Electronic Supplementary Information

Stoichiometric C-H Arylation of Tricarbonyl(arene)chromium Complexes Bearing Pyridine Directing Groups.

Matthew J. Fuchter,* Dilraj K. Judge, Marko Weimar, Andrew J. P. White
Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom

Contents:

Experimental Procedures 2
Coordination chemistry of complex 4 9
X-ray data. 10
NMR spectra. 16

[^0]
Experimental Procedures

2-(Tricarbonyl $\left(\eta^{6}\right.$-phenyl)chromium(0))pyridine (3) was synthesised as previously reported. ${ }^{1}$

Palladacycle 4

A solution of Cr-complex $3(0.20 \mathrm{~g}, 0.68 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(0.15 \mathrm{~g}, 0.68 \mathrm{mmol})$ in dry degassed DCE (10.0 mL) was stirred for 20 h at room temperature. The resulting black precipitate formed was removed by filtration over celite and washing with CHCl_{3}. The solvent was removed in vacuo to afford a red-orange film which was treated with CHCl_{3} to yield a red solid complex 4 and an unidentified but highly similar by-product in a $2: 1$ mixture ($0.29 \mathrm{~g}, 91 \%$ based on 4):

Complex 4: A pure sample of compound 4 was obtained from spontaneous crystallisation from a CDCl_{3} solution containing the obtained mixture of palladium complexes.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (acetone- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.17(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 8.01$ (s, 2H, 2 CHCl_{3}), 7.88 (dt, $\left.J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H\right), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.15(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 5.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 5.41(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H)$, $5.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 5.17(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 2.12\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH} H_{3}\right)$

Unidentified Pd complex by-product:

${ }^{1} \mathrm{H}$-NMR (acetone- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.11(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.79$ (dt, $J=7.9$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.07(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H)$, $5.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 5.47(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 5.28(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar}-H), 5.22$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$)

Mixture of 4 and unidentified by-product:
${ }^{13} \mathrm{C}-\mathrm{NMR}$ (acetone- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta 235.93,235.82,164.67,151.98,151.12,141.30$, $141.28,125.52,125.24,120.26,97.53,96.75,96.60,96.55,93.14,92.97,91.64$, 91.44, 25.50, MS-EI (m / z): M^{+}calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Pd}, 414.0348$; found, 414.0350; Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{Cr}_{2} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Pd}$: C, 42.17; H, 2.43; N, 3.07. Found: C, 41.99; H, 2.50; N, 3.13.

2-(Tricarbonyl(η^{6}-6'-methylphenyl-phenyl)chromium(0))pyridine 7

A stirring solution of complex $4(0.05 \mathrm{~g}, 0.05 \mathrm{mmol})$, p-tolylphenyl boronic acid (0.04 $\mathrm{g}, 0.28 \mathrm{mmol})$, p-benzoquinone $(0.06 \mathrm{~g}, 0.28 \mathrm{mmol})$ and $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(0.3 \mathrm{~mL}, 0.55$ $\mathrm{mmol})$ in DCE $(1.0 \mathrm{~mL})$ was heated to $60^{\circ} \mathrm{C}$ for 20 minutes. The reaction mixture was allowed to cool to room temperature and filtered through a thin pad of celite (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The filtrate was washed with brine (20.0 mL). The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by chromatography (silica, hexanes : $\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 3$: 2) to yield product 7 as orange solid ($0.019 \mathrm{~g}, 0.05 \mathrm{mmol}, 91 \%$). $\mathrm{R}_{\mathrm{f}} 0.33$ (hexanes : $\left.\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 3: 2\right) ; \mathrm{mp} 107-111{ }^{\circ} \mathrm{C}$; IR 1947, $1858 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 8.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.42(b r \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.16(b r \mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.05-7.02$ (m, 3H, ArH), 6.02 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar} H), 5.52(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{Ar} H), 2.32\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $232.8,154.9,149.0,138.4,135.5,133.3,130.1,129.6,128.9,126.4,122.9,113.8$, 109.4, 94.9, 94.7, 92.1, 91.8, 91.7, 21.1; MS (ESI) m/z 382 [M+H] ${ }^{+}$; HRMS (ESI) cal. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{CrNO}_{3}[\mathrm{M}]$ 382.0457, found $[\mathrm{M}+\mathrm{H}]^{+}$382.0535; Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{CrNO}_{3}$: C, 66.14; H, 3.96; N, 3.67. Found: C, 66.24; H, 3.87; N, 3.59.

2-(Tricarbonyl $\left(\boldsymbol{\eta}^{6}-\mathbf{6}^{\prime}\right.$-methoxyphenyl-phenyl)chromium(0))pyridine 8

A stirring solution of complex $4(0.10 \mathrm{~g}, 0.11 \mathrm{mmol}), p$-methoxyphenyl boronic acid $(0.083 \mathrm{~g}, 0.55 \mathrm{mmol})$, p-benzoquinone $(0.06 \mathrm{~g}, 0.55 \mathrm{mmol})$ and $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(0.55$ $\mathrm{mL}, 1.10 \mathrm{mmol})$ in DCE $(2.0 \mathrm{~mL})$ was heated to $60^{\circ} \mathrm{C}$ for 20 minutes. The reaction mixture was allowed to cool to room temperature and filtered through a thin pad of celite (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The filtrate was washed with brine $(20.0 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by chromatography (silica, hexanes : $\mathrm{Et}_{2} \mathrm{O}$: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 3: 2\right)$ to yield product $\mathbf{8}$ as an orange gum $\left(0.020 \mathrm{~g}, 0.058 \mathrm{mmol}, 53 \% . \mathrm{R}_{\mathrm{f}}\right.$ 0.38 (hexanes: $\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 3: 2$); IR 1953, $1862 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ MHz) $\delta 8.63$ (dd, $J=6.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.48 - 7.41 (m, 2H, ArH), 7.21 - 7.06 (m, 3H, ArH), $6.81