.488(18)
N(1)-P(1)-C(17)	108.07(11)	N(1)-P(1)-C(11)	105.35(10)
C(17)-P(1)-C(11)	100.33(11)	N(1)-P(1)-Fe(1)	95.50(7)
C(17)-P(1)-Fe(1)	121.02(8)	C(11)-P(1)-Fe(1)	124.68(8)
N(1)-P(1)-P(2)	41.16(7)	C(17) - P(1) - P(2)	127.57(8)
C(11)–P(1)–P(2)	125.21(8)	Fe(1)-P(1)-P(2)	54.36(2)
N(1)-P(2)-C(29)	109.20(11)	N(1)–P(2)–C(23)	106.81(10)
C(29)–P(2)–C(23)	99.69(11)	N(1)-P(2)-Fe(1)	95.40(7)
C(29)–P(2)–Fe(1)	120.60(8)	C(23)-P(2)-Fe(1)	124.02(8)
N(1)-P(2)-P(1)	41.10(7)	C(29) - P(2) - P(1)	128.33(8)
C(23)–P(2)–P(1)	126.14(8)	Fe(1)-P(2)-P(1)	54.32(2)

Table 3. Bond lengths [Å] and angles $[\circ]$ for str0540.

C(5)-S(1)-Fe(1)	109.21(10)	C(5)-S(1)-Fe(2)	111.89(12)
Fe(1)-S(1)-Fe(2)	71.66(2)	C(7)-S(2)-Fe(1)	109.92(11)
C(7)-S(2)-Fe(2)	109.84(9)	Fe(1)-S(2)-Fe(2)	71.83(2)
C(8)-N(1)-P(1)	126.24(19)	C(8)-N(1)-P(2)	132.32(19)
P(1)-N(1)-P(2)	97.74(10)	O(1)-C(1)-Fe(1)	172.6(2)
O(2)-C(2)-Fe(2)	177.9(2)	O(3)-C(3)-Fe(2)	175.3(2)
O(4)-C(4)-Fe(2)	173.0(2)	C(6)-C(5)-S(1)	117.5(2)
C(5)-C(6)-C(7)	119.0(3)	C(6)-C(7)-S(2)	117.8(2)
C(10)-C(8)-N(1)	115.7(3)	C(10)-C(8)-C(9)	113.9(3)
N(1)-C(8)-C(9)	113.5(2)	C(16)-C(11)-C(12)	118.1(2)
C(16)-C(11)-P(1)	120.32(18)	C(12)-C(11)-P(1)	121.3(2)
C(13)-C(12)-C(11)	120.5(3)	C(14)-C(13)-C(12)	120.5(3)
C(13)-C(14)-C(15)	119.7(3)	C(16)–C(15)–C(14)	119.8(3)
C(15)-C(16)-C(11)	121.4(2)	C(18)–C(17)–C(22)	119.2(2)
C(18)-C(17)-P(1)	123.82(19)	C(22)-C(17)-P(1)	116.99(18)
C(17)–C(18)–C(19)	120.4(3)	C(18)–C(19)–C(20)	120.5(3)
C(21)-C(20)-C(19)	119.4(2)	C(20)-C(21)-C(22)	120.5(2)
C(21)–C(22)–C(17)	120.1(2)	C(28)–C(23)–C(24)	118.5(2)
C(28)–C(23)–P(2)	119.63(19)	C(24)-C(23)-P(2)	121.82(19)
C(25)-C(24)-C(23)	120.6(2)	C(26)–C(25)–C(24)	120.3(2)
C(25)-C(26)-C(27)	119.6(2)	C(26)–C(27)–C(28)	120.6(3)
C(27)–C(28)–C(23)	120.4(2)	C(34)–C(29)–C(30)	119.1(2)
C(34)-C(29)-P(2)	123.0(2)	C(30)–C(29)–P(2)	117.81(19)
C(31)–C(30)–C(29)	120.5(3)	C(32)-C(31)-C(30)	119.9(3)
C(31)–C(32)–C(33)	119.9(3)	C(32)–C(33)–C(34)	120.3(3)
C(29)-C(34)-C(33)	120.3(3)		

Table 4. Anisotropic displacement parameters (Å²) for str0540. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

	\mathbf{U}^{11}	U^{22}	U^{33}	U ²³	U^{13}	U^{12}
Fe(1)	0.01041(16)	0.01068(16)	0.01018(16)	0.00089(11)	-0.00100(12)	-0.00368(13)
Fe(2)	0.01536(17)	0.01292(17)	0.01098(17)	0.00079(12)	-0.00041(12)	-0.00654(14)
P(1)	0.0107(3)	0.0125(3)	0.0105(3)	-0.0007(2)	-0.0011(2)	-0.0038(2)
P(2)	0.0139(3)	0.0121(3)	0.0110(3)	0.0002(2)	-0.0024(2)	-0.0055(2)
S (1)	0.0113(3)	0.0157(3)	0.0191(3)	0.0035(2)	-0.0024(2)	-0.0051(2)
S(2)	0.0195(3)	0.0136(3)	0.0139(3)	-0.0026(2)	0.0025(2)	-0.0079(2)
N(1)	0.0143(9)	0.0142(9)	0.0134(9)	-0.0031(7)	-0.0002(7)	-0.0041(8)
O(1)	0.0250(10)	0.0168(9)	0.0234(10)	0.0056(7)	-0.0064(8)	-0.0054(8)
O(2)	0.0281(11)	0.0318(11)	0.0188(10)	-0.0004(8)	0.0038(8)	-0.0087(9)
O(3)	0.0322(11)	0.0435(13)	0.0381(12)	0.0191(10)	-0.0175(10)	-0.0251(10)
O(4)	0.0393(12)	0.0197(10)	0.0230(10)	0.0003(7)	0.0004(8)	-0.0154(9)
C(1)	0.0139(11)	0.0144(11)	0.0143(11)	-0.0013(8)	-0.0014(8)	-0.0053(9)
C(2)	0.0199(12)	0.0164(11)	0.0152(11)	0.0009(9)	-0.0022(9)	-0.0067(10)
C(3)	0.0258(13)	0.0239(13)	0.0191(12)	0.0058(10)	-0.0045(10)	-0.0163(11)
C(4)	0.0187(12)	0.0198(12)	0.0127(11)	-0.0005(9)	-0.0005(9)	-0.0080(10)
C(5)	0.0112(12)	0.0193(13)	0.057(2)	0.0061(13)	-0.0018(12)	-0.0016(10)
C(6)	0.0307(16)	0.0303(16)	0.0410(18)	-0.0075(13)	-0.0082(14)	-0.0005(13)
C(7)	0.0261(14)	0.0122(12)	0.0383(16)	-0.0062(11)	0.0126(12)	-0.0046(11)
C(8)	0.0229(14)	0.0267(14)	0.0192(13)	-0.0046(10)	0.0059(11)	0.0023(11)
C(9)	0.0213(13)	0.0253(13)	0.0185(12)	-0.0065(10)	0.0059(10)	-0.0108(11)
C(10)	0.0384(19)	0.0377(19)	0.044(2)	-0.0084(15)	0.0050(15)	-0.0095(16)
C(11)	0.0164(11)	0.0194(12)	0.0114(10)	-0.0013(8)	0.0000(8)	-0.0096(10)
C(12)	0.0197(12)	0.0322(15)	0.0191(12)	0.0028(10)	-0.0037(10)	-0.0139(11)
C(13)	0.0225(14)	0.0492(19)	0.0270(15)	0.0048(13)	-0.0026(11)	-0.0229(14)
C(14)	0.0332(16)	0.0440(18)	0.0221(14)	0.0063(12)	0.0002(12)	-0.0270(14)
C(15)	0.0293(15)	0.0323(15)	0.0216(13)	0.0075(11)	-0.0032(11)	-0.0153(13)
C(16)	0.0179(12)	0.0252(13)	0.0195(12)	0.0036(10)	-0.0032(10)	-0.0100(10)
C(17)	0.0140(11)	0.0164(11)	0.0126(10)	0.0001(8)	-0.0029(8)	-0.0056(9)
C(18)	0.0346(16)	0.0159(13)	0.0338(16)	-0.0031(11)	-0.0188(13)	-0.0049(12)
C(19)	0.0409(18)	0.0169(13)	0.0403(17)	0.0035(12)	-0.0268(14)	-0.0042(12)
C(20)	0.0238(13)	0.0243(13)	0.0210(13)	0.0035(10)	-0.0107(10)	-0.0099(11)
C(21)	0.0176(11)	0.0217(12)	0.0147(11)	-0.0018(9)	-0.0013(9)	-0.0112(10)
C(22)	0.0143(11)	0.0141(11)	0.0142(11)	-0.0004(8)	0.0003(8)	-0.0055(9)
C(23)	0.0168(11)	0.0216(12)	0.0109(10)	0.0000(9)	-0.0027(8)	-0.0107(10)
C(24)	0.0210(12)	0.0213(12)	0.0172(12)	-0.0012(9)	-0.0029(9)	-0.0100(10)
C(25)	0.0221(13)	0.0297(14)	0.0181(12)	-0.0053(10)	-0.0021(10)	-0.0141(11)
C(26)	0.0349(15)	0.0378(16)	0.0135(12)	0.0025(10)	-0.0059(11)	-0.0233(13)
C(27)	0.0422(17)	0.0265(14)	0.0185(13)	0.0067(10)	-0.0123(12)	-0.0171(13)
C(28)	0.0294(14)	0.0197(12)	0.0168(12)	0.0013(9)	-0.0066(10)	-0.0123(11)
C(29)	0.0216(12)	0.0123(11)	0.0148(11)	-0.0006(8)	0.0000(9)	-0.0089(9)
C(30)	0.0267(13)	0.0200(12)	0.0181(12)	0.0015(9)	-0.0063(10)	-0.0129(11)
C(31)	0.0341(15)	0.0260(14)	0.0216(13)	-0.0048(10)	0.0005(11)	-0.0197(12)
C(32)	0.0348(15)	0.0167(12)	0.0268(14)	-0.0011(10)	0.0076(12)	-0.0133(12)
C(33)	0.0254(14)	0.0163(13)	0.0377(16)	0.0094(11)	0.0002(12)	-0.0033(11)
C(34)	0.0177(12)	0.0196(13)	0.0293(14)	0.0047(10)	0.0000(10)	-0.0067(10)

Table 5.	Hydrogen coordinates and isotropic displacement parameters (A	$Å^2$)
for str054	40.	

	Х	У	Z	U
H(5A)	0.1364	0.5759	0.2782	0.038
H(5B)	0.0411	0.5098	0.3345	0.038
H(6A)	0.1224	0.5580	0.4296	0.045
H(6B)	0.0484	0.7002	0.3811	0.045
H(7A)	0.2677	0.6816	0.4290	0.034
H(7B)	0.2849	0.6996	0.3422	0.034
H(8A)	1.0362	0.0888	0.1651	0.034
H(9A)	1.0488	0.0939	0.0381	0.033
H(9B)	0.9381	0.2464	0.0746	0.033
H(9C)	0.8645	0.1517	0.0476	0.033
H(10A)	1.0128	-0.1205	0.1919	0.065
H(10B)	1.1192	-0.1229	0.1160	0.065
H(10C)	0.9464	-0.1038	0.1163	0.065
H(12A)	1.0729	0.2993	0.2297	0.027
H(13A)	1.1915	0.4194	0.1507	0.037
H(14A)	1.0526	0.5944	0.0683	0.036
H(15A)	0.7934	0.6473	0.0638	0.033
H(16A)	0.6747	0.5266	0.1421	0.025
H(18A)	0.9889	0.0149	0.3044	0.034
H(19A)	1.1375	-0.0546	0.4002	0.040
H(20A)	1.1277	0.1180	0.4765	0.027
H(21A)	0.9701	0.3608	0.4555	0.020
H(22A)	0.8207	0.4317	0.3598	0.018
H(24A)	0.6860	-0.0355	0.0881	0.023
H(25A)	0.6591	-0.0210	-0.0357	0.026
H(26A)	0.5407	0.2025	-0.0934	0.031
H(27A)	0.4507	0.4121	-0.0273	0.033
H(28A)	0.4813	0.3998	0.0960	0.025
H(30A)	0.4001	0.0695	0.2011	0.024
H(31A)	0.3738	-0.1386	0.2420	0.030
H(32A)	0.5741	-0.3282	0.2939	0.032
H(33A)	0.7961	-0.3057	0.3089	0.036
H(34A)	0.8203	-0.0956	0.2707	0.028

Table 6. Torsion angles $[^{\circ}]$ for str0540.

C(1)-Fe(1)-Fe(2)-C(3)	-135.15(15)	P(1)-Fe(1)-Fe(2)-C(3)	8.22(9)
P(2)-Fe(1)-Fe(2)-C(3)	84.26(9)	S(2)-Fe(1)-Fe(2)-C(3)	-76.33(9)
S(1)-Fe(1)-Fe(2)-C(3)	169.15(9)	C(1)-Fe(1)-Fe(2)-C(2)	-5.74(19)
P(1)-Fe(1)-Fe(2)-C(2)	137.64(15)	P(2)-Fe(1)-Fe(2)-C(2)	-146.32(15)
S(2)-Fe(1)-Fe(2)-C(2)	53.09(15)	S(1)-Fe(1)-Fe(2)-C(2)	-61.43(15)
C(1)-Fe(1)-Fe(2)-C(4)	129.20(15)	P(1)-Fe(1)-Fe(2)-C(4)	-87.43(9)
P(2)-Fe(1)-Fe(2)-C(4)	-11.39(9)	S(2) - Fe(1) - Fe(2) - C(4)	-171.98(9)
S(1)-Fe(1)-Fe(2)-C(4)	73.50(9)	C(1)-Fe(1)-Fe(2)-S(2)	-58.82(12)
P(1)-Fe(1)-Fe(2)-S(2)	84.55(3)	P(2)-Fe(1)-Fe(2)-S(2)	160.59(3)
S(1)-Fe(1)-Fe(2)-S(2)	-114.52(3)	C(1)-Fe(1)-Fe(2)-S(1)	55.70(12)
P(1)-Fe(1)-Fe(2)-S(1)	-160.93(3)	P(2)-Fe(1)-Fe(2)-S(1)	-84.89(3)
S(2)-Fe(1)-Fe(2)-S(1)	114.52(3)	C(1)-Fe(1)-P(1)-N(1)	-103.15(11)
P(2)-Fe(1)-P(1)-N(1)	-1.45(7)	S(2) - Fe(1) - P(1) - N(1)	155.74(7)
S(1) - Fe(1) - P(1) - N(1)	56.04(10)	Fe(2) - Fe(1) - P(1) - N(1)	100.76(7)
C(1)-Fe(1)-P(1)-C(17)	141.92(12)	P(2) - Fe(1) - P(1) - C(17)	-116.38(10)
S(2) - Fe(1) - P(1) - C(17)	40.81(10)	S(1) - Fe(1) - P(1) - C(17)	-58.89(12)
Fe(2) - Fe(1) - P(1) - C(17)	$-14\ 16(10)$	C(1) - Fe(1) - P(1) - C(11)	9.81(13)
P(2) - Fe(1) - P(1) - C(11)	111 51(10)	S(2) - Fe(1) - P(1) - C(11)	-91.30(10)
S(1) - Fe(1) - P(1) - C(11)	169 00(10)	$F_{e}(2) - F_{e}(1) - P(1) - C(11)$	-14628(9)
C(1) - Fe(1) - P(1) - P(2)	-101.70(8)	$S(2) = F_{e}(1) = P(1) = P(2)$	140.20(2) 157 19(3)
S(1) = Fc(1) = F(1) = F(2) S(1) = Fe(1) = P(1) = P(2)	57 49(7)	$F_{e}(2) = F_{e}(1) = F_{e}(1) = F_{e}(2)$	107.17(3) 102.22(2)
C(1) = Fe(1) = P(2) = N(1)	100.94(11)	P(1) = Fe(1) = P(2) = N(1)	102.22(2) 1 45(7)
S(2) - Fe(1) - P(2) - N(1)	-64.67(10)	S(1) - Fe(1) - P(2) - N(1)	-15977(7)
$F_{e}(2) = F_{e}(1) = P(2) = N(1)$	-104.82(7)	C(1) - Fe(1) - P(2) - C(29)	-142.98(13)
P(1) = Fe(1) = P(2) = C(29)	104.02(7) 117 54(10)	S(2) = Fe(1) = P(2) = C(29)	51 42(12)
S(1) - Fe(1) - P(2) - C(29)	-43.69(10)	$F_{e}(2) - F_{e}(1) - P(2) - C(29)$	11.42(12)
C(1) - Fe(1) - P(2) - C(23)	-1354(13)	P(1) = Fe(1) = P(2) = C(23)	-113.03(10)
$S(2) = E_{e}(1) = P(2) = C(23)$	_179 15(10)	S(1) = Fe(1) = P(2) = C(23)	85 74(10)
$F_{e}(2) - F_{e}(1) - P(2) - C(23)$	14070(9)	C(1) = F(1) = F(2) = C(23) C(1) = F(2) = P(2)	99.49(8)
S(2) = E(1) = I(2) = E(23) $S(2) = E_0(1) = D(2) = D(1)$	-66.12(6)	S(1) = C(1) = C(2) = C(1) S(1) = C(1) = C(2) = C(1)	-161.23(3)
$F_{e}(2) - F_{e}(1) - P(2) - P(1)$	-106.72(0)	C(17) = P(1) = P(2) = N(1)	-101.23(3) $-73 \ 11(14)$
C(11) P(1) P(2) N(1)	-100.27(2) 71.65(14)	$E_{0}(1) P(1) P(2) N(1)$	-177.80(11)
N(1) - P(1) - P(2) - C(29)	71.03(14) 74.43(15)	$\Gamma_{C}(1) - \Gamma(1) - \Gamma(2) - \Gamma(1)$ $\Gamma(17) - P(1) - P(2) - \Gamma(29)$	-177.80(11) 1.02(15)
C(11) - P(1) - P(2) - C(29)	1/6.08(1/1)	$E_{P}(1) - P(1) - P(2) - C(29)$	$-103\ 37(10)$
N(1) P(1) P(2) C(23)	-73.01(15)	C(17) P(1) P(2) C(23)	-105.37(10) -146.43(14)
C(11) P(1) P(2) C(23)	-73.01(13) 1.36(15)	$E_0(1) P(1) P(2) C(23)$	-140.43(14) 100.18(10)
$N(1) P(1) P(2) F_{0}(1)$	-1.30(13) 177 80(11)	$C(17) P(1) P(2) F_{2}(23)$	109.18(10) 104.30(10)
$C(11) P(1) P(2) E_0(1)$	110 55(10)	C(1) = C(1) = C(1) C(1) = C(1) = C(1)	104.39(10) 20.12(15)
C(11) - F(1) - F(2) - F(1) $D(1) = E_2(1) = S(1) - C(5)$	-110.33(10) 161.25(12)	C(1) - C(1) - S(1) - C(3) $D(2) = E_2(1) - S(1) - C(5)$	-39.13(13) 145.22(12)
S(2) = Fe(1) = S(1) = C(3)	59.48(12)	F(2) = F(1) = S(1) = C(3) $F_{e}(2) = F_{e}(1) = S(1) = C(5)$	-143.32(12) 107 /0(12)
$C(1) = E_0(1) = S(1) = C(3)$	146.62(8)	$P(1) = F_0(1) = S(1) = C(3)$	107.49(12) 52 76(7)
C(1) - Fe(1) - S(1) - Fe(2) D(2) = Fa(1) - S(1) - Fa(2)	-140.02(6) 107.10(2)	F(1) - Fe(1) - S(1) - Fe(2) $S(2) = E_2(1) - S(1) - Fe(2)$	33.70(7)
F(2) - Fe(1) - S(1) - Fe(2)	107.19(2) 122.2(2)	S(2) = Fe(1) = S(1) = Fe(2) C(2) = Fe(2) = S(1) = C(5)	-46.01(2)
C(3) = Fe(2) = S(1) = C(3)	-132.2(2) 120.14(12)	C(2) = Fe(2) = S(1) = C(3)	44.30(13)
C(4) - Fe(2) - S(1) - C(5)	139.14(13)	S(2) = Fe(2) = S(1) = C(3)	-30.00(11)
Fe(1) - Fe(2) - S(1) - C(5)	-103.91(11)	C(3) - Fe(2) - S(1) - Fe(1)	-28.3(2)
U(2) - Fe(2) - S(1) - Fe(1)	148.27(8)	C(4) - Fe(2) - S(1) - Fe(1)	-116.95(8)
S(2) - Fe(2) - S(1) - Fe(1) P(1) = Fe(1) - S(2) - S(7)	47.24(2)	U(1) - Fe(1) - S(2) - U(7)	39.98(13)
r(1)-re(1)-S(2)-C(7)	145.05(10)	P(2) - Fe(1) - S(2) - C(7)	-154.08(11)
S(1) - Fe(1) - S(2) - C(7)	-56.96(10)	Fe(2) - Fe(1) - S(2) - C(7)	-105.13(10)
C(1)-Fe(1)-S(2)-Fe(2)	145.11(8)	P(1)-Fe(1)-S(2)-Fe(2)	-109.82(2)

P(2)-Fe(1)-S(2)-Fe(2)	-48.95(7)	S(1)-Fe(1)-S(2)-Fe(2)	48.17(2)
C(3)-Fe(2)-S(2)-C(7)	-143.63(14)	C(2)-Fe(2)-S(2)-C(7)	-46.60(14)
C(4)-Fe(2)-S(2)-C(7)	132.6(3)	S(1)-Fe(2)-S(2)-C(7)	58.02(11)
Fe(1)-Fe(2)-S(2)-C(7)	105.24(11)	C(3)-Fe(2)-S(2)-Fe(1)	111.13(9)
C(2)-Fe(2)-S(2)-Fe(1)	-151.83(8)	C(4)-Fe(2)-S(2)-Fe(1)	27.3(3)
S(1)-Fe(2)-S(2)-Fe(1)	-47.22(2)	C(17)-P(1)-N(1)-C(8)	-72.7(2)
C(11)–P(1)–N(1)–C(8)	33.9(2)	Fe(1)-P(1)-N(1)-C(8)	162.2(2)
P(2)-P(1)-N(1)-C(8)	160.4(3)	C(17)-P(1)-N(1)-P(2)	126.96(11)
C(11)–P(1)–N(1)–P(2)	-126.46(11)	Fe(1)-P(1)-N(1)-P(2)	1.79(9)
C(29)-P(2)-N(1)-C(8)	74.6(2)	C(23)-P(2)-N(1)-C(8)	-32.3(3)
Fe(1)-P(2)-N(1)-C(8)	-160.3(2)	P(1)-P(2)-N(1)-C(8)	-158.5(3)
C(29)–P(2)–N(1)–P(1)	-126.85(11)	C(23)-P(2)-N(1)-P(1)	126.21(11)
Fe(1)-P(2)-N(1)-P(1)	-1.79(9)	P(1)-Fe(1)-C(1)-O(1)	-149.4(17)
P(2)-Fe(1)-C(1)-O(1)	136.7(17)	S(2)-Fe(1)-C(1)-O(1)	-49.4(17)
S(1)-Fe(1)-C(1)-O(1)	38.4(17)	Fe(2)-Fe(1)-C(1)-O(1)	-4.5(18)
C(3)-Fe(2)-C(2)-O(2)	-53(7)	C(4)-Fe(2)-C(2)-O(2)	37(7)
S(2)-Fe(2)-C(2)-O(2)	-143(7)	S(1)-Fe(2)-C(2)-O(2)	129(7)
Fe(1) - Fe(2) - C(2) - O(2)	176(100)	C(2)-Fe(2)- $C(3)$ -O(3)	34(3)
C(4) - Fe(2) - C(3) - O(3)	-61(3)	S(2) - Fe(2) - C(3) - O(3)	135(3)
S(1) - Fe(2) - C(3) - O(3)	-150(3)	Fe(1) - Fe(2) - C(3) - O(3)	-173(3)
C(3)-Fe(2)-C(4)-O(4)	65.6(19)	C(2)-Fe(2)- $C(4)$ - $O(4)$	-31.4(19)
S(2) - Fe(2) - C(4) - O(4)	149 4(17)	S(1) - Fe(2) - C(4) - O(4)	-1368(19)
Fe(1) - Fe(2) - C(4) - O(4)	172.8(19)	Fe(1)-S(1)-C(5)-C(6)	-66.2(3)
Fe(2)-S(1)-C(5)-C(6)	11.1(3)	S(1)-C(5)-C(6)-C(7)	54.7(4)
C(5)-C(6)-C(7)-S(2)	-51.2(4)	Fe(1) - S(2) - C(7) - C(6)	59.1(3)
Fe(2) = S(2) = C(7) = C(6)	-18.1(3)	P(1) - N(1) - C(8) - C(10)	141.7(3)
P(2) - N(1) - C(8) - C(10)	-650(4)	P(1)-N(1)-C(8)-C(9)	-83.8(3)
P(2)-N(1)-C(8)-C(9)	69.5(3)	N(1)-P(1)-C(11)-C(16)	87.1(2)
C(17) = P(1) = C(11) = C(16)	-160.8(2)	Fe(1) - P(1) - C(11) - C(16)	-210(2)
P(2) = P(1) = C(11) = C(16)	467(2)	N(1) - P(1) - C(11) - C(12)	-87.6(2)
C(17) - P(1) - C(11) - C(12)	245(2)	Fe(1) - P(1) - C(11) - C(12)	$164\ 28(18)$
P(2)-P(1)-C(11)-C(12)	-127.98(19)	C(16)-C(11)-C(12)-C(13)	-0.5(4)
P(1)-C(11)-C(12)-C(13)	174.3(2)	C(11)-C(12)-C(13)-C(14)	0.5(5)
C(12)-C(13)-C(14)-C(15)	-0.4(5)	C(13)-C(14)-C(15)-C(16)	0.2(5)
C(14)-C(15)-C(16)-C(11)	-0.1(4)	C(12) - C(11) - C(16) - C(15)	0.2(0) 0.3(4)
P(1)-C(11)-C(16)-C(15)	-174.6(2)	N(1)-P(1)-C(17)-C(18)	-61(3)
C(11) = P(1) = C(17) = C(18)	-1161(2)	Fe(1) = P(1) = C(17) = C(18)	102.2(2)
P(2)-P(1)-C(17)-C(18)	35.5(3)	N(1)-P(1)-C(17)-C(22)	174.62(18)
C(11) = P(1) = C(17) = C(22)	64 6(2)	Fe(1) = P(1) = C(17) = C(22)	-77 1(2)
P(2) = P(1) = C(17) = C(22)	-14381(15)	C(22) = C(17) = C(18) = C(19)	-0.4(4)
P(1)-C(17)-C(18)-C(19)	-1797(3)	C(17) - C(18) - C(19) - C(20)	0.1(1) 0.3(5)
C(18) = C(19) = C(20) = C(21)	-0.3(5)	C(19)-C(20)-C(21)-C(22)	0.3(3)
C(20)-C(21)-C(22)-C(17)	-0.4(4)	C(18) - C(17) - C(22) - C(21)	0.3(4) 0.4(4)
P(1) - C(17) - C(22) - C(21)	17974(18)	N(1) = P(2) = C(22) = C(21)	-95 4(2)
C(29) = P(2) = C(23) = C(28)	177.74(10) 151 0(2)	$F_{e}(1) = P(2) = C(23) = C(28)$	134(2)
P(1) = P(2) = C(23) = C(28)	-543(2)	N(1) - P(2) - C(23) - C(24)	81 1(2)
C(29) - P(2) - C(23) - C(24)	-325(2)	$E_{P}(1) = P(2) = C(23) = C(24)$	-170.09(17)
P(1) = P(2) = C(23) = C(24)	-32.3(2) 122 15(19)	C(28) = C(23) = C(24)	-170.09(17) 1 6(4)
$P(2)_C(23)_C(24)_C(25)$	-174 0(2)	C(23) = C(24) = C(25) = C(25)	-1.3(4)
C(24) = C(25) = C(24) = C(25)	-177.9(2) 0 2(4)	C(25) = C(24) = C(25) = C(20) C(25) = C(26) = C(27) = C(28)	-1.3(4)
C(26) = C(27) = C(20) = C(27)	-0.2(4)	C(24) = C(23) = C(28) = C(27)	-0.9(4)
P(2) = C(23) = C(23) = C(23)	175 7(2)	N(1) = P(2) = C(20) = C(21)	157(2)
(2) (23) - (20) - (21)	1/3./(4)	11(1) 1(2) - C(2) - C(3+)	13.7(2)

$\begin{array}{l} C(23)-P(2)-C(29)-C(34)\\ P(1)-P(2)-C(29)-C(34)\\ C(23)-P(2)-C(29)-C(30)\\ P(1)-P(2)-C(29)-C(30)\\ P(2)-C(29)-C(30)-C(31)\\ C(30)-C(31)-C(32)-C(33)\\ C(30)-C(29)-C(34)-C(33)\\ \end{array}$	$127.5(2) \\ -26.4(3) \\ -55.8(2) \\ 150.40(16) \\ -178.2(2) \\ 1.4(4) \\ 2.2(4)$	Fe(1)-P(2)-C(29)-C(34) N(1)-P(2)-C(29)-C(30) Fe(1)-P(2)-C(29)-C(30) C(34)-C(29)-C(30)-C(31) C(29)-C(30)-C(31)-C(32) C(31)-C(32)-C(33)-C(34) P(2)-C(29)-C(34)-C(33)	$\begin{array}{r} -93.0(2) \\ -167.48(19) \\ 83.7(2) \\ -1.3(4) \\ -0.5(4) \\ -0.6(5) \\ 178.9(2) \end{array}$
C(30)–C(29)–C(34)–C(33) C(32)–C(33)–C(34)–C(29)	2.2(4) -1.2(4)	P(2)-C(29)-C(34)-C(33)	178.9(2)

Table 1. Crystal data and structure refinement for 3a.

str0463 $C_{34}H_{31}Fe_2NO_4P_2S_2$ 755.36 150(2) K MoKα, 0.71073 Å triclinic, P1bar a = 8.8977(5) Å $\alpha = 89.0140(10)^{\circ}$ b = 10.2309(6) Å $\beta = 79.5570(10)^{\circ}$ c = 19.2787(11) Å $\gamma = 75.4280(10)^{\circ}$ 1669.64(17) Å³ 2 1.502 g/cm^3 1.129 mm^{-1} 776 red, $0.24 \times 0.22 \times 0.14 \text{ mm}^3$ Bruker SMART APEX diffractometer ω rotation with narrow frames 2.06 to 28.25° h -11 to 11, k -13 to 13, 1 -25 to 25 98.7 % 14741 7671 ($R_{int} = 0.0127$) 7151 semi-empirical from equivalents 0.7734 and 0.8580 Patterson synthesis Full-matrix least-squares on F^2 0.0380, 0.8205 7671 / 0 / 406 R1 = 0.0263, wR2 = 0.0689R1 = 0.0284, wR2 = 0.07011.029 0.001 and 0.000 0.539 and –0.269 e ${\rm \AA}^{-3}$

Table 2. Ato	omic coordinates and equivalent isotropic displacement parameters (\AA^2)
for str0463.	U_{eq} is defined as one third of the trace of the orthogonalized U ^{ij} tensor.

	Х	У	Z	U_{eq}
D (1)	0.004(0)	0.50400(0)	0.000/05/10	0.01705(6)
Fe(1)	0.98468(2)	0.59488(2)	0.208605(10)	0.01/25(6)
Fe(2)	0.87880(2)	0.68/85(2)	0.330/36(10)	0.01638(6)
P(1)	0.76343(4)	0.68615(4)	0.169791(18)	0.01594(8)
P(2)	0.64051(4)	0.79684(4)	0.315263(18)	0.01473(8)
S(1)	0.83299(4)	0.49817(4)	0.289308(18)	0.01810(8)
S(2)	1.13583(4)	0.58508(4)	0.29153(2)	0.02214(8)
N(1)	0.60977(14)	0.77575(12)	0.23172(6)	0.0161(2)
O(1)	1.17996(15)	0.76043(14)	0.13304(7)	0.0357(3)
O(2)	1.12334(19)	0.36209(15)	0.11194(8)	0.0478(4)
O(3)	0.98132(16)	0.93806(14)	0.31716(8)	0.0407(3)
O(4)	0.80975(16)	0.67651(16)	0.48436(6)	0.0408(3)
C(1)	1.09759(18)	0.69959(17)	0.16260(8)	0.0241(3)
C(2)	1.0679(2)	0.45373(17)	0.14935(9)	0.0273(3)
C(3)	0.93887(18)	0.84070(17)	0.32277(9)	0.0250(3)
C(4)	0.83730(18)	0.68002(17)	0.42409(8)	0.0239(3)
C(5)	0.9491(2)	0.34171(16)	0.32073(9)	0.0283(3)
C(6)	1.0676(2)	0.35745(18)	0.36434(10)	0.0321(4)
C(7)	1.19772(19)	0.41568(18)	0.32513(9)	0.0299(4)
C(8)	0.45228(17)	0.82835(15)	0.21080(8)	0.0198(3)
C(9)	0.41278(19)	0.97313(16)	0.18990(8)	0.0248(3)
C(10)	0.2749(2)	1.05868(19)	0.21066(10)	0.0353(4)
C(11)	0.68309(18)	0.55811(15)	0.13511(8)	0.0204(3)
C(12)	0.55574(19)	0.51598(16)	0.17311(9)	0.0237(3)
C(13)	0.5011(2)	0.41590(18)	0.14489(10)	0.0330(4)
C(14)	0.5741(3)	0.35671(19)	0.07998(11)	0.0396(4)
C(15)	0.7034(3)	0.3948(2)	0.04265(10)	0.0390(4)
C(16)	0.7584(2)	0.49460(17)	0.07002(9)	0.0290(3)
C(17)	0.76663(18)	0.80778(15)	0.09921(8)	0.0216(3)
C(18)	0.6942(2)	0.80627(18)	0.04112(9)	0.0308(4)
C(19)	0.6934(3)	0.9081(2)	-0.00785(10)	0.0426(5)
C(20)	0.0557(3)	1.0125(2)	0.00759(11)	0.0457(5)
C(21)	0.8298(2)	1.0125(2) 1.01650(19)	0.05961(11)	0.0399(5)
C(21)	0.83467(19)	0.91424(17)	0.00001(11) 0.10787(9)	0.0399(3)
C(22)	0.05107(17) 0.46876(17)	0.76115(15)	0.37343(7)	0.0200(3)
C(24)	0.32361(18)	0.85797(17)	0.37313(7) 0.38851(8)	0.0248(3)
C(25)	0.32501(10) 0.19698(19)	0.03757(17) 0.8295(2)	0.30031(0) 0.43441(9)	0.0246(3) 0.0306(4)
C(25)	0.1000(10) 0.2123(2)	0.0299(2) 0.7048(2)	0.4541(9)	0.0300(4) 0.0316(4)
C(20)	0.2123(2) 0.3540(2)	0.7040(2) 0.6081/(18)	0.40504(9) 0.45062(9)	0.0310(4) 0.0278(3)
C(27)	0.3340(2) 0.48211(18)	0.00014(10) 0.63647(16)	0.43002(9) 0.40533(8)	0.0278(3)
C(20)	0.40211(10) 0.60538(17)	0.03047(10) 0.07824(14)	0.40333(8) 0.33220(8)	0.0220(3)
C(29)	0.00336(17) 0.5716(2)	1.97624(14)	0.33229(0) 0.40214(0)	0.0109(3)
C(30)	0.5710(2) 0.5610(2)	1.02340(17) 1 1503 $1(19)$	0.40214(7) 0.41820(10)	0.0275(3) 0.0346(4)
C(31)	0.3010(2) 0.5847(2)	1.13734(10)	0.41029(10) 0.36450(11)	0.0340(4)
C(32)	0.3047(2)	1.24000(17) 1.20121(17)	0.30439(11) 0.20527(10)	0.0341(4)
C(33)	0.0221(2)	1.20131(17)	0.29337(10)	0.0525(4)
U(34)	0.03283(19)	1.00003(10)	0.27908(9)	0.0250(3)

Fe(1)-C(1)	1.7689(16)	Fe(1)-C(2)	1.7751(17)
Fe(1) - P(1)	2.2119(4)	Fe(1) - S(1)	2.2537(4)
Fe(1) - S(2)	2.2540(4)	Fe(1)– $Fe(2)$	2.4816(3)
Fe(2)–C(3)	1.7712(17)	Fe(2)-C(4)	1.7750(16)
Fe(2)–P(2)	2.2036(4)	Fe(2)-S(2)	2.2579(4)
Fe(2)-S(1)	2.2671(4)	P(1) - N(1)	1.7177(12)
P(1)-C(17)	1.8293(15)	P(1)-C(11)	1.8300(15)
P(2) - N(1)	1.7078(12)	P(2) - C(29)	1.8280(15)
P(2)-C(23)	1.8362(15)	S(1) - C(5)	1.8326(16)
S(2)-C(7)	1.8267(18)	N(1) - C(8)	1,4946(18)
O(1)-C(1)	1.147(2)	O(2) - C(2)	1.142(2)
O(3) - C(3)	1.148(2)	O(4) - C(4)	1.145(2)
C(5) - C(6)	1.501(2)	C(6) - C(7)	1.511(3)
C(8) - C(9)	1.500(2)	C(9) - C(10)	1.313(2)
C(11) - C(12)	1 393(2)	C(11) = C(16)	1 396(2)
C(12) - C(13)	1 395(2)	C(13) - C(14)	1.376(2) 1.374(3)
C(12) - C(15)	1 382(3)	C(15) - C(16)	1.374(3) 1 387(2)
C(17) - C(18)	1.302(3) 1 392(2)	C(17) - C(22)	1.307(2) 1 398(2)
C(18) - C(19)	1.392(2) 1 393(2)	C(17) = C(22) C(19) = C(20)	1.370(2) 1.373(3)
C(10) - C(11)	1.393(2) 1 382(3)	C(13) = C(20) C(21) = C(22)	1.375(3) 1.386(2)
C(20) - C(21)	1.362(3) 1.304(2)	C(21) - C(22) C(23) - C(24)	1.300(2) 1.401(2)
C(23) - C(26)	1.394(2)	C(25) - C(24)	1.401(2) 1.282(2)
C(24) - C(23)	1.390(2)	C(23) = C(20)	1.362(3) 1.202(2)
C(26) - C(27)	1.379(3)	C(27) = C(28)	1.393(2)
C(29) - C(34)	1.385(2)	C(29) = C(30)	1.393(2)
C(30) - C(31)	1.387(2)	C(31) - C(32)	1.379(3)
C(32)-C(33)	1.375(3)	C(33)–C(34)	1.394(2)
C(1)–Fe(1)–C(2)	95.14(8)	C(1)–Fe(1)–P(1)	96.70(5)
C(2)-Fe(1)-P(1)	101.09(6)	C(1)-Fe(1)-S(1)	165.84(5)
C(2)-Fe(1)-S(1)	98.23(6)	P(1)-Fe(1)-S(1)	85.310(15)
C(1)-Fe(1)-S(2)	86.13(5)	C(2)-Fe(1)-S(2)	108.88(6)
P(1)-Fe(1)-S(2)	149.547(17)	S(1)-Fe(1)-S(2)	85.159(15)
C(1)-Fe(1)-Fe(2)	108.87(5)	C(2)-Fe(1)-Fe(2)	149.81(6)
P(1)-Fe(1)-Fe(2)	94.161(13)	S(1) - Fe(1) - Fe(2)	56.965(11)
S(2) - Fe(1) - Fe(2)	56.707(12)	C(3)-Fe(2)-C(4)	99.56(8)
C(3)-Fe(2)-P(2)	90.13(5)	C(4) - Fe(2) - P(2)	97.95(5)
C(3) - Fe(2) - S(2)	85.72(5)	C(4) - Fe(2) - S(2)	108.99(5)
P(2) - Fe(2) - S(2)	153.064(17)	C(3) - Fe(2) - S(1)	154 81(6)
C(4)-Fe(2)-S(1)	105 59(5)	P(2) - Fe(2) - S(1)	87 899(15)
S(2) - Fe(2) - S(1)	84 759(15)	C(3) - Fe(2) - Fe(1)	99 09(5)
C(4) = Fe(2) = Fe(1)	155 28(5)	P(2) = Fe(2) = Fe(1)	98 098(13)
S(2) = Fe(2) = Fe(1)	56 558(11)	S(1) = Fe(2) = Fe(1)	56 450(11)
N(1) - P(1) - C(17)	100.95(6)	N(1) - P(1) - C(11)	104 04(7)
C(17) P(1) C(11)	103.56(7)	N(1) = I(1) = C(11) $N(1) = D(1) = E_0(1)$	104.04(7) 115.67(4)
C(17) = C(11) $C(17) = D(1) = E_0(1)$	105.50(7) 118.04(5)	$C(11) P(1) F_0(1)$	113.07(4) 111.86(5)
C(17) - F(1) - F(1)	110.94(3) 107.27(6)	V(1) = F(1) - F(1)	111.00(3) 104.87(6)
N(1) - F(2) - C(29)	107.57(0)	N(1) - F(2) - C(23) $N(1) - D(2) - E_2(2)$	104.07(0) 112.96(4)
$C(27) - \Gamma(2) - C(23)$ $C(20) - D(2) - E_2(2)$	100.93(7) 111.01(5)	$\frac{1}{\Gamma(2)} = \frac{\Gamma(2)}{\Gamma(2)} = \frac{\Gamma(2)}{\Gamma(2)}$	112.00(4) $110 \leq 4(5)$
$C(29) - \Gamma(2) - \Gamma \mathcal{C}(2)$	111.01(3)	C(23) - F(2) - Fe(2)	113.04(3)
U(3) - S(1) - Fe(1)	111.42(0)	C(3) - S(1) - Fe(2)	113.0/(0)
re(1) - S(1) - re(2)	00.383(13)	C(7) - S(2) - Fe(1)	115.14(6)
U(7) - S(2) - Fe(2)	113.63(6)	Fe(1) - S(2) - Fe(2)	66./35(13)
C(8) - N(1) - P(2)	122.50(9)	C(8) - N(1) - P(1)	118.39(9)
P(2)-N(1)-P(1)	119.07(7)	O(1) - C(1) - Fe(1)	175.24(15)

Table 3. Bond lengths [Å] and angles [°] for str0463.

178.82(16)	O(3)-C(3)-Fe(2)	178.43(15)
179.23(17)	C(6)-C(5)-S(1)	116.08(12)
114.05(15)	C(6)-C(7)-S(2)	116.17(11)
116.40(12)	C(10)–C(9)–C(8)	123.95(16)
118.84(15)	C(12)–C(11)–P(1)	122.41(11)
118.62(13)	C(11)-C(12)-C(13)	120.16(15)
120.24(18)	C(13)-C(14)-C(15)	120.17(16)
120.12(17)	C(15)-C(16)-C(11)	120.41(17)
118.75(15)	C(18)-C(17)-P(1)	123.74(13)
117.28(12)	C(17)-C(18)-C(19)	119.99(18)
120.61(19)	C(19)-C(20)-C(21)	120.05(17)
119.91(19)	C(21)-C(22)-C(17)	120.66(18)
118.35(14)	C(28)–C(23)–P(2)	119.98(11)
121.65(12)	C(25)-C(24)-C(23)	120.37(16)
120.37(16)	C(27)-C(26)-C(25)	120.05(15)
119.92(16)	C(27)–C(28)–C(23)	120.92(15)
118.80(14)	C(34)-C(29)-P(2)	122.31(12)
118.25(12)	C(31)-C(30)-C(29)	120.77(16)
119.66(17)	C(33)–C(32)–C(31)	120.38(15)
119.99(17)	C(29)-C(34)-C(33)	120.35(16)
	178.82(16) $179.23(17)$ $114.05(15)$ $116.40(12)$ $118.84(15)$ $118.62(13)$ $120.24(18)$ $120.12(17)$ $118.75(15)$ $117.28(12)$ $120.61(19)$ $119.91(19)$ $118.35(14)$ $121.65(12)$ $120.37(16)$ $119.92(16)$ $118.80(14)$ $118.25(12)$ $119.66(17)$ $119.99(17)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Table 4. Anisotropic displacement parameters (Å²) for str0463. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U^{11}	U^{22}	U^{33}	U ²³	U^{13}	U^{12}
Fe(1)	0.01578(10)	0.02042(11)	0.01408(10)	0.00037(8)	-0.00139(7)	-0.00282(8)
Fe(2)	0.01558(10)	0.01987(11)	0.01390(10)	0.00037(8)	-0.00293(7)	-0.00468(8)
P(1)	0.01746(17)	0.01706(17)	0.01274(16)	0.00016(13)	-0.00224(13)	-0.00368(13)
P(2)	0.01596(17)	0.01512(16)	0.01295(16)	-0.00035(12)	-0.00187(12)	-0.00411(13)
S (1)	0.01838(16)	0.01757(16)	0.01755(16)	0.00147(13)	-0.00303(13)	-0.00330(13)
S(2)	0.01596(17)	0.0300(2)	0.01986(17)	0.00189(14)	-0.00394(13)	-0.00438(14)
N(1)	0.0157(5)	0.0190(6)	0.0127(5)	-0.0016(4)	-0.0031(4)	-0.0023(4)
O(1)	0.0294(6)	0.0486(8)	0.0338(7)	0.0150(6)	-0.0065(5)	-0.0189(6)
O(2)	0.0534(9)	0.0382(8)	0.0398(8)	-0.0151(6)	-0.0049(7)	0.0090(7)
O(3)	0.0327(7)	0.0332(7)	0.0641(10)	0.0103(6)	-0.0161(6)	-0.0182(6)
O(4)	0.0384(7)	0.0656(10)	0.0182(6)	0.0032(6)	-0.0050(5)	-0.0127(7)
C(1)	0.0208(7)	0.0324(8)	0.0185(7)	0.0032(6)	-0.0049(6)	-0.0052(6)
C(2)	0.0259(8)	0.0295(8)	0.0227(8)	-0.0006(6)	-0.0038(6)	-0.0006(6)
C(3)	0.0185(7)	0.0292(8)	0.0281(8)	0.0032(6)	-0.0067(6)	-0.0063(6)
C(4)	0.0198(7)	0.0311(8)	0.0212(7)	-0.0002(6)	-0.0057(6)	-0.0060(6)
C(5)	0.0287(8)	0.0201(7)	0.0341(9)	0.0082(6)	-0.0069(7)	-0.0022(6)
C(6)	0.0314(9)	0.0307(9)	0.0311(9)	0.0075(7)	-0.0090(7)	0.0002(7)
C(7)	0.0211(8)	0.0337(9)	0.0315(9)	0.0049(7)	-0.0090(6)	0.0023(7)
C(8)	0.0173(7)	0.0233(7)	0.0185(7)	-0.0004(5)	-0.0054(5)	-0.0031(5)
C(9)	0.0255(8)	0.0262(8)	0.0227(7)	0.0027(6)	-0.0080(6)	-0.0040(6)
C(10)	0.0317(9)	0.0286(9)	0.0391(10)	0.0034(7)	-0.0028(7)	0.0012(7)
C(11)	0.0239(7)	0.0194(7)	0.0180(7)	-0.0011(5)	-0.0073(6)	-0.0033(6)
C(12)	0.0258(8)	0.0216(7)	0.0246(8)	0.0008(6)	-0.0071(6)	-0.0062(6)
C(13)	0.0340(9)	0.0281(8)	0.0422(10)	0.0021(7)	-0.0135(8)	-0.0134(7)
C(14)	0.0504(12)	0.0297(9)	0.0459(11)	-0.0078(8)	-0.0217(9)	-0.0135(8)
C(15)	0.0530(12)	0.0337(10)	0.0298(9)	-0.0128(8)	-0.0093(8)	-0.0079(9)
C(16)	0.0335(9)	0.0290(8)	0.0223(8)	-0.0055(6)	-0.0031(6)	-0.0052(7)
C(17)	0.0213(7)	0.0220(7)	0.0165(7)	0.0039(5)	0.0018(5)	-0.0002(6)
C(18)	0.0367(9)	0.0311(9)	0.0193(7)	0.0025(6)	-0.0040(7)	0.0003(7)
C(19)	0.0535(12)	0.0421(11)	0.0203(8)	0.0089(8)	-0.0040(8)	0.0073(9)
C(20)	0.0480(12)	0.0385(11)	0.0346(10)	0.0214(8)	0.0090(9)	0.0053(9)
C(21)	0.0326(9)	0.0278(9)	0.0509(12)	0.0133(8)	0.0079(8)	-0.0043(7)
C(22)	0.0226(8)	0.0265(8)	0.0325(9)	0.0061(7)	0.0016(6)	-0.0037(6)
C(23)	0.0188(7)	0.0227(7)	0.0137(6)	-0.0021(5)	-0.0016(5)	-0.0079(6)
C(24)	0.0208(7)	0.0299(8)	0.0219(7)	0.0017(6)	-0.0030(6)	-0.0037(6)
C(25)	0.0186(7)	0.0441(10)	0.0261(8)	-0.0015(7)	-0.0009(6)	-0.0046(7)
C(26)	0.0232(8)	0.0531(11)	0.0220(8)	0.0017(7)	-0.0003(6)	-0.0185(8)
C(27)	0.0330(9)	0.0323(9)	0.0226(8)	0.0047(6)	-0.0037(6)	-0.0175(7)
C(28)	0.0233(7)	0.0233(7)	0.0202(7)	-0.0003(6)	-0.0020(6)	-0.0084(6)
C(29)	0.0181(7)	0.0169(6)	0.0215(7)	-0.0020(5)	-0.0039(5)	-0.0039(5)
C(30)	0.0349(9)	0.0261(8)	0.0227(8)	-0.0047(6)	-0.0001(6)	-0.0109(7)
C(31)	0.03/2(10)	0.0296(9)	0.0359(10)	-0.0150(7)	0.0008(8)	-0.0105(7)
C(32)	0.0300(9)	0.0185(7)	0.0544(12)	-0.0083(7)	-0.0098(8)	-0.0053(7)
C(33)	0.0361(9)	0.0211(8)	0.0450(10)	0.0091(7)	-0.0160(8)	-0.0110(7)
C(34)	0.0288(8)	0.0221(7)	0.0261(8)	0.0024(6)	-0.0086(6)	-0.0079(6)

	Х	У	Z	U
H(5A)	0.8767	0.2958	0.3485	0.034
H(5B)	1.0047	0.2836	0.2801	0.034
H(6A)	1.1146	0.2697	0.3814	0.039
H(6B)	1.0128	0.4157	0.4051	0.039
H(7A)	1.2547	0.3550	0.2856	0.036
H(7B)	1.2712	0.4175	0.3564	0.036
H(8A)	0.3715	0.8172	0.2500	0.024
H(8B)	0.4469	0.7726	0.1716	0.024
H(9A)	0.4906	1.0042	0.1605	0.030
H(10A)	0.1947	1.0306	0.2401	0.042
H(10B)	0.2574	1.1474	0.1959	0.042
H(12A)	0.5070	0.5547	0.2174	0.028
H(13A)	0.4149	0.3892	0.1701	0.040
H(14A)	0.5364	0.2908	0.0611	0.048
H(15A)	0.7537	0.3534	-0.0009	0.047
H(16A)	0.8460	0.5194	0.0449	0.035
H(18A)	0.6464	0.7373	0.0350	0.037
H(19A)	0.6475	0.9053	-0.0473	0.051
H(20A)	0.7574	1.0806	-0.0311	0.055
H(21A)	0.8737	1.0877	0.0663	0.048
H(22A)	0.8837	0.9164	0.1464	0.034
H(24A)	0.3119	0.9417	0.3677	0.030
H(25A)	0.1014	0.8947	0.4446	0.037
H(26A)	0.1268	0.6861	0.4954	0.038
H(27A)	0.3642	0.5241	0.4711	0.033
H(28A)	0.5778	0.5713	0.3963	0.026
H(30A)	0.5559	0.9664	0.4384	0.033
H(31A)	0.5381	1.1900	0.4651	0.042
H(32A)	0.5753	1.3372	0.3752	0.041
H(33A)	0.6403	1.2603	0.2594	0.039
H(34A)	0.6585	1.0360	0.2322	0.030

Table 5. Hydrogen coordinates and isotropic displacement parameters (\AA^2) for str0463.

Table 6. Torsion angles [°] for str0463.

C(1)-Fe(1)-Fe(2)-C(3)	6.73(7)	C(2)-Fe(1)-Fe(2)-C(3)	147.64(12)
P(1)-Fe(1)-Fe(2)-C(3)	-91.80(5)	S(1)-Fe(1)-Fe(2)-C(3)	-173.46(5)
S(2)-Fe(1)-Fe(2)-C(3)	78.69(5)	C(1)-Fe(1)-Fe(2)-C(4)	-131.82(13)
C(2)-Fe(1)-Fe(2)-C(4)	9.08(17)	P(1)-Fe(1)-Fe(2)-C(4)	129.65(12)
S(1)-Fe(1)-Fe(2)-C(4)	47.99(12)	S(2)-Fe(1)-Fe(2)-C(4)	-59.87(12)
C(1)-Fe(1)-Fe(2)-P(2)	98.17(5)	C(2)-Fe(1)-Fe(2)-P(2)	-120.93(11)
P(1)-Fe(1)-Fe(2)-P(2)	-0.365(16)	S(1)-Fe(1)-Fe(2)-P(2)	-82.022(16)
S(2)-Fe(1)-Fe(2)-P(2)	170.124(18)	C(1)-Fe(1)-Fe(2)-S(2)	-71.95(5)
C(2)-Fe(1)-Fe(2)-S(2)	68.95(11)	P(1)-Fe(1)-Fe(2)-S(2)	-170.489(18)
S(1)-Fe(1)-Fe(2)-S(2)	107.854(18)	C(1)-Fe(1)-Fe(2)-S(1)	-179.81(5)
C(2)-Fe(1)-Fe(2)-S(1)	-38.90(11)	P(1)-Fe(1)-Fe(2)-S(1)	81.656(16)
S(2)-Fe(1)-Fe(2)-S(1)	-107.854(18)	C(1)-Fe(1)-P(1)-N(1)	-111.31(7)
C(2)-Fe(1)-P(1)-N(1)	152.08(8)	S(1)-Fe(1)-P(1)-N(1)	54.60(5)
S(2)-Fe(1)-P(1)-N(1)	-17.55(6)	Fe(2)-Fe(1)-P(1)-N(1)	-1.73(5)
C(1)-Fe(1)-P(1)-C(17)	9.13(8)	C(2)-Fe(1)-P(1)-C(17)	-87.47(8)
S(1)-Fe(1)-P(1)-C(17)	175.04(6)	S(2)-Fe(1)-P(1)-C(17)	102.89(6)
Fe(2)-Fe(1)-P(1)-C(17)	118.71(6)	C(1)-Fe(1)-P(1)-C(11)	129.82(8)
C(2)-Fe(1)-P(1)-C(11)	33.22(8)	S(1)-Fe(1)-P(1)-C(11)	-64.27(5)
S(2)-Fe(1)-P(1)-C(11)	-136.41(6)	Fe(2)-Fe(1)-P(1)-C(11)	-120.60(5)
C(3)-Fe(2)-P(2)-N(1)	101.62(7)	C(4)-Fe(2)-P(2)-N(1)	-158.71(7)
S(2)-Fe(2)-P(2)-N(1)	20.84(6)	S(1)-Fe(2)-P(2)-N(1)	-53.26(5)
Fe(1)-Fe(2)-P(2)-N(1)	2.42(5)	C(3) - Fe(2) - P(2) - C(29)	-18.98(8)
C(4)-Fe(2)-P(2)-C(29)	80.69(8)	S(2)-Fe(2)-P(2)-C(29)	-99.76(6)
S(1) - Fe(2) - P(2) - C(29)	-173.86(5)	Fe(1) - Fe(2) - P(2) - C(29)	-118.18(5)
C(3)-Fe(2)-P(2)-C(23)	-135.18(7)	C(4) - Fe(2) - P(2) - C(23)	-35.51(8)
S(2)-Fe(2)-P(2)-C(23)	144.04(6)	S(1) - Fe(2) - P(2) - C(23)	69.94(5)
Fe(1)-Fe(2)-P(2)-C(23)	125.62(5)	C(1) - Fe(1) - S(1) - C(5)	-106.7(2)
C(2)-Fe(1)-S(1)-C(5)	53.92(8)	P(1)-Fe(1)-S(1)-C(5)	154.47(6)
S(2)-Fe(1)-S(1)-C(5)	-54.48(6)	Fe(2)-Fe(1)-S(1)-C(5)	-107.47(6)
C(1)-Fe(1)-S(1)-Fe(2)	0.7(2)	C(2)-Fe(1)-S(1)-Fe(2)	161.39(6)
P(1)-Fe(1)-S(1)-Fe(2)	-98.059(14)	S(2)-Fe(1)-S(1)-Fe(2)	52.984(13)
C(3)-Fe(2)-S(1)-C(5)	119.48(14)	C(4)-Fe(2)-S(1)-C(5)	-57.02(8)
P(2)-Fe(2)-S(1)-C(5)	-154.69(6)	S(2)-Fe(2)-S(1)-C(5)	51.26(6)
Fe(1)-Fe(2)-S(1)-C(5)	104.16(6)	C(3)-Fe(2)-S(1)-Fe(1)	15.32(12)
C(4)-Fe(2)-S(1)-Fe(1)	-161.18(5)	P(2)-Fe(2)-S(1)-Fe(1)	101.156(14)
S(2)-Fe(2)-S(1)-Fe(1)	-52.901(13)	C(1)-Fe(1)-S(2)-C(7)	-137.49(8)
C(2)-Fe(1)-S(2)-C(7)	-43.37(9)	P(1)-Fe(1)-S(2)-C(7)	125.87(7)
S(1)-Fe(1)-S(2)-C(7)	53.69(6)	Fe(2)-Fe(1)-S(2)-C(7)	106.90(6)
C(1)-Fe(1)-S(2)-Fe(2)	115.61(5)	C(2)-Fe(1)-S(2)-Fe(2)	-150.27(6)
P(1)-Fe(1)-S(2)-Fe(2)	18.97(3)	S(1)-Fe(1)-S(2)-Fe(2)	-53.208(13)
C(3)-Fe(2)-S(2)-C(7)	149.96(8)	C(4)-Fe(2)-S(2)-C(7)	51.31(9)
P(2)-Fe(2)-S(2)-C(7)	-128.21(7)	S(1)-Fe(2)-S(2)-C(7)	-53.39(7)
Fe(1)-Fe(2)-S(2)-C(7)	-106.20(7)	C(3)-Fe(2)-S(2)-Fe(1)	-103.85(5)
C(4)-Fe(2)-S(2)-Fe(1)	157.51(6)	P(2)-Fe(2)-S(2)-Fe(1)	-22.02(4)
S(1)-Fe(2)-S(2)-Fe(1)	52.806(13)	C(29)-P(2)-N(1)-C(8)	-63.66(12)
C(23)-P(2)-N(1)-C(8)	43.13(12)	Fe(2)-P(2)-N(1)-C(8)	173.69(10)
C(29)-P(2)-N(1)-P(1)	118.47(8)	C(23)-P(2)-N(1)-P(1)	-134.73(8)
Fe(2)-P(2)-N(1)-P(1)	-4.18(9)	C(17)-P(1)-N(1)-C(8)	56.22(12)
C(11)-P(1)-N(1)-C(8)	-50.91(12)	Fe(1)-P(1)-N(1)-C(8)	-174.00(9)
C(17)-P(1)-N(1)-P(2)	-125.83(9)	C(11)-P(1)-N(1)-P(2)	127.04(8)
	· /		× /

Fe(1)-P(1)-N(1)-P(2)	3.96(9)	C(2)-Fe(1)-C(1)-O(1)	-53.4(18)
P(1)-Fe(1)-C(1)-O(1)	-155.3(18)	S(1)-Fe(1)-C(1)-O(1)	107.3(18)
S(2)-Fe(1)-C(1)-O(1)	55.2(18)	Fe(2)-Fe(1)-C(1)-O(1)	108.0(18)
C(1)-Fe(1)-C(2)-O(2)	93(9)	P(1)-Fe(1)-C(2)-O(2)	-169(9)
S(1)-Fe(1)-C(2)-O(2)	-83(9)	S(2)-Fe(1)-C(2)-O(2)	5(9)
Fe(2)-Fe(1)-C(2)-O(2)	-50(9)	C(4)-Fe(2)-C(3)-O(3)	105(6)
P(2)-Fe(2)-C(3)-O(3)	-156(6)	S(2)-Fe(2)-C(3)-O(3)	-3(6)
S(1)-Fe(2)-C(3)-O(3)	-71(6)	Fe(1)-Fe(2)-C(3)-O(3)	-58(6)
C(3)-Fe(2)-C(4)-O(4)	41(11)	P(2)-Fe(2)-C(4)-O(4)	-51(11)
S(2)-Fe(2)-C(4)-O(4)	129(11)	S(1)-Fe(2)-C(4)-O(4)	-141(11)
Fe(1)-Fe(2)-C(4)-O(4)	179(100)	Fe(1)-S(1)-C(5)-C(6)	68.17(14)
Fe(2)-S(1)-C(5)-C(6)	-4.73(15)	S(1)-C(5)-C(6)-C(7)	-63.60(18)
C(5)-C(6)-C(7)-S(2)	61.11(19)	Fe(1)-S(2)-C(7)-C(6)	-64.24(14)
Fe(2)-S(2)-C(7)-C(6)	9.38(16)	P(2)-N(1)-C(8)-C(9)	84.48(15)
P(1)–N(1)–C(8)–C(9)	-97.64(14)	N(1)-C(8)-C(9)-C(10)	-136.17(17)
N(1)–P(1)–C(11)–C(12)	-23.06(14)	C(17)–P(1)–C(11)–C(12)	-128.24(13)
Fe(1)–P(1)–C(11)–C(12)	102.49(13)	N(1)–P(1)–C(11)–C(16)	160.93(13)
C(17)–P(1)–C(11)–C(16)	55.76(14)	Fe(1)–P(1)–C(11)–C(16)	-73.52(13)
C(16)-C(11)-C(12)-C(13)	-2.6(2)	P(1)-C(11)-C(12)-C(13)	-178.64(13)
C(11)-C(12)-C(13)-C(14)	1.1(3)	C(12)-C(13)-C(14)-C(15)	0.8(3)
C(13)-C(14)-C(15)-C(16)	-1.1(3)	C(14)-C(15)-C(16)-C(11)	-0.5(3)
C(12)-C(11)-C(16)-C(15)	2.4(2)	P(1)-C(11)-C(16)-C(15)	178.51(14)
N(1)-P(1)-C(17)-C(18)	-97.11(14)	C(11)-P(1)-C(17)-C(18)	10.40(15)
Fe(1)-P(1)-C(17)-C(18)	135.22(12)	N(1)-P(1)-C(17)-C(22)	77.36(13)
C(11)-P(1)-C(17)-C(22)	-175.14(12)	Fe(1)-P(1)-C(17)-C(22)	-50.32(13)
C(22)-C(17)-C(18)-C(19)	1.3(2)	P(1)-C(17)-C(18)-C(19)	175.72(14)
C(17)-C(18)-C(19)-C(20)	-1.8(3)	C(18)-C(19)-C(20)-C(21)	0.8(3)
C(19)-C(20)-C(21)-C(22)	0.7(3)	C(20)-C(21)-C(22)-C(17)	-1.2(3)
C(18)-C(17)-C(22)-C(21)	0.1(2)	P(1)-C(17)-C(22)-C(21)	-174.61(13)
N(1)-P(2)-C(23)-C(28)	101.38(12)	C(29)-P(2)-C(23)-C(28)	-147.15(12)
Fe(2)–P(2)–C(23)–C(28)	-25.70(13)	N(1)-P(2)-C(23)-C(24)	-80.37(13)
C(29)-P(2)-C(23)-C(24)	31.10(14)	Fe(2)-P(2)-C(23)-C(24)	152.55(11)
C(28)-C(23)-C(24)-C(25)	0.2(2)	P(2)-C(23)-C(24)-C(25)	-178.06(13)
C(23)-C(24)-C(25)-C(26)	-0.8(3)	C(24)-C(25)-C(26)-C(27)	0.5(3)
C(25)-C(26)-C(27)-C(28)	0.2(3)	C(26)-C(27)-C(28)-C(23)	-0.8(2)
C(24)-C(23)-C(28)-C(27)	0.6(2)	P(2)-C(23)-C(28)-C(27)	178.87(12)
N(1)-P(2)-C(29)-C(34)	-30.11(15)	C(23)-P(2)-C(29)-C(34)	-139.65(13)
Fe(2)-P(2)-C(29)-C(34)	93.68(13)	N(1)-P(2)-C(29)-C(30)	159.17(12)
C(23)-P(2)-C(29)-C(30)	49.64(14)	Fe(2)-P(2)-C(29)-C(30)	-77.03(13)
C(34)-C(29)-C(30)-C(31)	1.8(3)	P(2)-C(29)-C(30)-C(31)	172.87(14)
C(29)-C(30)-C(31)-C(32)	-0.2(3)	C(30)-C(31)-C(32)-C(33)	-1.5(3)
C(31)-C(32)-C(33)-C(34)	1.5(3)	C(30)-C(29)-C(34)-C(33)	-1.8(2)
P(2)-C(29)-C(34)-C(33)	-172.51(13)	C(32)-C(33)-C(34)-C(29)	0.2(3)

Table 1. Crystal data and structure refinement for **3b**.

Identification code Chemical formula Formula weight Temperature Radiation, wavelength	str0541 C ₃₄ H ₃₃ Fe ₂ NO ₄ P ₂ S ₂ 757.37 150(2) K ΜοΚα, 0.71073 Å	
Crystal system, space group	triclinic, P1bar	
Unit cell parameters	a = 10.4283(11) Å	$\alpha = 84.906(2)^{\circ}$
	b = 11.7343(13) Å	$\beta = 73.720(2)^{\circ}$
	c = 14.6476(16) Å	$\gamma = 74.371(2)^{\circ}$
Cell volume	$1656.8(3) \text{ Å}^3$	
Z	2	
Calculated density	1.518 g/cm^3	
Absorption coefficient µ	1.138 mm^{-1}	
F(000)	780	
Crystal colour and size	orange, $0.12 \times 0.11 \times 0.06$ m	nm ³
Data collection method	Bruker SMART APEX diff	actometer
	ω rotation with narrow fram	es
θ range for data collection	2.48 to 28.25°	
Index ranges	h -13 to 13, k -14 to 15, l -	18 to 18
Completeness to $\theta = 26.00^{\circ}$	97.9 %	
Reflections collected	14313	
Independent reflections	7555 ($R_{int} = 0.0286$)	
Reflections with $F^2 > 2\sigma$	6538	
Absorption correction	semi-empirical from equival	lents
Min. and max. transmission	0.8755 and 0.9349	
Structure solution	Patterson synthesis	
Refinement method	Full-matrix least-squares on	F^2
Weighting parameters a, b	0.0610, 0.9132	
Data / restraints / parameters	7555 / 0 / 406	
Final R indices $[F^2>2\sigma]$	R1 = 0.0398, $wR2 = 0.1046$	
R indices (all data)	R1 = 0.0466, wR2 = 0.1091	
Goodness-of-fit on F ²	1.035	
Largest and mean shift/su	0.001 and 0.000	
Largest diff. peak and hole	$1.825 \text{ and } -0.458 \text{ e } \text{\AA}^{-3}$	

Table 2. Ato	omic coordinates and equivalent isotropic displacement parameters (\AA^2)
for str0541.	U_{eq} is defined as one third of the trace of the orthogonalized U ^{ij} tensor.

	Х	У	Z	U_{eq}
Fe(1)	0.55757(3)	0.27560(3)	0.26357(2)	0.01304(9)
Fe(2)	0.69934(3)	0.14796(3)	0.36097(2)	0.01195(9)
P(1)	0.70498(6)	0.38115(5)	0.19101(4)	0.01314(12)
P(2)	0.87564(6)	0.22797(5)	0.30454(4)	0.01147(12)
S(1)	0.49780(6)	0.12122(5)	0.35217(4)	0.01621(13)
S(2)	0.57836(6)	0.33599(5)	0.39975(4)	0.01320(12)
N(1)	0.84207(19)	0.35785(16)	0.24007(13)	0.0130(4)
O(1)	0.6461(2)	0.11117(18)	0.10654(13)	0.0298(4)
O(2)	0.2996(2)	0.42513(19)	0.23278(16)	0.0363(5)
O(3)	0.82935(19)	-0.08447(15)	0.27402(13)	0.0245(4)
O(4)	0.72433(19)	0.08203(16)	0.55371(12)	0.0228(4)
C(1)	0.6118(3)	0.1783(2)	0.16648(17)	0.0191(5)
C(2)	0.4018(3)	0.3686(2)	0.24438(18)	0.0211(5)
C(3)	0.7808(2)	0.0083(2)	0.30603(17)	0.0165(5)
C(4)	0.7167(2)	0.1051(2)	0.47730(16)	0.0154(4)
C(5)	0.3588(3)	0.1658(2)	0.46008(19)	0.0246(5)
C(6)	0.3172(3)	0.2936(3)	0.4847(2)	0.0345(7)
C(7)	0.4276(2)	0.3420(2)	0.50109(17)	0.0199(5)
C(8)	0.9444(3)	0.4324(2)	0.22623(17)	0.0182(5)
C(9)	1.0386(3)	0.4319(2)	0.12585(18)	0.0239(5)
C(10)	0.8792(3)	0.5594(2)	0.26174(19)	0.0230(5)
C(11)	0.7676(3)	0.3485(2)	0.06383(16)	0.0167(5)
C(12)	0.8992(3)	0.2821(2)	0.01919(17)	0.0191(5)
C(13)	0.9313(3)	0.2472(2)	-0.07494(18)	0.0261(6)
C(14)	0.8313(3)	0.2779(3)	-0.12412(18)	0.0311(7)
C(15)	0.6993(3)	0.3439(3)	-0.08048(19)	0.0288(6)
C(16)	0.6678(3)	0.3790(2)	0.01273(18)	0.0233(5)
C(17)	0.6354(3)	0.5422(2)	0.18726(18)	0.0197(5)
C(18)	0.5299(3)	0.5986(2)	0.26294(19)	0.0241(5)
C(19)	0.4794(4)	0.7209(3)	0.2623(2)	0.0365(7)
C(20)	0.5341(4)	0.7872(3)	0.1856(2)	0.0442(9)
C(21)	0.6350(4)	0.7328(3)	0.1090(2)	0.0382(7)
C(22)	0.6862(3)	0.6100(2)	0.1086(2)	0.0274(6)
C(23)	0.9233(2)	0.2612(2)	0.40848(16)	0.0142(4)
C(24)	0.9963(2)	0.1648(2)	0.45257(17)	0.0183(5)
C(25)	1.0104(3)	0.1759(2)	0.54254(18)	0.0211(5)
C(26)	0.9544(3)	0.2829(2)	0.58889(18)	0.0243(5)
C(27)	0.8841(3)	0.3789(2)	0.54563(18)	0.0260(6)
C(28)	0.8673(3)	0.3683(2)	0.45580(17)	0.0192(5)
C(29)	1.0398(2)	0.1438(2)	0.22955(16)	0.0146(4)
C(30)	1.0362(2)	0.0759(2)	0.15675(17)	0.0172(5)
C(31)	1.1575(3)	0.0208(2)	0.09091(17)	0.0205(5)
C(32)	1.2833(3)	0.0316(2)	0.09/3/(18)	0.0230(5)
C(33)	1.2886(3)	0.0970(2)	0.16963(19)	0.0240(5)
C(34)	1.16/8(2)	0.1534(2)	0.23488(17)	0.0191(5)

Fe(1)-C(1)	1.770(2)	Fe(1)-C(2)	1.776(3)
Fe(1) - P(1)	2.2142(7)	Fe(1)-S(1)	2.2565(7)
Fe(1) - S(2)	2.2594(6)	Fe(1)– $Fe(2)$	2.4646(5)
Fe(2)-C(3)	1.776(2)	Fe(2)-C(4)	1.778(2)
Fe(2)-P(2)	2.2102(7)	Fe(2)-S(1)	2.2464(7)
Fe(2) - S(2)	2.2591(7)	P(1) - N(1)	1.722(2)
P(1)-C(11)	1.831(2)	P(1) - C(17)	1.835(2)
P(2) = N(1)	1.7261(19)	P(2) - C(29)	1.827(2)
P(2) - C(23)	1.831(2)	S(1) - C(5)	1.027(2) 1.824(3)
S(2) - C(7)	1.825(2)	N(1) - C(8)	1.024(3) 1.515(3)
O(1) C(1)	1.025(2) 1.147(3)	O(2) C(2)	1.313(3) 1.143(3)
O(1) - C(1) O(2) - C(3)	1.147(3) 1.150(3)	O(2) = C(2) O(4) = C(4)	1.143(3) 1.148(3)
C(5) - C(5)	1.130(3) 1.402(4)	C(4) = C(4)	1.146(3) 1.406(4)
C(3) = C(0)	1.492(4)	C(0) = C(1)	1.490(4) 1.522(2)
C(8) = C(9)	1.522(5)	C(8) = C(10)	1.532(3)
C(11) - C(12)	1.389(3)	C(11) - C(10)	1.400(3)
C(12) - C(13)	1.396(3)	C(13) = C(14)	1.381(4)
C(14) - C(15)	1.387(4)	C(15) - C(16)	1.385(4)
C(17) - C(18)	1.390(4)	C(17) - C(22)	1.401(4)
C(18) - C(19)	1.390(4)	C(19) - C(20)	1.385(5)
C(20)-C(21)	1.370(5)	C(21)–C(22)	1.395(4)
C(23)-C(28)	1.391(3)	C(23)–C(24)	1.399(3)
C(24)-C(25)	1.388(3)	C(25)–C(26)	1.383(4)
C(26)–C(27)	1.377(4)	C(27)–C(28)	1.395(3)
C(29)–C(34)	1.394(3)	C(29)–C(30)	1.401(3)
C(30)–C(31)	1.391(3)	C(31)–C(32)	1.382(4)
C(32)–C(33)	1.383(4)	C(33)–C(34)	1.388(3)
C(1)–Fe(1)–C(2)	101.08(12)	C(1)–Fe(1)–P(1)	92.15(8)
C(2)-Fe(1)-P(1)	100.36(8)	C(1)-Fe(1)-S(1)	85.17(8)
C(2)-Fe(1)-S(1)	105.80(8)	P(1)-Fe(1)-S(1)	153.74(3)
C(1)-Fe(1)-S(2)	152.37(9)	C(2)-Fe(1)-S(2)	106.44(8)
P(1)-Fe(1)-S(2)	85.36(2)	S(1)-Fe(1)-S(2)	85.09(2)
C(1)-Fe(1)-Fe(2)	96.39(8)	C(2)-Fe(1)-Fe(2)	154.09(8)
P(1)-Fe(1)-Fe(2)	97.93(2)	S(1) - Fe(1) - Fe(2)	56.619(19)
S(2) - Fe(1) - Fe(2)	56.939(18)	C(3) - Fe(2) - C(4)	97.93(11)
C(3)-Fe(2)-P(2)	96.82(8)	C(4) - Fe(2) - P(2)	100.80(8)
C(3)-Fe(2)-S(1)	87.52(8)	C(4) - Fe(2) - S(1)	107.85(8)
P(2)-Fe(2)-S(1)	150.15(3)	C(3) - Fe(2) - S(2)	166.56(8)
C(4)-Fe(2)-S(2)	95.09(7)	P(2) - Fe(2) - S(2)	83.94(2)
S(1) - Fe(2) - S(2)	85 33(2)	C(3) = Fe(2) = Fe(1)	109 66(8)
C(4) - Fe(2) - Fe(1)	14679(7)	P(2) - Fe(2) - Fe(1)	94.07(2)
S(1) = Fe(2) = Fe(1)	57.012(19)	S(2) = Fe(2) = Fe(1)	56 950(18)
N(1) - P(1) - C(11)	110.22(10)	N(1) - P(1) - C(17)	105 76(10)
C(11) - P(1) - C(17)	100.22(10) 100.80(11)	$N(1) - P(1) - E_{e}(1)$	103.70(10) 112.31(7)
C(11) - I(1) - C(17) $C(11) - D(1) - E_0(1)$	110.25(8)	C(17) P(1) = C(1)	112.31(7) 116.82(0)
N(1) P(2) C(20)	102.40(10)	V(1) = P(1) - P(1) V(1) = P(2) = C(22)	110.62(9) 107.66(10)
$\Gamma(1) = \Gamma(2) = U(29)$ C(20) = D(2) = C(22)	102.49(10)	$N(1) = \Gamma(2) = C(23)$ $N(1) = D(2) = E_{2}(2)$	107.00(10) 115.42(7)
$C(29) - \Gamma(2) - C(23)$	105.01(11)	N(1) - r(2) - re(2)	113.43(7)
C(29) - F(2) - Fe(2)	121.15(8)	U(23) - F(2) - Fe(2)	105.90(7)
U(3) - S(1) - Fe(2)	112.64(9)	C(3) - S(1) - Fe(1)	113.32(9)
re(2) - S(1) - re(1)	00.309(19)	C(7) - S(2) - Fe(2)	111.99(9)
U(1) - S(2) - Fe(1)	114.23(8)	Fe(2) - S(2) - Fe(1)	00.111(19)
$C(\delta) - N(1) - P(1)$	127.65(15)	C(8) - N(1) - P(2)	115.92(15)
P(1)-N(1)-P(2)	116.19(11)	O(1)-C(1)-Fe(1)	176.9(2)

Table 3. Bond lengths [Å] and angles [°] for str0541.

O(2)-C(2)-Fe(1)	177.6(2)	O(3)-C(3)-Fe(2)	176.6(2)
O(4) - C(4) - Fe(2)	177.1(2)	C(6)-C(5)-S(1)	116.74(19)
C(5)-C(6)-C(7)	115.9(3)	C(6)-C(7)-S(2)	115.67(18)
N(1)-C(8)-C(9)	114.63(19)	N(1)-C(8)-C(10)	114.1(2)
C(9)–C(8)–C(10)	110.5(2)	C(12)–C(11)–C(16)	118.7(2)
C(12)–C(11)–P(1)	124.73(19)	C(16)-C(11)-P(1)	115.92(19)
C(11)–C(12)–C(13)	120.6(2)	C(14)-C(13)-C(12)	119.9(3)
C(13)-C(14)-C(15)	120.3(2)	C(16)-C(15)-C(14)	119.8(3)
C(15)–C(16)–C(11)	120.8(3)	C(18)–C(17)–C(22)	119.0(2)
C(18)–C(17)–P(1)	119.93(19)	C(22)-C(17)-P(1)	121.1(2)
C(17)–C(18)–C(19)	120.5(3)	C(20)–C(19)–C(18)	119.8(3)
C(21)–C(20)–C(19)	120.5(3)	C(20)–C(21)–C(22)	120.2(3)
C(21)–C(22)–C(17)	119.9(3)	C(28)–C(23)–C(24)	118.8(2)
C(28)–C(23)–P(2)	123.45(18)	C(24)-C(23)-P(2)	116.28(17)
C(25)–C(24)–C(23)	120.3(2)	C(26)–C(25)–C(24)	120.3(2)
C(27)–C(26)–C(25)	119.9(2)	C(26)–C(27)–C(28)	120.4(2)
C(23)–C(28)–C(27)	120.3(2)	C(34)–C(29)–C(30)	118.3(2)
C(34)–C(29)–P(2)	123.19(18)	C(30)-C(29)-P(2)	118.15(17)
C(31)–C(30)–C(29)	120.6(2)	C(32)-C(31)-C(30)	120.1(2)
C(31)–C(32)–C(33)	119.9(2)	C(32)–C(33)–C(34)	120.3(2)
C(33)–C(34)–C(29)	120.7(2)		

Table 4. Anisotropic displacement parameters (Å²) for str0541. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

	\mathbf{U}^{11}	U ²²	U ³³	U^{23}	U^{13}	U^{12}
Fe(1)	0.01164(16)	0.01492(17)	0.01291(17)	-0.00198(12)	-0.00401(12)	-0.00265(12)
Fe(2)	0.01119(16)	0.01154(16)	0.01301(16)	-0.00027(12)	-0.00307(12)	-0.00290(12)
P(1)	0.0149(3)	0.0125(3)	0.0117(3)	-0.0002(2)	-0.0048(2)	-0.0018(2)
P(2)	0.0108(3)	0.0123(3)	0.0117(3)	-0.0011(2)	-0.0040(2)	-0.0024(2)
S(1)	0.0135(3)	0.0171(3)	0.0189(3)	-0.0027(2)	-0.0027(2)	-0.0062(2)
S(2)	0.0123(3)	0.0138(3)	0.0128(3)	-0.00203(19)	-0.0025(2)	-0.0025(2)
N(1)	0.0139(9)	0.0133(9)	0.0136(9)	0.0014(7)	-0.0055(7)	-0.0054(7)
O(1)	0.0340(11)	0.0324(11)	0.0239(10)	-0.0123(8)	0.0013(8)	-0.0157(9)
O(2)	0.0240(10)	0.0387(12)	0.0461(13)	0.0061(10)	-0.0181(10)	-0.0007(9)
O(3)	0.0286(10)	0.0157(9)	0.0268(10)	-0.0048(7)	-0.0046(8)	-0.0033(7)
O(4)	0.0276(10)	0.0234(9)	0.0172(9)	0.0014(7)	-0.0058(7)	-0.0070(8)
C(1)	0.0172(11)	0.0233(12)	0.0176(11)	-0.0017(9)	-0.0011(9)	-0.0099(10)
C(2)	0.0210(12)	0.0222(12)	0.0205(12)	-0.0001(9)	-0.0069(10)	-0.0047(10)
C(3)	0.0144(11)	0.0188(12)	0.0174(11)	0.0023(9)	-0.0039(9)	-0.0071(9)
C(4)	0.0138(10)	0.0132(11)	0.0185(12)	-0.0019(8)	-0.0037(9)	-0.0022(8)
C(5)	0.0163(12)	0.0294(14)	0.0248(13)	-0.0038(10)	0.0039(10)	-0.0090(10)
C(6)	0.0291(15)	0.0363(17)	0.0340(16)	-0.0041(13)	-0.0005(13)	-0.0090(13)
C(7)	0.0155(11)	0.0247(13)	0.0159(11)	-0.0061(9)	0.0023(9)	-0.0042(10)
C(8)	0.0193(11)	0.0201(12)	0.0187(11)	0.0002(9)	-0.0053(9)	-0.0105(9)
C(9)	0.0224(13)	0.0273(14)	0.0248(13)	0.0039(10)	-0.0049(11)	-0.0138(11)
C(10)	0.0311(14)	0.0180(12)	0.0248(13)	-0.0014(10)	-0.0093(11)	-0.0121(10)
C(11)	0.0250(12)	0.0151(11)	0.0118(10)	0.0011(8)	-0.0052(9)	-0.0082(9)
C(12)	0.0233(12)	0.0170(12)	0.0167(11)	-0.0001(9)	-0.0021(10)	-0.0081(10)
C(13)	0.0352(15)	0.0216(13)	0.0191(12)	-0.0037(10)	0.0029(11)	-0.0129(11)
C(14)	0.057(2)	0.0304(15)	0.0120(11)	0.0004(10)	-0.0067(12)	-0.0238(14)
C(15)	0.0438(17)	0.0325(15)	0.0193(13)	0.0058(11)	-0.0164(12)	-0.0185(13)
C(16)	0.0274(13)	0.0257(13)	0.0187(12)	0.0026(10)	-0.0098(10)	-0.0070(11)
C(17)	0.0257(13)	0.0123(11)	0.0229(12)	0.0004(9)	-0.0131(10)	-0.0011(9)
C(18)	0.0325(14)	0.0186(12)	0.0215(12)	-0.0030(9)	-0.0145(11)	0.0014(10)
C(19)	0.0505(19)	0.0232(14)	0.0344(16)	-0.0100(12)	-0.0252(15)	0.0103(13)
C(20)	0.072(2)	0.0141(13)	0.050(2)	-0.0008(13)	-0.0384(19)	0.0051(14)
C(21)	0.057(2)	0.0181(14)	0.0429(18)	0.0113(12)	-0.0232(16)	-0.0088(14)
C(22)	0.0358(15)	0.0198(13)	0.0273(14)	0.0046(10)	-0.0128(12)	-0.0055(11)
C(23)	0.0120(10)	0.0194(11)	0.0122(10)	-0.0019(8)	-0.0032(8)	-0.0053(9)
C(24)	0.0156(11)	0.0206(12)	0.0202(12)	0.0003(9)	-0.0066(9)	-0.0054(9)
C(25)	0.0184(12)	0.0286(14)	0.0197(12)	0.0058(10)	-0.0101(10)	-0.0084(10)
C(26)	0.0253(13)	0.0362(15)	0.0159(12)	-0.0012(10)	-0.0068(10)	-0.0139(11)
C(27)	0.0336(15)	0.0254(14)	0.0202(13)	-0.0083(10)	-0.0063(11)	-0.0079(11)
C(28)	0.0219(12)	0.0182(12)	0.0174(11)	-0.0023(9)	-0.0052(10)	-0.0045(10)
C(29)	0.0123(10)	0.0134(11)	0.0155(11)	-0.0002(8)	-0.0017(9)	-0.0011(8)
C(30)	0.0168(11)	0.0171(11)	0.0170(11)	-0.0024(9)	-0.0023(9)	-0.0046(9)
C(31)	0.0240(13)	0.0175(12)	0.0181(12)	-0.0033(9)	-0.0020(10)	-0.0049(10)
C(32)	0.0174(12)	0.0230(13)	0.0220(13)	-0.0026(10)	0.0007(10)	0.0005(10)
C(33)	0.0122(11)	0.0288(14)	0.0286(14)	-0.0030(11)	-0.0024(10)	-0.0034(10)
C(34)	0.0162(11)	0.0212(12)	0.0195(12)	-0.0024(9)	-0.0037(9)	-0.0042(9)

Table 5.	Hydrogen coordinates and isotropic displacement parameters (A	$Å^2$)
for str054	11.	

Х	У	Z	U
0.2764	0.1439	0.4538	0.030
0.3870	0.1191	0.5141	0.030
0.2391	0.3060	0.5429	0.041
0.2830	0.3402	0.4327	0.041
0.4592	0.2977	0.5549	0.024
0.3865	0.4256	0.5204	0.024
1.0068	0.3945	0.2674	0.022
1.0799	0.3501	0.1044	0.036
1.1119	0.4696	0.1255	0.036
0.9846	0.4757	0.0830	0.036
0.8193	0.5581	0.3265	0.034
0.8243	0.6041	0.2197	0.034
0.9522	0.5973	0.2617	0.034
0.9679	0.2601	0.0530	0.023
1.0217	0.2023	-0.1051	0.031
0.8531	0.2539	-0.1881	0.037
0.6307	0.3649	-0.1144	0.035
0.5773	0.4243	0.0424	0.028
0.4921	0.5531	0.3155	0.029
0.4075	0.7590	0.3144	0.044
0.5013	0.8710	0.1860	0.053
0.6703	0.7789	0.0560	0.046
0.7554	0.5724	0.0551	0.033
1.0364	0.0914	0.4207	0.022
1.0588	0.1097	0.5724	0.025
0.9644	0.2902	0.6504	0.029
0.8467	0.4526	0.5771	0.031
0.8175	0.4346	0.4268	0.023
0.9500	0.0675	0.1523	0.021
1.1538	-0.0244	0.0414	0.025
1.3661	-0.0059	0.0522	0.028
1.3753	0.1033	0.1746	0.029
1.1725	0.1990	0.2837	0.023
	x 0.2764 0.3870 0.2391 0.2830 0.4592 0.3865 1.0068 1.0799 1.1119 0.9846 0.8193 0.8243 0.9522 0.9679 1.0217 0.8531 0.6307 0.5773 0.4921 0.4075 0.5013 0.6703 0.7554 1.0364 1.0588 0.9644 0.8467 0.8175 0.9500 1.1538 1.3661 1.3753 1.1725	xy 0.2764 0.1439 0.3870 0.1191 0.2391 0.3060 0.2830 0.3402 0.4592 0.2977 0.3865 0.4256 1.0068 0.3945 1.0799 0.3501 1.1119 0.4696 0.9846 0.4757 0.8193 0.5581 0.8243 0.6041 0.9522 0.5973 0.9679 0.2601 1.0217 0.2023 0.8531 0.2539 0.6307 0.3649 0.5773 0.4243 0.4075 0.7590 0.5013 0.8710 0.6703 0.7789 0.7554 0.5724 1.0364 0.0914 1.0588 0.1097 0.9644 0.2902 0.8467 0.4526 0.8175 0.4346 0.9500 0.0675 1.1538 -0.0244 1.3661 -0.0059 1.3753 0.1033 1.1725 0.1990	xyz 0.2764 0.1439 0.4538 0.3870 0.1191 0.5141 0.2391 0.3060 0.5429 0.2830 0.3402 0.4327 0.4592 0.2977 0.5549 0.3865 0.4256 0.5204 1.0068 0.3945 0.2674 1.0799 0.3501 0.1044 1.1119 0.4696 0.1255 0.9846 0.4757 0.0830 0.8193 0.5581 0.3265 0.8243 0.6041 0.2197 0.9522 0.5973 0.2617 0.9679 0.2601 0.0530 1.0217 0.2023 -0.1051 0.8531 0.2539 -0.1881 0.6307 0.3649 -0.1144 0.5773 0.4243 0.0424 0.4921 0.5531 0.3155 0.4075 0.7590 0.3144 0.5013 0.8710 0.1860 0.6703 0.7789 0.0560 0.7554 0.5724 0.0551 1.0364 0.0914 0.4207 1.0588 0.1097 0.5724 0.9644 0.2902 0.6504 0.8467 0.4526 0.5771 0.8175 0.4346 0.4268 0.9500 0.0675 0.1523 1.1538 -0.0244 0.0414 1.3661 -0.0059 0.0522 1.3753 0.1033 0.1746 1.1725 0.1990 0.2837

Table 6. Torsion angles [°] for str0541.

C(1)-Fe(1)-Fe(2)-C(3)	-6.56(11)	C(2)-Fe(1)-Fe(2)-C(3)	125.7(2)
P(1)-Fe(1)-Fe(2)-C(3)	-99.64(8)	S(1)-Fe(1)-Fe(2)-C(3)	73.34(8)
S(2)-Fe(1)-Fe(2)-C(3)	-178.80(8)	C(1)-Fe(1)-Fe(2)-C(4)	-150.98(16)
C(2)-Fe(1)-Fe(2)-C(4)	-18.7(2)	P(1)-Fe(1)-Fe(2)-C(4)	115.94(14)
S(1)-Fe(1)-Fe(2)-C(4)	-71.07(14)	S(2)-Fe(1)-Fe(2)-C(4)	36.78(14)
C(1)-Fe(1)-Fe(2)-P(2)	92.17(8)	C(2)-Fe(1)-Fe(2)-P(2)	-135.52(19)
P(1)-Fe(1)-Fe(2)-P(2)	-0.91(2)	S(1)-Fe(1)-Fe(2)-P(2)	172.08(3)
S(2)-Fe(1)-Fe(2)-P(2)	-80.07(2)	C(1)-Fe(1)-Fe(2)-S(1)	-79.90(8)
C(2)-Fe(1)-Fe(2)-S(1)	52.40(19)	P(1) - Fe(1) - Fe(2) - S(1)	-172.98(3)
S(2) - Fe(1) - Fe(2) - S(1)	107.85(3)	C(1) - Fe(1) - Fe(2) - S(2)	172.24(8)
C(2)-Fe(1)-Fe(2)-S(2)	-55.45(19)	P(1) - Fe(1) - Fe(2) - S(2)	79.16(3)
S(1) - Fe(1) - Fe(2) - S(2)	-107.85(3)	C(1) - Fe(1) - P(1) - N(1)	-107.22(11)
C(2)-Fe(1)-P(1)-N(1)	151 11(11)	S(1) - Fe(1) - P(1) - N(1)	-23.78(10)
S(2) - Fe(1) - P(1) - N(1)	45 22(7)	$F_{e}(2) - F_{e}(1) - P(1) - N(1)$	-10.46(7)
C(1)-Fe(1)-P(1)-C(11)	1613(12)	C(2) = Fe(1) = P(1) = C(11)	-8555(12)
S(1) - Fe(1) - P(1) - C(11)	99 56(10)	S(2) = Fe(1) = P(1) = C(11)	168 56(9)
$F_{e}(2) - F_{e}(1) - P(1) - C(11)$	112 89(9)	C(1) - Fe(1) - P(1) - C(17)	130.35(12)
C(2) = Fe(1) = P(1) = C(17)	28 67(12)	S(1) - Fe(1) - P(1) - C(17)	-14622(10)
$S(2) = F_{0}(1) = F_{0}(1) = C(17)$	-77.22(0)	$F_{e}(2)$ $F_{e}(1) = P(1) - C(17)$	-13280(0)
$C(3) E_{2}(2) P(2) N(1)$	(122(0))	C(4) = E(1) - I(1) - C(17) C(4) = E(2) = D(2) = N(1)	-132.07(7) -137.67(10)
C(3) - F(2) - F(2) - N(1) $S(1) = E_2(2) - P(2) - N(1)$	122.00(11) 25.02(10)	$C(4) = \Gamma C(2) = \Gamma(2) = \Gamma(1)$ $S(2) = E_{2}(2) = D(2) = N(1)$	-137.07(10)
S(1) - F(2) - F(2) - N(1) Eq(1) Eq(2) D(2) N(1)	23.93(10) 12.50(8)	S(2) = Fe(2) = F(2) = In(1) $C(2) = E_2(2) = D(2) = C(20)$	-43.02(8)
Fe(1) - Fe(2) - P(2) - N(1)	12.30(8)	C(3) = Fe(2) = F(2) = C(29) S(1) = Fe(2) = D(2) = C(29)	-1.08(12)
C(4) = Fe(2) = P(2) = C(29)	97.78(12)	S(1) - Fe(2) - P(2) - C(29)	-98.02(10)
S(2) - Fe(2) - P(2) - C(29)	-168.1/(9)	Fe(1) - Fe(2) - P(2) - C(29)	-112.05(9)
C(3) - Fe(2) - P(2) - C(23)	-118.14(11)	C(4) = Fe(2) = P(2) = C(23)	-18.68(11)
S(1) - Fe(2) - P(2) - C(23)	144.92(9)	S(2) - Fe(2) - P(2) - C(23)	/5.36(8)
Fe(1) - Fe(2) - P(2) - C(23)	131.49(8)	C(3) = Fe(2) = S(1) = C(5)	137.96(12)
C(4) - Fe(2) - S(1) - C(5)	40.42(13)	P(2) = Fe(2) = S(1) = C(5)	-122.64(11)
S(2) - Fe(2) - S(1) - C(5)	-53.43(10)	Fe(1) - Fe(2) - S(1) - C(5)	-106.60(10)
C(3) - Fe(2) - S(1) - Fe(1)	-115.44(8)	C(4) - Fe(2) - S(1) - Fe(1)	147.03(8)
P(2)-Fe(2)-S(1)-Fe(1)	-16.03(5)	S(2)-Fe(2)-S(1)-Fe(1)	53.18(2)
C(1)-Fe(1)-S(1)-C(5)	-153.48(13)	C(2)-Fe(1)-S(1)-C(5)	-53.31(13)
P(1)-Fe(1)-S(1)-C(5)	121.47(11)	S(2) - Fe(1) - S(1) - C(5)	52.41(10)
Fe(2) - Fe(1) - S(1) - C(5)	105.60(10)	C(1)-Fe(1)-S(1)-Fe(2)	100.92(8)
C(2)-Fe(1)-S(1)-Fe(2)	-158.91(9)	P(1)-Fe(1)-S(1)-Fe(2)	15.87(6)
S(2) - Fe(1) - S(1) - Fe(2)	-53.194(19)	C(3)-Fe(2)-S(2)-C(7)	112.6(3)
C(4)-Fe(2)-S(2)-C(7)	-53.01(12)	P(2)-Fe(2)-S(2)-C(7)	-153.36(9)
S(1)-Fe(2)-S(2)-C(7)	54.54(9)	Fe(1)-Fe(2)-S(2)-C(7)	107.77(9)
C(3)-Fe(2)-S(2)-Fe(1)	4.9(3)	C(4)-Fe(2)-S(2)-Fe(1)	-160.78(8)
P(2)-Fe(2)-S(2)-Fe(1)	98.87(2)	S(1)-Fe(2)-S(2)-Fe(1)	-53.23(2)
C(1)-Fe(1)-S(2)-C(7)	-121.27(19)	C(2)-Fe(1)-S(2)-C(7)	53.50(13)
P(1)-Fe(1)-S(2)-C(7)	152.95(10)	S(1)-Fe(1)-S(2)-C(7)	-51.54(10)
Fe(2)-Fe(1)-S(2)-C(7)	-104.46(10)	C(1)-Fe(1)-S(2)-Fe(2)	-16.82(17)
C(2)-Fe(1)-S(2)-Fe(2)	157.96(9)	P(1)-Fe(1)-S(2)-Fe(2)	-102.59(2)
S(1)-Fe(1)-S(2)-Fe(2)	52.91(2)	C(11)-P(1)-N(1)-C(8)	72.0(2)
C(17)-P(1)-N(1)-C(8)	-36.2(2)	Fe(1)-P(1)-N(1)-C(8)	-164.65(17)
C(11)-P(1)-N(1)-P(2)	-102.13(13)	C(17)-P(1)-N(1)-P(2)	149.72(12)
Fe(1)-P(1)-N(1)-P(2)	21.23(13)	C(29)–P(2)–N(1)–C(8)	-63.81(18)
C(23)-P(2)-N(1)-C(8)	44.40(18)	Fe(2)-P(2)-N(1)-C(8)	162.40(13)
C(29)-P(2)-N(1)-P(1)	111.02(13)	C(23)-P(2)-N(1)-P(1)	-140.77(12)

Fe(2)-P(2)-N(1)-P(1)	-22.77(13)	C(2)-Fe(1)- $C(1)$ -O(1)	-116(4)
P(1)-Fe(1)-C(1)-O(1)	143(4)	S(1)-Fe(1)-C(1)-O(1)	-11(4)
S(2)-Fe(1)-C(1)-O(1)	59(4)	Fe(2)-Fe(1)-C(1)-O(1)	45(4)
C(1)-Fe(1)-C(2)-O(2)	68(6)	P(1)-Fe(1)-C(2)-O(2)	162(6)
S(1)-Fe(1)-C(2)-O(2)	-20(6)	S(2)-Fe(1)-C(2)-O(2)	-109(6)
Fe(2)-Fe(1)-C(2)-O(2)	-63(6)	C(4)-Fe(2)-C(3)-O(3)	51(4)
P(2)-Fe(2)-C(3)-O(3)	153(4)	S(1)-Fe(2)-C(3)-O(3)	-56(4)
S(2)-Fe(2)-C(3)-O(3)	-114(4)	Fe(1)-Fe(2)-C(3)-O(3)	-110(4)
C(3)-Fe(2)-C(4)-O(4)	-171(4)	P(2)-Fe(2)-C(4)-O(4)	90(4)
S(1)-Fe(2)-C(4)-O(4)	-81(4)	S(2)-Fe(2)-C(4)-O(4)	5(4)
Fe(1)-Fe(2)-C(4)-O(4)	-25(4)	Fe(2)-S(1)-C(5)-C(6)	63.7(2)
Fe(1)-S(1)-C(5)-C(6)	-9.2(3)	S(1)-C(5)-C(6)-C(7)	-60.3(3)
C(5)-C(6)-C(7)-S(2)	61.4(3)	Fe(2)-S(2)-C(7)-C(6)	-66.0(2)
Fe(1)-S(2)-C(7)-C(6)	6.7(2)	P(1)-N(1)-C(8)-C(9)	-66.6(3)
P(2)-N(1)-C(8)-C(9)	107.5(2)	P(1)-N(1)-C(8)-C(10)	62.3(3)
P(2)-N(1)-C(8)-C(10)	-123.58(19)	N(1)-P(1)-C(11)-C(12)	18.0(2)
C(17)-P(1)-C(11)-C(12)	129.4(2)	Fe(1)-P(1)-C(11)-C(12)	-106.6(2)
N(1)-P(1)-C(11)-C(16)	-171.76(18)	C(17)-P(1)-C(11)-C(16)	-60.4(2)
Fe(1)-P(1)-C(11)-C(16)	63.7(2)	C(16)-C(11)-C(12)-C(13)	0.5(4)
P(1)-C(11)-C(12)-C(13)	170.52(19)	C(11)-C(12)-C(13)-C(14)	-0.6(4)
C(12)-C(13)-C(14)-C(15)	0.3(4)	C(13)-C(14)-C(15)-C(16)	0.0(4)
C(14)-C(15)-C(16)-C(11)	-0.1(4)	C(12)-C(11)-C(16)-C(15)	-0.1(4)
P(1)-C(11)-C(16)-C(15)	-171.1(2)	N(1)-P(1)-C(17)-C(18)	-91.7(2)
C(11)-P(1)-C(17)-C(18)	153.5(2)	Fe(1)-P(1)-C(17)-C(18)	34.1(2)
N(1)-P(1)-C(17)-C(22)	88.8(2)	C(11)-P(1)-C(17)-C(22)	-26.0(2)
Fe(1)-P(1)-C(17)-C(22)	-145.40(19)	C(22)-C(17)-C(18)-C(19)	-2.6(4)
P(1)-C(17)-C(18)-C(19)	177.9(2)	C(17)-C(18)-C(19)-C(20)	0.3(4)
C(18)-C(19)-C(20)-C(21)	1.8(5)	C(19)-C(20)-C(21)-C(22)	-1.5(5)
C(20)-C(21)-C(22)-C(17)	-0.8(5)	C(18)-C(17)-C(22)-C(21)	2.8(4)
P(1)-C(17)-C(22)-C(21)	-177.7(2)	N(1)-P(2)-C(23)-C(28)	33.9(2)
C(29)-P(2)-C(23)-C(28)	141.8(2)	Fe(2)–P(2)–C(23)–C(28)	-90.1(2)
N(1)-P(2)-C(23)-C(24)	-160.01(17)	C(29)-P(2)-C(23)-C(24)	-52.2(2)
Fe(2)-P(2)-C(23)-C(24)	76.00(18)	C(28)-C(23)-C(24)-C(25)	1.0(4)
P(2)-C(23)-C(24)-C(25)	-165.76(19)	C(23)-C(24)-C(25)-C(26)	-1.0(4)
C(24)-C(25)-C(26)-C(27)	0.1(4)	C(25)-C(26)-C(27)-C(28)	0.9(4)
C(24)-C(23)-C(28)-C(27)	0.0(4)	P(2)-C(23)-C(28)-C(27)	165.7(2)
C(26)-C(27)-C(28)-C(23)	-0.9(4)	N(1)-P(2)-C(29)-C(34)	87.3(2)
C(23)-P(2)-C(29)-C(34)	-24.4(2)	Fe(2)-P(2)-C(29)-C(34)	-142.32(18)
N(1)-P(2)-C(29)-C(30)	-85.88(19)	C(23)-P(2)-C(29)-C(30)	162.41(18)
Fe(2)-P(2)-C(29)-C(30)	44.5(2)	C(34)-C(29)-C(30)-C(31)	-0.8(3)
P(2)-C(29)-C(30)-C(31)	172.77(19)	C(29)-C(30)-C(31)-C(32)	0.6(4)
C(30)-C(31)-C(32)-C(33)	0.2(4)	C(31)-C(32)-C(33)-C(34)	-1.0(4)
C(32)-C(33)-C(34)-C(29)	0.9(4)	C(30)–C(29)–C(34)–C(33)	0.0(4)
P(2)-C(29)-C(34)-C(33)	-173.2(2)		

Table 1. Crystal data and structure refinement for 3e.

Identification code Chemical formula Formula weight Temperature Radiation, wavelength Crystal system, space group Unit cell parameters Cell volume Ζ Calculated density Absorption coefficient µ F(000) Crystal colour and size Data collection method θ range for data collection Index ranges Completeness to $\theta = 26.00^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution Refinement method Weighting parameters a, b Data / restraints / parameters Final R indices $[F^2>2\sigma]$ R indices (all data) Goodness-of-fit on F² Largest and mean shift/su Largest diff. peak and hole

str0451 C127 H80 Cl2 Fe8 N4 O22 P8 S8 3035.97 150(2) K MoKα, 0.71073 Å orthorhombic, Pbam a = 21.7006(12) Å $\alpha = 90^{\circ}$ b = 15.3850(9) Å $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ c = 20.0483(11) Å6693.4(7) Å³ 2 1.528 g/cm^3 1.170 mm^{-1} 3160 orange, $0.12 \times 0.12 \times 0.12 \text{ mm}^3$ Bruker SMART APEX diffractometer ω rotation with narrow frames 1.62 to 28.31° h -28 to 28, k -20 to 20, l -26 to 26 99.7 % 57217 $8411 (R_{int} = 0.0481)$ 6792 semi-empirical from equivalents 0.8724 and 0.8724 direct methods Full-matrix least-squares on F^2 0.0847, 15.7626 8411 / 0 / 422 R1 = 0.0572, wR2 = 0.1523R1 = 0.0718, wR2 = 0.16211.047 0.001 and 0.000 1.832 and -2.255 e Å⁻³

Table 2. At	omic coordinates and equivalent isotropic displacement parameters (\AA^2)
for str0451.	U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U_{eq}
Fe(1)	0.18079(2)	0.57970(3)	0.43799(2)	0.02234(14)
Fe(2)	0.16844(2)	0.39335(3)	0.06203(2)	0.01716(13)
P(1)	0.19058(4)	0.43810(6)	0.42602(4)	0.02214(19)
P(2)	0.11211(4)	0.27575(5)	0.07336(4)	0.01755(18)
S(1)	0.18288(6)	0.70190(8)	0.5000	0.0280(3)
S(2)	0.09731(6)	0.54520(8)	0.5000	0.0236(2)
S(3)	0.08989(5)	0.44486(7)	0.0000	0.0185(2)
S(4)	0.22664(5)	0.48404(8)	0.0000	0.0233(2)
N(1)	0.2090(2)	0.3906(3)	0.5000	0.0224(8)
N(2)	0.10483(18)	0.2209(3)	0.0000	0.0196(8)
O(1)	0.31149(16)	0.6083(2)	0.41328(19)	0.0525(9)
O(2)	0.13554(19)	0.6340(2)	0.30693(15)	0.0545(9)
O(3)	0.28002(12)	0.2937(2)	0.08851(15)	0.0378(7)
O(4)	0.15496(14)	0.47273(19)	0.19393(13)	0.0360(6)
C(1)	0.2596(2)	0.5960(3)	0.4221(2)	0.0332(8)
C(2)	0.1526(2)	0.6115(2)	0.35822(19)	0.0332(8)
C(3)	0.1084(3)	0.7577(4)	0.5000	0.0518(18)
C(4)	0.0572(4)	0.7156(5)	0.4702(4)	0.0326(16)
C(5)	0.0367(3)	0.6278(4)	0.5000	0.0338(12)
C(6)	0.12431(17)	0.3774(2)	0.39377(19)	0.0297(8)
C(7)	0.08061(19)	0.4183(3)	0.3536(2)	0.0357(9)
C(8)	0.0333(2)	0.3705(3)	0.3249(2)	0.0446(11)
C(9)	0.0288(2)	0.2831(4)	0.3363(3)	0.0558(14)
C(10)	0.0708(3)	0.2426(3)	0.3765(4)	0.0699(18)
C(11)	0.1185(2)	0.2896(3)	0.4060(3)	0.0539(13)
C(12)	0.25233(18)	0.3980(2)	0.37298(17)	0.0275(7)
C(13)	0.2411(2)	0.3644(3)	0.30943(19)	0.0395(10)
C(14)	0.2899(3)	0.3396(3)	0.2687(2)	0.0511(12)
C(15)	0.3492(2)	0.3495(3)	0.2901(2)	0.0500(12)
C(16)	0.3613(2)	0.3835(3)	0.3519(2)	0.0472(11)
C(17)	0.31356(19)	0.4073(3)	0.3937(2)	0.0365(9)
C(18)	0.23568(16)	0.3323(2)	0.07844(17)	0.0239(7)
C(19)	0.15935(15)	0.4418(2)	0.14203(17)	0.0228(7)
C(20)	0.0836(2)	0.5636(3)	0.0000	0.0255(10)
C(21)	0.1382(3)	0.6119(5)	0.0272(4)	0.0291(15)
C(22)	0.1976(3)	0.5954(4)	0.0000	0.0483(18)
C(23)	0.03334(15)	0.2864(2)	0.10574(16)	0.0232(7)
C(24)	-0.0081(2)	0.2182(3)	0.0988(3)	0.0608(16)
C(25)	-0.0667(2)	0.2242(4)	0.1263(4)	0.078(2)
C(26)	-0.08496(19)	0.2969(3)	0.1599(2)	0.0423(10)
C(27)	-0.04452(17)	0.3637(3)	0.16770(17)	0.0299(8)
C(28)	0.01449(16)	0.3589(2)	0.14021(17)	0.0269(7)
C(29)	0.14231(16)	0.1942(2)	0.13015(17)	0.0237(7)
C(30)	0.16985(18)	0.1180(3)	0.10918(19)	0.0318(8)
C(31)	0.1957(2)	0.0603(3)	0.1550(2)	0.0414(10)
C(32)	0.1953(2)	0.0795(3)	0.2216(2)	0.0460(11)
C(33)	0.1675(3)	0.1555(3)	0.2432(2)	0.0614(16)
C(34)	0.1409(3)	0.2121(3)	0.1979(2)	0.0487(13)
C(40)	0.5000	0.5000	0.447(2)	0.165(14)

Cl(1)	0.4380(3)	0.5270(4)	0.5000	0.188(2)
C(41)	0.0987(4)	-0.0410(6)	0.0000	0.069(2)
O(10)	0.0567(3)	0.0332(5)	0.0000	0.090(2)
O(11)	0.5137(4)	0.4665(6)	0.3007(4)	0.074(2)
O(12)	-0.0321(5)	-0.0073(7)	0.1708(6)	0.098(3)

Fe(1)-C(1)	1.758(4)	Fe(1)-C(2)	1.781(4)
Fe(1) - P(1)	2.2020(10)	Fe(1)-S(1)	2.2544(11)
Fe(1) - S(2)	2.2603(11)	Fe(1)– $Fe(1A)$	2.4866(9)
Fe(2)-C(18)	1.766(4)	Fe(2) - C(19)	1.780(4)
Fe(2)-P(2)	2.1954(9)	Fe(2)-S(3)	2.2540(10)
Fe(2) - S(4)	2.2556(11)	Fe(2)– $Fe(2B)$	2.4871(9)
P(1) - N(1)	1.701(2)	P(1) = C(12)	1 818(4)
P(1) - C(6)	1.832(4)	P(2) = N(2)	1 703(2)
P(2) - C(29)	1 817(3)	P(2) - C(23)	1 836(3)
S(1) - C(3)	1.830(6)	S(1) = Fe(1A)	22544(11)
S(1) - C(5) S(2) - C(5)	1.830(0)	S(2) = Fe(1A)	2.2344(11) 2 2603(11)
S(2) - C(3) S(3) - C(20)	1.027(5)	S(2) = FC(1R) S(3) = Fe(2R)	2.2005(11) 2.2540(10)
S(3) = C(20) S(4) = C(22)	1.832(5)	S(3) = C(2B) $S(4) = E_0(2B)$	2.23+0(10) 2.2556(11)
S(4) = C(22) N(1) = D(1A)	1.623(0) 1.701(2)	S(4) - F(2D) N(2) - D(2D)	2.2330(11)
N(1)-P(1A) O(1) $O(1)$	1.701(2) 1.155(5)	N(2) - P(2D)	1.703(2)
O(1)-C(1) O(2) $C(19)$	1.155(5)	O(2) = C(2)	1.140(5)
O(3) - C(18)	1.149(4)	O(4) = C(19)	1.148(4)
C(3) - C(4A)	1.41/(10)	C(3) - C(4)	1.41/(10)
C(4)-C(4A)	1.193(16)	C(4) - C(5)	1.542(9)
C(5)-C(4A)	1.542(9)	C(6) - C(11)	1.378(6)
C(6) - C(7)	1.393(5)	C(7) - C(8)	1.387(6)
C(8) - C(9)	1.368(7)	C(9)-C(10)	1.366(8)
C(10)-C(11)	1.395(7)	C(12)-C(13)	1.397(5)
C(12)-C(17)	1.399(6)	C(13)-C(14)	1.391(6)
C(14)-C(15)	1.364(8)	C(15)-C(16)	1.370(7)
C(16)–C(17)	1.381(6)	C(20)-C(21)	1.500(9)
C(20)–C(21B)	1.500(9)	C(21)–C(21B)	1.093(15)
C(21)–C(22)	1.424(9)	C(22)–C(21B)	1.424(9)
C(23)–C(28)	1.374(5)	C(23)–C(24)	1.388(6)
C(24)–C(25)	1.389(6)	C(25)–C(26)	1.365(7)
C(26)–C(27)	1.360(6)	C(27)–C(28)	1.396(5)
C(29)-C(30)	1.382(5)	C(29)–C(34)	1.387(5)
C(30)–C(31)	1.395(5)	C(31)-C(32)	1.366(6)
C(32) - C(33)	1.385(7)	C(33)–C(34)	1.384(6)
C(40) - Cl(1C)	1.77(2)	C(40) - Cl(1)	1.77(2)
Cl(1)-C(40C)	1.77(2)	C(41) - O(10)	1.460(11)
O(11) - O(11D)	1.191(16)	O(12) - O(12E)	1.41(2)
0(11) 0(112)			(-)
C(1) - Fe(1) - C(2)	97.63(19)	C(1) - Fe(1) - P(1)	91.57(13)
C(2)-Fe(1)-P(1)	101.96(13)	C(1)-Fe(1)-S(1)	87.79(14)
C(2) - Fe(1) - S(1)	105.84(13)	P(1) = Fe(1) = S(1)	152.03(4)
C(1)-Fe(1)-S(2)	155 92(14)	C(2) - Fe(1) - S(2)	10643(14)
P(1) = Fe(1) = S(2)	84 54(4)	S(1) = Fe(1) = S(2)	84 76(4)
C(1) = Fe(1) = Fe(1A)	100 43(13)	C(2) = Fe(1) = Fe(1A)	153 89(13)
P(1) = Fe(1) = Fe(1A)	96 25(3)	S(1) = Fe(1) = Fe(1A)	56 53(2)
$S(2)_{Ee}(1)_{Ee}(1\Delta)$	56 63(2)	C(18) - Ee(2) - C(19)	98.42(15)
$C(18) E_{0}(2) D(2)$	90.15(12)	C(10) = C(2) = C(17) $C(10) = E_0(2) = D(2)$	100.96(11)
C(10) - C(2) - C(2) $C(18) = E_0(2) - C(3)$	156 14(11)	C(19) = C(2) = 1(2) $C(10) = E_{0}(2) = S(3)$	100.90(11) 105.44(11)
C(10) - C(2) - S(3) $D(2) = E_0(2) - S(3)$	130.14(11) 85 74(4)	C(19) = Fe(2) = S(3) C(18) = Fe(2) = S(4)	105.44(11) 88.22(12)
$\Gamma(2) = \Gamma(2) = S(3)$ $\Gamma(10) = E_2(2) = S(4)$	0J./4(4) 107 45(11)	$U(10) - \Gamma U(2) - O(4)$ $D(2) = E_0(2) - O(4)$	00.22(12) 151 $47(4)$
$U(17) - \Gamma U(2) - S(4)$ $S(2) = E_0(2) - S(4)$	10/.43(11) 0/.22(4)	$\Gamma(2) - \Gamma \mathcal{C}(2) - \mathcal{O}(4)$ $C(18) = E_{0}(2) = E_{0}(2R)$	131.4/(4) 100.74(11)
S(3) - Ft(2) - S(4)	$\delta 4.30(4)$	U(10) - Fe(2) - Fe(2B)	100./4(11)
U(19) - Fe(2) - Fe(2B)	154.53(11)	P(2) - P(2) - P(2B)	95.94(2)
S(3) - Fe(2) - Fe(2B)	56.515(19)	S(4) - Fe(2) - Fe(2B)	56.54(2)
N(1)-P(1)-C(12)	101.02(17)	N(1) - P(1) - C(6)	105.9(2)

Table 3. Bond lengths [Å] and angles [°] for str0451.

C(12)-P(1)-C(6)	101.50(17)	N(1)-P(1)-Fe(1)	110.64(13)
C(12)-P(1)-Fe(1)	118.04(13)	C(6) - P(1) - Fe(1)	117.82(13)
N(2)-P(2)-C(29)	103.46(17)	N(2)–P(2)–C(23)	105.27(17)
C(29)-P(2)-C(23)	100.13(16)	N(2)-P(2)-Fe(2)	111.75(12)
C(29)-P(2)-Fe(2)	115.67(11)	C(23)-P(2)-Fe(2)	118.79(12)
C(3)-S(1)-Fe(1)	111.92(17)	C(3)-S(1)-Fe(1A)	111.92(17)
Fe(1)-S(1)-Fe(1A)	66.94(4)	C(5)-S(2)-Fe(1A)	114.40(16)
C(5)-S(2)-Fe(1)	114.40(16)	Fe(1A) - S(2) - Fe(1)	66.74(4)
C(20)-S(3)-Fe(2)	113.99(14)	C(20)-S(3)-Fe(2B)	113.99(14)
Fe(2)-S(3)-Fe(2B)	66.97(4)	C(22)-S(4)-Fe(2B)	112.81(16)
C(22)-S(4)-Fe(2)	112.81(16)	Fe(2B)-S(4)-Fe(2)	66.92(4)
P(1A)-N(1)-P(1)	121.4(2)	P(2)–N(2)–P(2B)	119.5(2)
O(1)-C(1)-Fe(1)	178.0(4)	O(2)-C(2)-Fe(1)	178.0(4)
C(4A)-C(3)-C(4)	49.8(7)	C(4A)-C(3)-S(1)	118.5(5)
C(4)-C(3)-S(1)	118.5(5)	C(4A)-C(4)-C(3)	65.1(3)
C(4A)-C(4)-C(5)	67.2(3)	C(3)-C(4)-C(5)	117.6(6)
C(4A)-C(5)-C(4)	45.5(6)	C(4A)-C(5)-S(2)	113.7(4)
C(4)-C(5)-S(2)	113.7(4)	C(11)–C(6)–C(7)	118.8(4)
C(11)-C(6)-P(1)	120.5(3)	C(7)-C(6)-P(1)	120.6(3)
C(8)-C(7)-C(6)	120.3(4)	C(9)–C(8)–C(7)	120.3(4)
C(10)–C(9)–C(8)	119.9(4)	C(9)-C(10)-C(11)	120.6(5)
C(6)-C(11)-C(10)	120.1(5)	C(13)–C(12)–C(17)	118.2(4)
C(13)-C(12)-P(1)	122.1(3)	C(17)-C(12)-P(1)	119.5(3)
C(14)-C(13)-C(12)	120.3(4)	C(15)-C(14)-C(13)	120.2(4)
C(14)-C(15)-C(16)	120.4(4)	C(15)-C(16)-C(17)	120.4(5)
C(16)-C(17)-C(12)	120.4(4)	O(3)-C(18)-Fe(2)	178.8(4)
O(4)-C(19)-Fe(2)	178.4(3)	C(21)-C(20)-C(21B)	42.7(6)
C(21)-C(20)-S(3)	115.8(4)	C(21B)-C(20)-S(3)	115.8(4)
C(21B)-C(21)-C(22)	67.4(3)	C(21B)-C(21)-C(20)	68.6(3)
C(22)-C(21)-C(20)	119.1(5)	C(21B)-C(22)-C(21)	45.1(6)
C(21B)-C(22)-S(4)	118.7(4)	C(21)-C(22)-S(4)	118.7(4)
C(28)-C(23)-C(24)	118.1(3)	C(28)-C(23)-P(2)	121.8(3)
C(24)-C(23)-P(2)	120.0(3)	C(23)-C(24)-C(25)	120.2(4)
C(26)-C(25)-C(24)	121.1(4)	C(27)–C(26)–C(25)	119.2(4)
C(26)–C(27)–C(28)	120.4(4)	C(23)–C(28)–C(27)	121.0(3)
C(30)-C(29)-C(34)	118.4(3)	C(30)-C(29)-P(2)	123.5(3)
C(34)-C(29)-P(2)	118.0(3)	C(29)-C(30)-C(31)	120.9(4)
C(32)–C(31)–C(30)	120.3(4)	C(31)-C(32)-C(33)	119.4(4)
C(34)–C(33)–C(32)	120.5(4)	C(33)-C(34)-C(29)	120.6(4)
Cl(1C)-C(40)-Cl(1)	105(2)	C(40C)-Cl(1)-C(40)	75(2)

Symmetry operations for equivalent atoms

A x,y,-z+1 B x,y,-z C -x+1,-y+1,-z+1

D -x+1,-y+1,z E -x,-y,z

Table 4. Anisotropic displacement parameters (Å²) for str0451. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U^{11}	U^{22}	U ³³	U^{23}	U^{13}	U^{12}
Fe(1)	0.0298(3)	0.0215(3)	0.0157(2)	0.00137(17)	0.00068(18)	0.00027(19)
Fe(2)	0.0162(2)	0.0196(2)	0.0157(2)	-0.00070(16)	-0.00119(16)	0.00008(16)
P(1)	0.0275(4)	0.0230(4)	0.0159(4)	-0.0015(3)	-0.0010(3)	0.0018(3)
P(2)	0.0185(4)	0.0204(4)	0.0137(4)	0.0003(3)	-0.0003(3)	0.0001(3)
S (1)	0.0346(7)	0.0206(6)	0.0288(6)	0.000	0.000	-0.0016(5)
S(2)	0.0290(6)	0.0214(6)	0.0203(5)	0.000	0.000	0.0003(5)
S(3)	0.0159(5)	0.0222(5)	0.0174(5)	0.000	0.000	0.0012(4)
S(4)	0.0192(5)	0.0223(6)	0.0282(6)	0.000	0.000	-0.0033(4)
N(1)	0.032(2)	0.0208(19)	0.0150(18)	0.000	0.000	0.0027(16)
N(2)	0.0203(19)	0.025(2)	0.0138(17)	0.000	0.000	-0.0023(15)
O(1)	0.0429(19)	0.0470(19)	0.068(2)	-0.0013(17)	0.0171(17)	-0.0127(15)
O(2)	0.090(3)	0.0457(18)	0.0280(16)	0.0088(14)	-0.0163(16)	0.0004(18)
O(3)	0.0255(14)	0.0443(16)	0.0438(16)	0.0008(13)	-0.0061(12)	0.0104(12)
O(4)	0.0432(16)	0.0426(16)	0.0223(13)	-0.0086(12)	-0.0007(11)	0.0030(13)
C(1)	0.040(2)	0.0293(19)	0.0306(19)	0.0015(15)	0.0077(16)	-0.0046(16)
C(2)	0.048(2)	0.0255(19)	0.0262(19)	0.0020(14)	-0.0036(17)	0.0015(16)
C(3)	0.036(3)	0.023(3)	0.096(6)	0.000	0.000	0.007(2)
C(4)	0.032(4)	0.031(4)	0.035(4)	0.000(3)	0.000(3)	0.008(3)
C(5)	0.033(3)	0.026(3)	0.043(3)	0.000	0.000	0.007(2)
C(6)	0.0297(18)	0.0323(19)	0.0270(18)	-0.0106(15)	-0.0033(14)	0.0003(15)
C(7)	0.038(2)	0.042(2)	0.0273(19)	-0.0005(16)	-0.0076(16)	0.0008(17)
C(8)	0.039(2)	0.063(3)	0.032(2)	-0.011(2)	-0.0115(18)	0.003(2)
C(9)	0.046(3)	0.054(3)	0.067(3)	-0.029(3)	-0.019(2)	-0.002(2)
C(10)	0.062(3)	0.033(3)	0.115(5)	-0.015(3)	-0.034(3)	-0.008(2)
C(11)	0.050(3)	0.032(2)	0.080(4)	-0.008(2)	-0.027(3)	0.001(2)
C(12)	0.0363(19)	0.0261(18)	0.0202(16)	0.0000(13)	0.0025(14)	0.0076(15)
C(13)	0.051(3)	0.046(2)	0.0218(18)	-0.0038(17)	0.0007(17)	0.010(2)
C(14)	0.072(3)	0.056(3)	0.025(2)	-0.0077(19)	0.010(2)	0.013(3)
C(15)	0.058(3)	0.051(3)	0.041(3)	0.004(2)	0.023(2)	0.019(2)
C(16)	0.037(2)	0.059(3)	0.046(3)	0.004(2)	0.012(2)	0.014(2)
C(17)	0.036(2)	0.043(2)	0.030(2)	-0.0023(17)	0.0024(16)	0.0065(17)
C(18)	0.0234(17)	0.0279(17)	0.0205(16)	-0.0024(13)	-0.0022(12)	-0.0005(13)
C(19)	0.0212(16)	0.0240(17)	0.0232(17)	0.0032(13)	-0.0016(13)	0.0002(12)
C(20)	0.028(2)	0.020(2)	0.029(3)	0.000	0.000	0.0039(19)
C(21)	0.032(4)	0.020(3)	0.034(3)	-0.002(3)	-0.002(3)	0.005(3)
C(22)	0.035(3)	0.014(2)	0.096(6)	0.000	0.000	-0.003(2)
C(23)	0.0195(15)	0.0308(17)	0.0193(15)	0.0003(13)	0.0048(12)	-0.0016(13)
C(24)	0.044(3)	0.050(3)	0.089(4)	-0.034(3)	0.038(3)	-0.022(2)
C(25)	0.048(3)	0.067(4)	0.117(5)	-0.042(4)	0.050(3)	-0.034(3)
C(26)	0.028(2)	0.061(3)	0.039(2)	-0.002(2)	0.0156(17)	-0.0043(19)
C(27)	0.0280(18)	0.043(2)	0.0187(16)	0.0004(15)	0.0030(13)	0.0104(16)
C(28)	0.0210(16)	0.0348(19)	0.0250(17)	-0.0025(14)	0.0003(13)	0.0003(14)
C(29)	0.0271(17)	0.0250(17)	0.0190(16)	0.0033(13)	-0.0030(13)	-0.0008(13)
C(30)	0.0337(19)	0.039(2)	0.0231(18)	0.0014(15)	0.0029(15)	0.0134(16)
C(31)	0.049(3)	0.040(2)	0.035(2)	0.0048(18)	0.0017(19)	0.021(2)
C(32)	0.066(3)	0.039(2)	0.033(2)	0.0124(18)	-0.012(2)	0.009(2)
C(33)	0.121(5)	0.043(3)	0.021(2)	0.0004(18)	-0.020(3)	0.021(3)

(0.01) (0.010) (0.011) (0.011)	C(34)	0.095(4)	0.030(2)	0.0209(19)	-0.0027(16)	-0.011(2)	0.019(
--------------------------------------	-------	----------	----------	------------	-------------	-----------	--------

	Х	У	Z	U
H(7A)	0.0832	0.4791	0.3459	0.043
H(8A)	0.0039	0.3987	0.2972	0.054
H(9A)	-0.0034	0.2505	0.3163	0.067
H(10A)	0.0674	0.1819	0.3845	0.084
H(11A)	0.1471	0.2611	0.4344	0.065
H(13A)	0.2000	0.3584	0.2940	0.047
H(14A)	0.2820	0.3158	0.2258	0.061
H(15A)	0.3824	0.3327	0.2620	0.060
H(16A)	0.4027	0.3908	0.3661	0.057
H(17A)	0.3224	0.4300	0.4367	0.044
H(24A)	0.0037	0.1674	0.0751	0.073
H(25A)	-0.0944	0.1768	0.1218	0.093
H(26A)	-0.1255	0.3009	0.1776	0.051
H(27A)	-0.0565	0.4139	0.1920	0.036
H(28A)	0.0420	0.4064	0.1454	0.032
H(30A)	0.1712	0.1046	0.0629	0.038
H(31A)	0.2137	0.0076	0.1399	0.050
H(32A)	0.2139	0.0410	0.2527	0.055
H(33A)	0.1667	0.1688	0.2894	0.074
H(34A)	0.1215	0.2636	0.2134	0.058

Table 5. Hydrogen coordinates and isotropic displacement parameters ($Å^2$) for str0451.

Table 6. Torsion angles [°] for str0451.

C(1)-Fe(1)-P(1)-N(1)	88.8(2)	C(2)-Fe(1)-P(1)-N(1)	-173.0(2)
S(1)-Fe(1)-P(1)-N(1)	0.6(2)	S(2)-Fe(1)-P(1)-N(1)	-67.36(16)
Fe(1A)-Fe(1)-P(1)-N(1)	-11.86(16)	C(1)-Fe(1)-P(1)-C(12)	-26.78(19)
C(2)-Fe(1)-P(1)-C(12)	71.4(2)	S(1)-Fe(1)-P(1)-C(12)	-115.02(16)
S(2)-Fe(1)-P(1)-C(12)	177.04(14)	Fe(1A)-Fe(1)-P(1)-C(12)	-127.45(14)
C(1)-Fe(1)-P(1)-C(6)	-149.23(19)	C(2)-Fe(1)-P(1)-C(6)	-51.1(2)
S(1)-Fe(1)-P(1)-C(6)	122.53(17)	S(2)-Fe(1)-P(1)-C(6)	54.59(14)
Fe(1A) - Fe(1) - P(1) - C(6)	110.10(14)	C(18)-Fe(2)-P(2)-N(2)	-88.35(18)
C(19)-Fe(2)-P(2)-N(2)	173.05(18)	S(3)-Fe(2)-P(2)-N(2)	68.13(14)
S(4)-Fe(2)-P(2)-N(2)	-1.79(18)	Fe(2B)-Fe(2)-P(2)-N(2)	12.46(14)
C(18)-Fe(2)-P(2)-C(29)	29.67(17)	C(19)-Fe(2)-P(2)-C(29)	-68.94(17)
S(3)-Fe(2)-P(2)-C(29)	-173.85(13)	S(4)-Fe(2)-P(2)-C(29)	116.23(15)
Fe(2B)-Fe(2)-P(2)-C(29)	130.48(13)	C(18)-Fe(2)-P(2)-C(23)	148.79(17)
C(19)-Fe(2)-P(2)-C(23)	50.19(17)	S(3)-Fe(2)-P(2)-C(23)	-54.73(13)
S(4)-Fe(2)-P(2)-C(23)	-124.65(15)	Fe(2B)-Fe(2)-P(2)-C(23)	-110.40(13)
C(1)-Fe(1)-S(1)-C(3)	150.52(19)	C(2)-Fe(1)-S(1)-C(3)	53.2(2)
P(1)-Fe(1)-S(1)-C(3)	-120.29(16)	S(2)-Fe(1)-S(1)-C(3)	-52.41(14)
Fe(1A) - Fe(1) - S(1) - C(3)	-105.43(14)	C(1)-Fe(1)-S(1)-Fe(1A)	-104.05(13)
C(2)-Fe(1)-S(1)-Fe(1A)	158.64(15)	P(1)-Fe(1)-S(1)-Fe(1A)	-14.86(12)
S(2)-Fe(1)-S(1)-Fe(1A)	53.02(4)	C(1)-Fe(1)-S(2)-C(5)	127.0(4)
C(2)-Fe(1)-S(2)-C(5)	-50.55(18)	P(1)-Fe(1)-S(2)-C(5)	-151.43(13)
S(1)-Fe(1)-S(2)-C(5)	54.45(13)	Fe(1A) - Fe(1) - S(2) - C(5)	107.38(13)
C(1)-Fe(1)-S(2)-Fe(1A)	19.6(3)	C(2)-Fe(1)-S(2)-Fe(1A)	-157.93(13)
P(1)-Fe(1)-S(2)-Fe(1A)	101.18(3)	S(1)-Fe(1)-S(2)-Fe(1A)	-52.94(4)
C(18)-Fe(2)-S(3)-C(20)	-126.4(3)	C(19)-Fe(2)-S(3)-C(20)	52.67(16)
P(2)-Fe(2)-S(3)-C(20)	152.88(11)	S(4) - Fe(2) - S(3) - C(20)	-53.92(11)
Fe(2B)-Fe(2)-S(3)-C(20)	-107.12(11)	C(18)-Fe(2)-S(3)-Fe(2B)	-19.3(3)
C(19)-Fe(2)-S(3)-Fe(2B)	159.79(11)	P(2)-Fe(2)-S(3)-Fe(2B)	-100.00(3)
S(4) - Fe(2) - S(3) - Fe(2B)	53.21(3)	C(18)-Fe(2)-S(4)-C(22)	-149.75(17)
C(19)-Fe(2)-S(4)-C(22)	-51.48(18)	P(2)-Fe(2)-S(4)-C(22)	123.20(15)
S(3)-Fe(2)-S(4)-C(22)	52.95(13)	Fe(2B)-Fe(2)-S(4)-C(22)	106.13(13)
C(18)-Fe(2)-S(4)-Fe(2B)	104.12(11)	C(19)-Fe(2)-S(4)-Fe(2B)	-157.62(11)
P(2)-Fe(2)-S(4)-Fe(2B)	17.07(10)	S(3)-Fe(2)-S(4)-Fe(2B)	-53.18(3)
C(12)-P(1)-N(1)-P(1A)	150.5(3)	C(6)-P(1)-N(1)-P(1A)	-104.1(3)
Fe(1) - P(1) - N(1) - P(1A)	24.7(3)	C(29)-P(2)-N(2)-P(2B)	-150.3(2)
C(23)-P(2)-N(2)-P(2B)	105.1(2)	Fe(2) - P(2) - N(2) - P(2B)	-25.2(3)
C(2)-Fe(1)-C(1)-O(1)	124(12)	P(1) - Fe(1) - C(1) - O(1)	-134(12)
S(1)-Fe(1)-C(1)-O(1)	18(12)	S(2) - Fe(1) - C(1) - O(1)	-54(12)
Fe(1A) - Fe(1) - C(1) - O(1)	-37(12)	C(1) - Fe(1) - C(2) - O(2)	-44(13)
P(1)-Fe(1)-C(2)-O(2)	-137(13)	S(1) - Fe(1) - C(2) - O(2)	46(13)
S(2)-Fe(1)-C(2)-O(2)	135(13)	Fe(1A)-Fe(1)-C(2)-O(2)	90(13)
Fe(1)-S(1)-C(3)-C(4A)	65.1(4)	Fe(1A) - S(1) - C(3) - C(4A)	-7.8(5)
Fe(1)-S(1)-C(3)-C(4)	7.8(5)	Fe(1A) - S(1) - C(3) - C(4)	-65.1(4)
S(1)-C(3)-C(4)-C(4A)	104 6(4)	C(4A) - C(3) - C(4) - C(5)	-43 6(6)
S(1)-C(3)-C(4)-C(5)	61.0(7)	C(3)-C(4)-C(5)-C(4A)	42.7(6)
C(4A)-C(4)-C(5)-S(2)	-100.6(3)	C(3)-C(4)-C(5)-S(2)	-57.9(6)
Fe(1A) - S(2) - C(5) - C(4A)	12.2(4)	Fe(1)-S(2)-C(5)-C(4A)	-62.1(3)
Fe(1A) - S(2) - C(5) - C(4)	62.1(3)	Fe(1)-S(2)-C(5)-C(4)	-12.2(4)
N(1)-P(1)-C(6)-C(11)	-33.2(4)	C(12) = P(1) = C(6) = C(11)	71.9(4)
Fe(1) - P(1) - C(6) - C(11)	-157.6(4)	N(1)-P(1)-C(6)-C(7)	1501(3)
$-\cdot$			

C(12)-P(1)-C(6)-C(7)	-104.8(3)	Fe(1)-P(1)-C(6)-C(7)	25.8(4)
C(11)-C(6)-C(7)-C(8)	-1.9(6)	P(1)-C(6)-C(7)-C(8)	174.8(3)
C(6)-C(7)-C(8)-C(9)	0.6(7)	C(7)-C(8)-C(9)-C(10)	0.5(8)
C(8)–C(9)–C(10)–C(11)	-0.3(10)	C(7)-C(6)-C(11)-C(10)	2.1(8)
P(1)-C(6)-C(11)-C(10)	-174.6(5)	C(9)-C(10)-C(11)-C(6)	-1.0(10)
N(1)-P(1)-C(12)-C(13)	133.8(3)	C(6)-P(1)-C(12)-C(13)	24.9(4)
Fe(1)–P(1)–C(12)–C(13)	-105.5(3)	N(1)-P(1)-C(12)-C(17)	-51.5(4)
C(6)-P(1)-C(12)-C(17)	-160.4(3)	Fe(1)-P(1)-C(12)-C(17)	69.2(3)
C(17)-C(12)-C(13)-C(14)	1.0(6)	P(1)-C(12)-C(13)-C(14)	175.8(4)
C(12)-C(13)-C(14)-C(15)	-1.2(7)	C(13)-C(14)-C(15)-C(16)	0.2(8)
C(14)-C(15)-C(16)-C(17)	0.8(8)	C(15)-C(16)-C(17)-C(12)	-0.9(7)
C(13)-C(12)-C(17)-C(16)	0.0(6)	P(1)-C(12)-C(17)-C(16)	-174.9(3)
C(19)-Fe(2)- $C(18)$ -O(3)	-103(17)	P(2)-Fe(2)-C(18)-O(3)	156(17)
S(3)-Fe(2)-C(18)-O(3)	76(17)	S(4)-Fe(2)-C(18)-O(3)	5(17)
Fe(2B)-Fe(2)-C(18)-O(3)	60(17)	C(18)-Fe(2)-C(19)-O(4)	23(11)
P(2)-Fe(2)-C(19)-O(4)	114(11)	S(3)-Fe(2)-C(19)-O(4)	-157(11)
S(4)-Fe(2)-C(19)-O(4)	-68(11)	Fe(2B)–Fe(2)–C(19)–O(4)	-115(11)
Fe(2)–S(3)–C(20)–C(21)	13.3(4)	Fe(2B)–S(3)–C(20)–C(21)	-61.0(3)
Fe(2)–S(3)–C(20)–C(21B)	61.0(3)	Fe(2B)–S(3)–C(20)–C(21B)	-13.3(4)
S(3)-C(20)-C(21)-C(21B)	100.9(2)	C(21B)-C(20)-C(21)-C(22)	-46.4(6)
S(3)-C(20)-C(21)-C(22)	54.5(6)	C(20)-C(21)-C(22)-C(21B)	46.9(6)
C(21B)-C(21)-C(22)-S(4)	-103.1(3)	C(20)-C(21)-C(22)-S(4)	-56.2(6)
Fe(2B)–S(4)–C(22)–C(21B)	10.8(4)	Fe(2)-S(4)-C(22)-C(21B)	-62.6(4)
Fe(2B)–S(4)–C(22)–C(21)	62.6(4)	Fe(2)-S(4)-C(22)-C(21)	-10.8(4)
N(2)-P(2)-C(23)-C(28)	-144.8(3)	C(29)–P(2)–C(23)–C(28)	108.1(3)
Fe(2)–P(2)–C(23)–C(28)	-18.8(3)	N(2)-P(2)-C(23)-C(24)	38.6(4)
C(29)-P(2)-C(23)-C(24)	-68.5(4)	Fe(2)–P(2)–C(23)–C(24)	164.6(4)
C(28)-C(23)-C(24)-C(25)	-0.2(9)	P(2)-C(23)-C(24)-C(25)	176.5(5)
C(23)-C(24)-C(25)-C(26)	0.8(11)	C(24)-C(25)-C(26)-C(27)	-1.6(10)
C(25)-C(26)-C(27)-C(28)	1.7(7)	C(24)-C(23)-C(28)-C(27)	0.3(6)
P(2)-C(23)-C(28)-C(27)	-176.3(3)	C(26)-C(27)-C(28)-C(23)	-1.1(6)
N(2)-P(2)-C(29)-C(30)	18.0(4)	C(23)-P(2)-C(29)-C(30)	126.6(3)
Fe(2)–P(2)–C(29)–C(30)	-104.5(3)	N(2)-P(2)-C(29)-C(34)	-166.0(4)
C(23)-P(2)-C(29)-C(34)	-57.5(4)	Fe(2)–P(2)–C(29)–C(34)	71.5(4)
C(34)-C(29)-C(30)-C(31)	-0.1(6)	P(2)-C(29)-C(30)-C(31)	175.9(3)
C(29)-C(30)-C(31)-C(32)	-1.4(7)	C(30)-C(31)-C(32)-C(33)	1.7(8)
C(31)-C(32)-C(33)-C(34)	-0.6(9)	C(32)-C(33)-C(34)-C(29)	-0.9(9)
C(30)-C(29)-C(34)-C(33)	1.2(7)	P(2)-C(29)-C(34)-C(33)	-175.0(4)
Cl(1C)-C(40)-Cl(1)-C(40C)	0.000(7)		

Symmetry operations for equivalent atoms

A x,y,-z+1 B x,y,-z C -x+1,-y+1,-z+1

Table 1. Crystal data and structure refinement for 6.

Identification code Chemical formula Formula weight Temperature Radiation, wavelength Crystal system, space group Unit cell parameters Cell volume Ζ Calculated density Absorption coefficient µ F(000) Crystal colour and size Data collection method θ range for data collection Index ranges Completeness to $\theta = 26.00^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution Refinement method Weighting parameters a, b Data / restraints / parameters Final R indices $[F^2>2\sigma]$ R indices (all data) Goodness-of-fit on F² Largest and mean shift/su Largest diff. peak and hole

str0954 $C_{36}H_{36}BCl_4F_4Fe_2NO_4P_2S_2$ 1013.03 150(2) K MoKα, 0.71073 Å monoclinic, $P2_1/n$ a = 9.321(3) Å $\alpha = 90^{\circ}$ b = 31.564(9) Å $\beta = 100.751(5)^{\circ}$ c = 13.987(4) Å $\gamma = 90^{\circ}$ 4042.9(19) Å³ 4 1.664 g/cm^3 1.224 mm^{-1} 2056 red, $0.40 \times 0.20 \times 0.20$ mm³ Bruker SMART 1K CCD diffractometer ω rotation with narrow frames 2.43 to 28.45° h -12 to 12, k -41 to 40, 1 -18 to 18 99.3 % 34315 9563 ($R_{int} = 0.1001$) 4650 semi-empirical from equivalents 0.6402 and 0.7918 direct methods Full-matrix least-squares on F^2 0.0418, 0.0000 9563 / 0 / 509 $R_1 = 0.0536$, $wR_2 = 0.0939$ $R_1 = 0.1164, wR_2 = 0.1019$ 0.795 0.000 and 0.000 0.780 and $-0.457 \text{ e} \text{ Å}^{-3}$

Table 2. At	omic coordinates and equivalent isotropic displacement parameters (\AA^2)
for str0954.	U_{eq} is defined as one third of the trace of the orthogonalized U ^{ij} tensor.

	Х	У	Z	U_{eq}
Fe(1)	0.57945(6)	0.129788(17)	0.77916(4)	0.02380(15)
Fe(2)	0.50937(6)	0.052246(17)	0.79004(4)	0.02559(15)
N(1)	0.6885(3)	0.16166(9)	0.6162(2)	0.0224(7)
P(1)	0.77700(11)	0.13938(3)	0.71907(7)	0.0234(2)
P(2)	0.51685(11)	0.15999(3)	0.63756(7)	0.0238(2)
S(1)	0.67680(11)	0.08699(3)	0.89985(7)	0.0257(2)
S(2)	0.36377(11)	0.10786(3)	0.80363(7)	0.0262(2)
C(1)	0.5747(4)	0.17628(13)	0.8426(3)	0.0262(9)
C(2)	0.4330(4)	0.01678(13)	0.8656(3)	0.0284(10)
C(3)	0.6481(5)	0.01557(13)	0.7692(3)	0.0295(10)
C(4)	0.3939(5)	0.03458(12)	0.6791(3)	0.0305(10)
O(1)	0.5607(3)	0.20614(9)	0.8882(2)	0.0390(8)
O(2)	0.3812(3)	-0.00506(9)	0.9129(2)	0.0348(7)
O(3)	0.7291(3)	-0.00877(9)	0.7550(2)	0.0384(8)
O(3)	0.7276(3)	0.00077(9)	0.7550(2)	0.0304(8)
C(5)	0.5270(3) 0.6110(4)	0.02315(5)	1.0095(3)	0.0494(0) 0.0290(10)
C(5)	0.0110(4) 0.4521(4)	0.10500(12) 0.09612(12)	1.0093(3) 1.0082(3)	0.0200(10) 0.0310(10)
C(0)	0.4321(4) 0.3480(4)	0.00012(12) 0.11776(12)	0.9293(3)	0.0310(10) 0.0325(10)
C(8)	0.3460(4) 0.7352(4)	0.11770(12) 0.19054(12)	0.525(3) 0.5446(3)	0.0323(10) 0.0269(10)
C(0)	0.7332(4) 0.8297(5)	0.1709(12) 0.17199(13)	0.3440(3) 0.4814(3)	0.0209(10) 0.0328(10)
C(10)	0.0297(5) 0.9409(5)	0.17199(13) 0.19144(14)	0.4599(3)	0.0320(10) 0.0403(12)
C(10)	0.9409(3) 0.9233(4)	0.17144(14) 0.17267(11)	0.7795(3)	0.0403(12) 0.0233(9)
C(12)	0.9235(4) 0.9335(4)	0.17207(11) 0.18084(12)	0.772(3)	0.0233(10)
C(12) C(13)	1.0500(5)	0.10004(12) 0.20290(13)	0.0772(3) 0.9283(3)	0.0205(10) 0.0334(11)
C(13)	1.0500(5) 1.1557(4)	0.20200(13) 0.21718(12)	0.9203(3) 0.8817(3)	0.0334(11) 0.0291(10)
C(14)	1.1357(4) 1 1469(4)	0.21710(12) 0.20965(12)	0.0017(3) 0.7845(3)	0.0271(10) 0.0315(10)
C(16)	1.1409(4) 1.0318(4)	0.20905(12) 0.18665(12)	0.7337(3)	0.0315(10) 0.0286(10)
C(10)	0.8710(4)	0.0003(12) 0.09343(11)	0.7337(3) 0.6884(3)	0.0239(9)
C(17)	0.0710(4) 0.9801(4)	0.07583(12)	0.0004(3) 0.7577(3)	0.0237(5)
C(10)	1.0419(4)	0.07505(12) 0.03771(13)	0.7407(3)	0.0203(10) 0.0323(10)
C(20)	0.9990(4)	0.03771(13) 0.01761(12)	0.6532(3)	0.0323(10) 0.0317(10)
C(21)	0.8916(4)	0.03401(13)	0.5840(3)	0.0323(10)
C(22)	0.8270(4)	0.07223(12)	0.6015(3)	0.0228(10)
C(22)	0.4536(4)	0.21421(12)	0.6294(3)	0.0232(9)
C(24)	0.3185(4)	0.22672(12)	0.5793(3)	0.0286(10)
C(25)	0.2701(5)	0.26741(13)	0.5874(3)	0.0340(11)
C(26)	0.3559(5)	0.29617(13)	0.6441(3)	0.0354(11)
C(27)	0.4928(5)	0.28510(12)	0.6908(3)	0.0331(11)
C(28)	0.5410(4)	0.24429(12)	0.6838(3)	0.0278(10)
C(29)	0.4010(4)	0.13146(12)	0.5412(3)	0.0241(9)
C(30)	0.2588(4)	0.12399(12)	0.5496(3)	0.0294(10)
C(31)	0.1681(5)	0.10177(12)	0.4800(3)	0.0335(11)
C(32)	0.2192(5)	0.08557(13)	0.4018(3)	0.0385(11)
C(33)	0.3616(5)	0.09219(13)	0.3950(3)	0.0363(11)
C(34)	0.4520(4)	0.11505(11)	0.4636(3)	0.0281(10)
C(40)	0.0247(5)	0.05934(13)	0.0826(3)	0.0438(12)
C(50)	0.9431(8)	0.3204(2)	0.7432(4)	0.093(2)
Cl(1)	0.14573(13)	0.03381(4)	0.01966(9)	0.0478(3)
Cl(2)	0.0698(2)	0.11161(4)	0.10335(12)	0.0898(6)
Cl(3)	0.89189(15)	0.30245(4)	0.62597(9)	0.0560(4)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Cl(4)	0.86910(14)	0.29339(4)	0.82755(9)	0.0536(3)
B(1)	0.7189(6)	0.08011(17)	0.2750(4)	0.0377(13)
F(1)	0.5840(3)	0.06170(9)	0.2494(2)	0.0668(9)
F(2)	0.7669(3)	0.07629(8)	0.37246(18)	0.0650(8)
F(3)	0.8136(3)	0.05972(8)	0.22627(17)	0.0512(7)
F(4)	0.7078(3)	0.12173(8)	0.24931(19)	0.0652(8)

Fe(1)-C(1)	1.720(4)	Fe(1) - P(2)	2.1773(12)
Fe(1) - P(1)	2.1831(13)	Fe(1)-S(2)	2.2124(13)
Fe(1) - S(1)	2.2195(12)	Fe(1)– $Fe(2)$	2.5451(10)
Fe(2)–C(2)	1.777(5)	Fe(2)-C(3)	1.799(5)
Fe(2)-C(4)	1.805(5)	Fe(2)-S(2)	2.2485(12)
Fe(2)-S(1)	2.2590(12)	N(1) - C(8)	1.479(4)
N(1) - P(1)	1.674(3)	N(1) - P(2)	1.683(3)
P(1)-C(17)	1.788(4)	P(1) - C(11)	1.802(4)
P(1)-P(2)	2.5635(15)	P(2) - C(29)	1.803(4)
P(2)-C(23)	1.807(4)	S(1) - C(5)	1.800(1) 1.827(4)
S(2) = C(7)	1.807(1) 1.818(4)	C(1) - O(1)	1.027(1) 1 159(4)
C(2) = O(2)	1 125(4)	C(3) = O(3)	1.139(1) 1.121(4)
C(4) = O(4)	1.120(1) 1.120(4)	C(5) - C(6)	1.121(1) 1.494(5)
C(6) - C(7)	1.120(4) 1.492(5)	C(8) - C(9)	1.479(5)
C(0) = C(1)	1.492(5) 1.288(5)	C(11) $C(16)$	1.77(5)
C(11) - C(12)	1.200(5)	C(12) - C(13)	1.307(5) 1.373(5)
C(12) - C(12)	1.377(3)	C(12) = C(15) C(14) = C(15)	1.375(5)
C(15) - C(14)	1.330(3) 1.278(5)	C(14) = C(13) C(17) = C(22)	1.300(3) 1.281(5)
C(13) - C(10) C(17) - C(18)	1.376(3) 1.384(5)	C(17) - C(22) C(18) - C(10)	1.301(3) 1.274(5)
C(17) = C(18)	1.364(3) 1.270(5)	C(10) - C(19)	1.374(3) 1.259(5)
C(19) = C(20)	1.370(3)	C(20) - C(21)	1.558(5) 1.290(5)
C(21) = C(22)	1.390(5)	C(23) = C(24)	1.380(5) 1.272(5)
C(23) = C(28)	1.383(5)	C(24) = C(25)	1.3/3(5)
C(25) = C(26)	1.362(6)	C(26) - C(27)	1.366(6)
C(27) = C(28)	1.3/4(5)	C(29) - C(34)	1.365(5)
C(29) - C(30)	1.372(5)	C(30) - C(31)	1.359(5)
C(31) - C(32)	1.3/1(5)	C(32) - C(33)	1.365(6)
C(33) - C(34)	1.360(5)	C(40) - CI(2)	1.714(4)
C(40) - CI(1)	1.751(4)	C(50) - CI(4)	1.702(5)
C(50)-CI(3)	1.716(5)	B(1)-F(2)	1.358(5)
B(1) - F(4)	1.361(6)	B(1)-F(1)	1.371(6)
B(1) - F(3)	1.372(5)		
C(1)–Fe(1)–P(2)	93.88(13)	C(1)–Fe(1)–P(1)	100.68(13)
P(2)-Fe(1)-P(1)	72.02(4)	C(1)-Fe(1)-S(2)	94.32(13)
P(2)-Fe(1)-S(2)	100.40(4)	P(1)-Fe(1)-S(2)	163.53(5)
C(1)-Fe(1)-S(1)	99.96(13)	P(2)-Fe(1)-S(1)	163.83(5)
P(1)-Fe(1)-S(1)	97.05(4)	S(2)-Fe(1)-S(1)	86.92(4)
C(1)-Fe(1)-Fe(2)	139.28(13)	P(2)-Fe(1)-Fe(2)	116.56(4)
P(1)-Fe(1)-Fe(2)	113.62(4)	S(2) - Fe(1) - Fe(2)	55.88(3)
S(1)-Fe(1)-Fe(2)	56.10(3)	C(2)-Fe(2)-C(3)	94.06(18)
C(2)-Fe(2)-C(4)	94.37(18)	C(3)-Fe(2)-C(4)	89.61(17)
C(2)-Fe(2)-S(2)	97.26(13)	C(3)-Fe(2)-S(2)	168.32(13)
C(4)-Fe(2)-S(2)	92.37(13)	C(2)-Fe(2)-S(1)	101.77(13)
C(3)-Fe(2)-S(1)	89.79(12)	C(4)-Fe(2)-S(1)	163.85(13)
S(2) - Fe(2) - S(1)	85.12(4)	C(2) - Fe(2) - Fe(1)	141.00(13)
C(3)-Fe(2)-Fe(1)	114.13(13)	C(4) - Fe(2) - Fe(1)	111.37(12)
S(2) - Fe(2) - Fe(1)	54.55(3)	S(1)-Fe(2)-Fe(1)	54.64(3)
C(8)-N(1)-P(1)	133.0(2)	C(8) - N(1) - P(2)	123.3(2)
P(1)-N(1)-P(2)	99.60(16)	N(1) - P(1) - C(17)	108.63(16)
N(1)-P(1)-C(11)	111.48(17)	C(17) - P(1) - C(11)	102.92(17)
N(1) - P(1) - Fe(1)	94 21(11)	C(17) = P(1) = Fe(1)	117 80(13)
C(11) - P(1) - Fe(1)	121.28(13)	N(1) - P(1) - P(2)	40 33(11)
C(17) - P(1) - P(2)	124 37(13)	C(11) - P(1) - P(2)	129 11(13)
\sim (1) (1) (2)	121.37(13)	(11) 1(1) 1(2)	127.11(13)

Table 3. Bond lengths [Å] and angles [°] for str0954.

Fe(1) - P(1) - P(2)	53.89(4)	N(1)-P(2)-C(29)	109.87(17)
N(1)-P(2)-C(23)	105.61(16)	C(29)–P(2)–C(23)	106.45(17)
N(1)-P(2)-Fe(1)	94.17(11)	C(29)-P(2)-Fe(1)	118.87(13)
C(23)-P(2)-Fe(1)	120.07(12)	N(1)-P(2)-P(1)	40.07(10)
C(29)-P(2)-P(1)	126.20(13)	C(23)-P(2)-P(1)	122.61(13)
Fe(1) - P(2) - P(1)	54.10(4)	C(5)-S(1)-Fe(1)	108.42(13)
C(5)-S(1)-Fe(2)	114.09(13)	Fe(1)-S(1)-Fe(2)	69.25(4)
C(7)-S(2)-Fe(1)	109.61(14)	C(7)-S(2)-Fe(2)	112.03(13)
Fe(1)-S(2)-Fe(2)	69.57(4)	O(1)-C(1)-Fe(1)	173.9(4)
O(2)–C(2)–Fe(2)	178.1(4)	O(3)-C(3)-Fe(2)	176.5(4)
O(4)-C(4)-Fe(2)	176.9(4)	C(6)-C(5)-S(1)	115.9(3)
C(7)–C(6)–C(5)	116.7(3)	C(6)-C(7)-S(2)	118.5(3)
N(1)–C(8)–C(9)	116.3(3)	C(10)–C(9)–C(8)	123.1(4)
C(16)-C(11)-C(12)	119.0(4)	C(16)–C(11)–P(1)	122.0(3)
C(12)-C(11)-P(1)	118.7(3)	C(13)-C(12)-C(11)	120.8(4)
C(14)-C(13)-C(12)	119.6(4)	C(13)-C(14)-C(15)	120.4(4)
C(14)-C(15)-C(16)	120.1(4)	C(11)-C(16)-C(15)	120.1(4)
C(22)–C(17)–C(18)	118.7(4)	C(22)-C(17)-P(1)	121.7(3)
C(18)–C(17)–P(1)	119.1(3)	C(19)–C(18)–C(17)	120.5(4)
C(20)-C(19)-C(18)	119.8(4)	C(21)-C(20)-C(19)	120.9(4)
C(20)–C(21)–C(22)	119.4(4)	C(17)–C(22)–C(21)	120.5(4)
C(24)–C(23)–C(28)	118.1(4)	C(24)-C(23)-P(2)	124.0(3)
C(28)–C(23)–P(2)	117.6(3)	C(25)-C(24)-C(23)	120.6(4)
C(26)-C(25)-C(24)	120.3(4)	C(25)-C(26)-C(27)	120.2(4)
C(26)-C(27)-C(28)	119.6(4)	C(27)–C(28)–C(23)	121.1(4)
C(34)-C(29)-C(30)	119.2(4)	C(34)–C(29)–P(2)	122.3(3)
C(30)–C(29)–P(2)	118.4(3)	C(31)-C(30)-C(29)	120.6(4)
C(30)–C(31)–C(32)	120.1(4)	C(33)–C(32)–C(31)	119.0(4)
C(34)–C(33)–C(32)	121.0(4)	C(33)–C(34)–C(29)	120.0(4)
Cl(2)-C(40)-Cl(1)	111.6(2)	Cl(4)-C(50)-Cl(3)	114.9(3)
F(2)-B(1)-F(4)	110.2(4)	F(2)-B(1)-F(1)	109.8(4)
F(4)-B(1)-F(1)	108.6(4)	F(2)-B(1)-F(3)	109.6(4)
F(4)-B(1)-F(3)	110.2(4)	F(1)-B(1)-F(3)	108.4(4)

Table 4. Anisotropic displacement parameters (Å²) for str0954. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

	\mathbf{U}^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
F (1)	0.0000/2)	0.0170(2)	0.0250(2)	0.0005(2)	0.0020(2)	0.0001(2)
Fe(1)	0.0280(3)	0.0170(3)	0.0259(3)	-0.0005(3)	0.0039(3)	-0.0001(3)
Fe(2)	0.0298(3)	0.01/1(3)	0.0293(3)	-0.000/(3)	0.0039(3)	-0.0002(3)
N(1)	0.0261(19)	0.0158(17)	0.0251(19)	0.0003(14)	0.0042(15)	-0.0005(14)
P(1)	0.0270(6)	0.0178(6)	0.0244(6)	-0.0008(4)	0.0022(5)	0.0007(4)
P(2)	0.0277(6)	0.0179(6)	0.0251(6)	0.0000(4)	0.0033(5)	0.0012(5)
S(1)	0.0302(6)	0.0191(5)	0.0267(6)	0.0002(4)	0.0025(5)	0.0003(4)
S(2)	0.0286(6)	0.0201(5)	0.0302(6)	0.0005(5)	0.0059(5)	0.0006(5)
C(1)	0.027(2)	0.025(2)	0.025(2)	0.0105(19)	0.0021(19)	0.0001(19)
C(2)	0.029(3)	0.023(2)	0.030(2)	-0.0027(19)	-0.004(2)	0.0036(19)
C(3)	0.032(3)	0.026(3)	0.027(2)	-0.002(2)	-0.003(2)	-0.007(2)
C(4)	0.038(3)	0.016(2)	0.040(3)	0.004(2)	0.014(2)	0.0024(19)
O(1)	0.054(2)	0.0244(17)	0.0376(18)	-0.0076(14)	0.0067(15)	0.0047(14)
O(2)	0.047(2)	0.0204(17)	0.0381(18)	0.0022(13)	0.0111(15)	-0.0075(14)
O(3)	0.0403(19)	0.0266(18)	0.050(2)	-0.0055(14)	0.0127(16)	0.0046(15)
O(4)	0.050(2)	0.039(2)	0.037(2)	-0.0056(15)	-0.0028(16)	-0.0053(16)
C(5)	0.039(3)	0.022(2)	0.025(2)	-0.0032(18)	0.004(2)	-0.0035(19)
C(6)	0.040(3)	0.025(2)	0.029(2)	0.0004(18)	0.009(2)	0.0011(19)
C(7)	0.037(3)	0.024(2)	0.038(3)	0.0009(19)	0.013(2)	0.0012(19)
C(8)	0.026(2)	0.022(2)	0.030(2)	0.0021(18)	0.0014(19)	-0.0026(18)
C(9)	0.043(3)	0.026(2)	0.030(3)	0.0048(19)	0.011(2)	0.007(2)
C(10)	0.040(3)	0.037(3)	0.047(3)	0.008(2)	0.014(2)	0.006(2)
C(11)	0.026(2)	0.016(2)	0.028(2)	-0.0013(17)	0.0045(19)	0.0043(17)
C(12)	0.030(3)	0.024(2)	0.030(3)	-0.0008(19)	0.002(2)	-0.0054(19)
C(13)	0.042(3)	0.033(3)	0.026(2)	-0.0068(19)	0.005(2)	-0.007(2)
C(14)	0.027(3)	0.023(2)	0.034(3)	-0.0029(19)	-0.003(2)	-0.0059(19)
C(15)	0.029(3)	0.033(3)	0.032(3)	0.003(2)	0.006(2)	-0.007(2)
C(16)	0.033(3)	0.027(2)	0.027(2)	-0.0030(19)	0.008(2)	-0.0013(19)
C(17)	0.023(2)	0.020(2)	0.028(2)	0.0003(18)	0.0037(19)	-0.0045(17)
C(18)	0.033(3)	0.019(2)	0.031(2)	-0.0033(18)	0.000(2)	-0.0030(19)
C(19)	0.027(2)	0.027(2)	0.040(3)	0.003(2)	0.000(2)	0.0042(19)
C(20)	0.030(3)	0.019(2)	0.048(3)	0.001(2)	0.013(2)	0.0032(19)
C(21)	0.040(3)	0.026(2)	0.031(3)	-0.0070(19)	0.008(2)	0.002(2)
C(22)	0.031(3)	0.027(2)	0.030(2)	0.0005(19)	0.003(2)	-0.0016(19)
C(23)	0.027(2)	0.025(2)	0.019(2)	0.0006(17)	0.0068(18)	0.0008(18)
C(24)	0.037(3)	0.026(2)	0.022(2)	0.0024(18)	0.006(2)	-0.001(2)
C(25)	0.037(3)	0.032(3)	0.034(3)	0.012(2)	0.009(2)	0.009(2)
C(26)	0.048(3)	0.027(3)	0.033(3)	0.007(2)	0.012(2)	0.012(2)
C(27)	0.048(3)	0.020(2)	0.035(3)	0.0006(19)	0.016(2)	-0.006(2)
C(28)	0.037(3)	0.025(2)	0.021(2)	0.0045(18)	0.0048(19)	0.000(2)
C(29)	0.028(2)	0.018(2)	0.025(2)	0.0017(17)	0.0008(18)	0.0020(18)
C(30)	0.031(3)	0.029(2)	0.029(2)	-0.0004(19)	0.006(2)	0.003(2)
C(31)	0.029(3)	0.026(2)	0.044(3)	0.003(2)	0.004(2)	-0.001(2)
C(32)	0.042(3)	0.032(3)	0.037(3)	-0.006(2)	-0.004(2)	-0.007(2)
C(33)	0.042(3)	0.034(3)	0.032(3)	-0.007(2)	0.008(2)	0.000(2)
C(34)	0.030(2)	0.018(2)	0.037(3)	0.0001(19)	0.008(2)	-0.0005(18)
C(40)	0.039(3)	0.037(3)	0.057(3)	0.002(2)	0.015(2)	0.007(2)
C(50)	0.138(6)	0.091(5)	0.048(4)	-0.018(3)	0.017(4)	-0.067(4)
Cl(1)	0.0480(8)	0.0434(7)	0.0552(8)	-0.0063(6)	0.0180(6)	-0.0056(6)
· /	(- /		(-)	(-)	(-)	(-)

Cl(2)	0.1294(14)	0.0358(8)	0.1222(14)	-0.0125(8)	0.0701(12)	-0.0068(8)
Cl(3)	0.0784(10)	0.0400(8)	0.0489(8)	-0.0013(6)	0.0101(7)	-0.0066(7)
Cl(4)	0.0690(9)	0.0417(8)	0.0466(8)	0.0009(6)	0.0017(7)	-0.0064(6)
B(1)	0.049(4)	0.034(3)	0.031(3)	-0.003(2)	0.011(3)	0.002(3)
F(1)	0.061(2)	0.074(2)	0.072(2)	-0.0267(16)	0.0299(17)	-0.0171(16)
F(2)	0.113(2)	0.0512(18)	0.0276(15)	-0.0005(13)	0.0038(15)	0.0042(17)
F(3)	0.0495(17)	0.0540(18)	0.0498(17)	-0.0068(13)	0.0088(14)	0.0183(13)
F(4)	0.100(2)	0.0273(16)	0.069(2)	0.0110(13)	0.0168(17)	0.0104(15)

Table 5.	Hydrogen coordinates and isotropic displacement parameters (Å ²)
for str095	54.	

	Х	У	Z	U
H(1)	0.566(4)	0.0835(12)	0.717(3)	0.051(12)
H(5A)	0.6673	0.0874	1.0655	0.035
H(5B)	0.6324	0.1336	1.0208	0.035
H(6A)	0.4328	0.0653	1.0030	0.037
H(6B)	0.4305	0.1056	1.0715	0.037
H(7A)	0.3578	0.1487	0.9407	0.039
H(7B)	0.2478	0.1098	0.9365	0.039
H(8A)	0.7878	0.2147	0.5804	0.032
H(8B)	0.6466	0.2021	0.5024	0.032
H(9A)	0.8072	0.1444	0.4555	0.039
H(10A)	0.9654	0.2190	0.4850	0.048
H(10B)	0.9983	0.1782	0.4191	0.048
H(12A)	0.8589	0.1711	0.9098	0.034
H(13A)	1.0565	0.2081	0.9958	0.040
H(14A)	1.2364	0.2325	0.9168	0.035
H(15A)	1.2201	0.2203	0.7520	0.038
H(16A)	1.0279	0.1805	0.6668	0.034
H(18A)	1.0125	0.0902	0.8175	0.034
H(19A)	1.1143	0.0253	0.7896	0.039
H(20A)	1.0449	-0.0081	0.6408	0.038
H(21A)	0.8610	0.0195	0.5242	0.039
H(22A)	0.7520	0.0838	0.5533	0.036
H(24A)	0.2584	0.2070	0.5388	0.034
H(25A)	0.1762	0.2755	0.5534	0.041
H(26A)	0.3205	0.3240	0.6512	0.042
H(27A)	0.5544	0.3055	0.7279	0.040
H(28A)	0.6358	0.2366	0.7169	0.033
H(30A)	0.2235	0.1345	0.6045	0.035
H(31A)	0.0691	0.0975	0.4855	0.040
H(32A)	0.1564	0.0700	0.3530	0.046
H(33A)	0.3982	0.0806	0.3416	0.044
H(34A)	0.5507	0.1196	0.4576	0.034
H(40A)	-0.0757	0.0573	0.0443	0.053
H(40B)	0.0264	0.0449	0.1456	0.053
H(50A)	1.0508	0.3188	0.7615	0.111
H(50B)	0.9151	0.3506	0.7453	0.111

Table 6. Torsion angles [°] for str0954.

C(1)-Fe(1)-Fe(2)-C(2)	-1.1(3)	P(2)-Fe(1)-Fe(2)-C(2)	-135.3(2)
P(1)-Fe(1)-Fe(2)-C(2)	143.8(2)	S(2)-Fe(1)-Fe(2)-C(2)	-50.8(2)
S(1)-Fe(1)-Fe(2)-C(2)	61.4(2)	C(1)-Fe(1)-Fe(2)-C(3)	-133.7(2)
P(2)-Fe(1)-Fe(2)-C(3)	92.12(14)	P(1)-Fe(1)-Fe(2)-C(3)	11.22(14)
S(2)-Fe(1)-Fe(2)-C(3)	176.68(14)	S(1)-Fe(1)-Fe(2)-C(3)	-71.16(14)
C(1)-Fe(1)-Fe(2)-C(4)	126.7(2)	P(2)-Fe(1)-Fe(2)-C(4)	-7.51(15)
P(1)-Fe(1)-Fe(2)-C(4)	-88.41(14)	S(2)-Fe(1)-Fe(2)-C(4)	77.05(14)
S(1)-Fe(1)-Fe(2)-C(4)	-170.80(14)	C(1)-Fe(1)-Fe(2)-S(2)	49.6(2)
P(2)-Fe(1)-Fe(2)-S(2)	-84.56(5)	P(1) - Fe(1) - Fe(2) - S(2)	-165.46(5)
S(1) - Fe(1) - Fe(2) - S(2)	112,15(5)	C(1) - Fe(1) - Fe(2) - S(1)	-62.5(2)
P(2)-Fe(1)-Fe(2)-S(1)	163.29(5)	P(1) - Fe(1) - Fe(2) - S(1)	82.38(5)
S(2)-Fe(1)-Fe(2)-S(1)	-112.15(5)	C(8) - N(1) - P(1) - C(17)	-81.7(3)
P(2)-N(1)-P(1)-C(17)	121.55(17)	C(8)-N(1)-P(1)-C(11)	31.0(4)
P(2)-N(1)-P(1)-C(11)	-12572(17)	C(8) - N(1) - P(1) - Fe(1)	157.0(3)
P(2)-N(1)-P(1)-Fe(1)	0.33(13)	C(8)-N(1)-P(1)-P(2)	156.7(4)
C(1) = Fe(1) = P(1) = N(1)	-90.90(16)	P(2) - Fe(1) - P(1) - N(1)	-0.26(10)
S(2)-Fe(1)-P(1)-N(1)	64 4(2)	S(1) - Fe(1) - P(1) - N(1)	167 52(11)
Fe(2) - Fe(1) - P(1) - N(1)	111.52(11)	C(1) - Fe(1) - P(1) - C(17)	155.45(19)
P(2) - Fe(1) - P(1) - C(17)	-113.91(15)	S(2) - Fe(1) - P(1) - C(17)	-49 3(2)
S(1) = Fe(1) = P(1) = C(17)	53 88(15)	Fe(2) = Fe(1) = P(1) = C(17)	-2 12(15)
C(1) - Fe(1) - P(1) - C(11)	27.42(19)	P(2) - Fe(1) - P(1) - C(11)	118.06(15)
S(2) - Fe(1) - P(1) - C(11)	-17730(19)	S(1) - Fe(1) - P(1) - C(11)	-74.16(15)
$F_{e}(2) - F_{e}(1) - P(1) - C(11)$	-130.15(14)	C(1) = Fe(1) = P(1) = P(2)	-90.64(13)
S(2) - Fe(1) - P(1) - P(2)	64 64(16)	S(1) - Fe(1) - P(1) - P(2)	167 78(5)
Fe(2) - Fe(1) - P(1) - P(2)	111 79(4)	C(8)-N(1)-P(2)-C(29)	77 2(3)
P(1)-N(1)-P(2)-C(29)	-123.08(17)	C(8) = N(1) = P(2) = C(23)	-373(3)
P(1) = N(1) = P(2) = C(23)	123.00(17) 122.49(17)	C(8) = N(1) = P(2) = Fe(1)	-1601(3)
$P(1) = N(1) = P(2) = E_P(1)$	-0.33(13)	C(8) - N(1) - P(2) - P(1)	-1597(4)
C(1) = F(1) = P(2) = V(1)	100.24(17)	P(1) = F(1) = P(2) = N(1)	-139.7(4) 0.26(10)
S(2) - Fe(1) - P(2) - N(1)	-164.64(11)	S(1) - Fe(1) - P(2) - N(1)	-48.7(2)
S(2) = C(1) = C(2) = N(1) $E_{2}(2) = E_{2}(1) = D(2) = N(1)$	-107.72(11)	C(1) = C(1) = C(2) = C(2)	-144.3(2)
P(1) = P(1) = P(2) = P(1)	-107.72(11) 115.60(15)	$S(2) = F_0(1) = F_0(2) = C(29)$	-144.3(2)
S(1) = F(1) = F(2) = C(29) S(1) = F(2) = C(29)	667(2)	S(2) - F(1) - F(2) - C(23) $F_{e}(2) - F_{e}(1) - P(2) - C(29)$	-49.21(10) 7 71(16)
C(1) = C(1) = C(2) C(1) = C(1) = C(2)	10.7(2)	$P(1) = F_0(1) = P(2) = C(2)$	110 46(15)
C(1) - F(2) - C(23) $S(2) = E_2(1) - F(2) - C(23)$	-10.3(2)	F(1) - F(1) - F(2) - C(23) $S(1) - F_2(1) - F(2) - C(23)$	-110.40(13)
S(2) - Fe(1) - F(2) - C(23) $E_0(2) - E_0(1) - P(2) - C(23)$	64.03(13) 141.56(15)	S(1) - Fe(1) - F(2) - C(23) $C(1) = F_0(1) - P(2) - D(1)$	-139.4(2) 00.08(13)
Fe(2) - Fe(1) - F(2) - C(23) $S(2) = E_2(1) - F(2) - C(23)$	141.30(13) 164.00(5)	C(1) - Fe(1) - F(2) - F(1) $S(1) = F_2(1) - F(2) - F(1)$	99.90(13) 49.06(17)
S(2) - Fe(1) - F(2) - F(1)	-104.90(3)	S(1) - Fe(1) - F(2) - F(1)	-48.90(17)
Fe(2) - Fe(1) - P(2) - P(1)	-107.98(4)	C(17) - P(1) - P(2) - N(1)	-78.0(2)
C(11) - P(1) - P(2) - N(1)	76.8(2)	Fe(1) - P(1) - P(2) - N(1)	-1/9.59(16)
N(1) - P(1) - P(2) - C(29)	77.5(2)	C(1/) - P(1) - P(2) - C(29)	-0.5(2)
C(11)-P(1)-P(2)-C(29)	154.4(2)	Fe(1)-P(1)-P(2)-C(29)	-102.04(17)
N(1)-P(1)-P(2)-C(23)	-74.7(2)	C(17)-P(1)-P(2)-C(23)	-152.7(2)
C(11) - P(1) - P(2) - C(23)	2.1(2)	Fe(1)-P(1)-P(2)-C(23)	105.74(15)
N(1)-P(1)-P(2)-Fe(1)	179.59(16)	C(17) - P(1) - P(2) - Fe(1)	101.56(16)
C(11)-P(1)-P(2)-Fe(1)	-103.60(18)	C(1)-Fe(1)-S(1)-C(5)	34.51(19)
P(2)-Fe(1)-S(1)-C(5)	-177.00(19)	P(1)-Fe(1)-S(1)-C(5)	136.71(14)
S(2)-Fe(1)-S(1)-C(5)	-59.34(14)	Fe(2)-Fe(1)-S(1)-C(5)	-109.50(14)
C(1)-Fe(1)-S(1)-Fe(2)	144.01(13)	P(2)-Fe(1)-S(1)-Fe(2)	-67.50(17)
P(1)-Fe(1)-S(1)-Fe(2)	-113.79(4)	S(2)-Fe(1)-S(1)-Fe(2)	50.16(4)
C(2)-Fe(2)-S(1)-C(5)	-44.06(19)	C(3)-Fe(2)-S(1)-C(5)	-138.16(19)

C(4)-Fe(2)-S(1)-C(5)	134.0(5)	S(2)-Fe(2)-S(1)-C(5)	52.36(15)
Fe(1)-Fe(2)-S(1)-C(5)	101.58(15)	C(2)-Fe(2)-S(1)-Fe(1)	-145.64(13)
C(3)-Fe(2)-S(1)-Fe(1)	120.26(13)	C(4)-Fe(2)-S(1)-Fe(1)	32.4(5)
S(2)-Fe(2)-S(1)-Fe(1)	-49.22(4)	C(1)-Fe(1)-S(2)-C(7)	-43.13(18)
P(2)-Fe(1)-S(2)-C(7)	-137.88(14)	P(1)-Fe(1)-S(2)-C(7)	161.21(19)
S(1)-Fe(1)-S(2)-C(7)	56.64(14)	Fe(2)-Fe(1)-S(2)-C(7)	106.98(14)
C(1)-Fe(1)-S(2)-Fe(2)	-150.11(13)	P(2)-Fe(1)-S(2)-Fe(2)	115.14(4)
P(1)-Fe(1)-S(2)-Fe(2)	54.23(16)	S(1)-Fe(1)-S(2)-Fe(2)	-50.34(4)
C(2) - Fe(2) - S(2) - C(7)	46.94(19)	C(3) - Fe(2) - S(2) - C(7)	-118.8(6)
C(4)-Fe(2)-S(2)-C(7)	141.65(19)	S(1)-Fe(2)-S(2)-C(7)	-54.34(15)
Fe(1) - Fe(2) - S(2) - C(7)	-10363(15)	C(2) - Fe(2) - S(2) - Fe(1)	150 57(13)
C(3) = Fe(2) = S(2) = Fe(1)	-15 1(6)	C(4)-Fe(2)-S(2)-Fe(1)	-11472(13)
S(1) - Fe(2) - S(2) - Fe(1)	49.30(4)	P(2)-Fe(1)-C(1)-O(1)	111(3)
P(1)-Fe(1)-C(1)-O(1)	-176(3)	S(2) = Fe(1) = O(1) = O(1)	10(3)
S(1) - Fe(1) - C(1) - O(1)	-77(3)	$E_{e}(2) - E_{e}(1) - C(1) - O(1)$	-29(3)
$C(3) = E_{e}(2) = C(2) = O(2)$	-159(12)	C(4)-Ee(2)-C(2)-O(2)	-69(12)
S(2) = Fe(2) = C(2) = O(2)	-137(12) 24(12)	S(1) = Fe(2) = C(2) = O(2)	(12)
Fe(1) - Fe(2) - C(2) - O(2)	64(12)	C(2) - E(2) - C(2) - O(2)	50(6)
C(4)- $Ee(2)$ - $C(3)$ - $O(3)$	-44(6)	S(2) - Fe(2) - C(3) - O(3)	-144(6)
S(1) = E(2) = C(3) = O(3)	152(6)	$F_{e}(1)$ $F_{e}(2)$ $C(3)$ $O(3)$	-157(6)
C(2) = E(2) - C(3) - O(3)	132(0) 122(7)	C(3) = E(2) = C(3) = O(3)	-137(0)
$C(2) = \Gamma(2) = C(4) = O(4)$ $S(2) = F_{2}(2) = C(4) = O(4)$	-122(7) 140(7)	$C(3) - \Gamma C(2) - C(4) - O(4)$ $S(1) = E_{2}(2) - C(4) - O(4)$	-28(7)
$F_{e(1)} = F_{e(2)} = C(4) = O(4)$	88(7)	S(1) - C(2) - C(4) - O(4) $F_{e}(1) - S(1) - C(5) - C(6)$	67.9(3)
$F_{e}(2) S(1) C(5) C(6)$	-7.1(3)	S(1) C(5) C(6) C(7)	-58.9(4)
C(5) C(6) C(7) S(2)	-7.1(3)	S(1) = C(3) = C(0) = C(7) $F_0(1) = S(2) = C(7) = C(6)$	-30.9(4)
C(3) - C(0) - C(7) - S(2) $F_{2}(2) - S(2) - C(7) - C(6)$	13.1(4)	P(1) = S(2) - C(7) - C(0) P(1) = N(1) - C(8) - C(9)	-02.1(3)
P(2) = N(1) = C(3) = C(0)	13.1(4) 126.2(2)	N(1) = C(8) = C(9) N(1) = C(8) = C(10)	138 A(A)
$\Gamma(2) = \Gamma(1) = C(0) = C(3)$ $\Gamma(1) = D(1) = C(11) = C(16)$	-130.3(3)	R(1) = C(3) = C(3) = C(10) C(17) = R(1) = C(11) = C(16)	-138.4(4)
R(1) = F(1) = C(11) = C(10) $E_2(1) = D(1) = C(11) = C(16)$	-55.0(4)	P(2) = P(1) - C(11) - C(10)	00.4(4)
N(1) P(1) C(11) C(12)	-103.2(3) 120 5(2)	$\Gamma(2) = \Gamma(1) = C(11) = C(10)$ C(17) = D(1) = C(11) = C(12)	-98.3(3)
N(1) - P(1) - C(11) - C(12) $F_{2}(1) P(1) C(11) C(12)$	130.3(3) 21.2(4)	C(17) - P(1) - C(11) - C(12) P(2) P(1) C(11) C(12)	-115.2(5) 87.0(3)
C(16) C(11) C(12) C(13)	21.2(4)	P(2) - P(1) - C(11) - C(12) P(1) - C(11) - C(12)	07.9(3) 174.3(3)
C(10) - C(11) - C(12) - C(13)	0.4(0)	C(12) = C(12) = C(13) C(12) = C(14) = C(15)	1/4.3(3)
C(11) - C(12) - C(13) - C(14)	0.0(0)	C(12) - C(13) - C(14) - C(15)	-0.1(0)
C(13) = C(14) = C(15) = C(16)	-1.4(0)	C(12) = C(11) = C(16) = C(13)	-2.0(6)
P(1) = C(11) = C(10) = C(15)	-1/5.0(3)	C(14) = C(15) = C(16) = C(11)	2.5(0)
N(1)-P(1)-C(17)-C(22)	-23.6(4)	C(11) - P(1) - C(17) - C(22)	-141.9(3)
P(1) = P(1) = C(17) = C(22)	81.8(3) 162.0(2)	P(2) - P(1) - C(17) - C(22)	18.3(4)
N(1) - P(1) - C(17) - C(18)	103.9(3)	C(11) - P(1) - C(17) - C(18)	43.0(3)
Fe(1) = F(1) = C(17) = C(18)	-90.7(3)	P(2) = P(1) = C(17) = C(18) P(1) = C(17) = C(18) = C(10)	-134.2(3)
C(22) = C(17) = C(18) = C(19)	-0.9(6)	P(1) = C(17) = C(18) = C(19)	1/1.9(3)
C(17) = C(18) = C(19) = C(20)	2.3(6)	C(18) = C(19) = C(20) = C(21)	-2.6(6)
C(19) = C(20) = C(21) = C(22)	1.5(6)	C(18) = C(17) = C(22) = C(21)	-0.2(6)
P(1)-C(17)-C(22)-C(21)	-172.8(3)	C(20)-C(21)-C(22)-C(17)	-0.1(6)
N(1)-P(2)-C(23)-C(24)	134.4(3)	C(29) - P(2) - C(23) - C(24)	17.6(4)
Fe(1) - P(2) - C(23) - C(24)	-121.2(3)	P(1)-P(2)-C(23)-C(24)	174.5(3)
N(1)-P(2)-C(23)-C(28)	-51.6(3)	C(29)-P(2)-C(23)-C(28)	-168.3(3)
Fe(1)-P(2)-C(23)-C(28)	52.9(3)	P(1)-P(2)-C(23)-C(28)	-11.4(4)
C(28)-C(23)-C(24)-C(25)	-3.2(6)	P(2)-C(23)-C(24)-C(25)	170.9(3)
C(23)-C(24)-C(25)-C(26)	1.0(6)	C(24)-C(25)-C(26)-C(27)	2.1(6)
C(25)-C(26)-C(27)-C(28)	-2.9(6)	C(26)-C(27)-C(28)-C(23)	0.6(6)
C(24)–C(23)–C(28)–C(27)	2.3(6)	P(2)-C(23)-C(28)-C(27)	-172.1(3)
N(1)-P(2)-C(29)-C(34)	-1.0(4)	C(23)-P(2)-C(29)-C(34)	112.9(3)

Fe(1)-P(2)-C(29)-C(34)	-107.7(3)	P(1)-P(2)-C(29)-C(34)	-42.9(4)
N(1)-P(2)-C(29)-C(30)	175.2(3)	C(23)-P(2)-C(29)-C(30)	-70.9(3)
Fe(1)–P(2)–C(29)–C(30)	68.5(3)	P(1)-P(2)-C(29)-C(30)	133.2(3)
C(34)–C(29)–C(30)–C(31)	-2.2(6)	P(2)-C(29)-C(30)-C(31)	-178.5(3)
C(29)-C(30)-C(31)-C(32)	1.8(6)	C(30)-C(31)-C(32)-C(33)	-0.2(6)
C(31)–C(32)–C(33)–C(34)	-1.0(6)	C(32)-C(33)-C(34)-C(29)	0.6(6)
C(30)-C(29)-C(34)-C(33)	1.0(6)	P(2)-C(29)-C(34)-C(33)	177.1(3)

Parameters for DigiSim simulation:

The following mechanistic steps were input into DigiSim v3, along with the parameters shown to give the simulated CVs shown is Figures 7 b and c in the main text. K_1 , k_2 , K_2 and k_2 are given in the main document.

$AH^{+} + e = AH$ $AH_{2}^{+} + e = AH_{2}$ $AH + e = AH^{-}$ $A + e = A^{-}$	E = -1.5 V E = -1.5 V E = -1.8 V E = -1.5 V	$ \begin{aligned} \alpha &= 0.5 \\ \alpha &= 0.5 \\ \alpha &= 0.5 \\ \alpha &= 0.5 \end{aligned} $	$k = 0.1 \text{ cm s}^{-1}$ $k = 0.1 \text{ cm s}^{-1}$ $k = 0.1 \text{ cm s}^{-1}$ $k = 0.1 \text{ cm s}^{-1}$
$A + H^{+} = AH^{+}$ $AH + H^{+} = AH_{2}^{+}$ $AH_{2} = A + H_{2}$ $AH^{-} + H^{+} = AH_{2}$ $A^{-} + H^{+} = AH$	$\begin{split} & K = K_1 \\ & K = K_2 \\ & K = 1 \ x \ 10^5 \\ & K = 1 \ x \ 10^{10} \\ & K = 3 \ x \ 10^{17} \end{split}$	$k = k_1$ $k = k_2$ k = 1 x k = 1 x k = 1 x	(10^{5}) (10^{10}) (10^{10})

Figure SI1: Plots of limiting current for first catalytic peak vs. equivalents of acid added for experimental and simulated data a) for complex 2a; b) for complex 3a.

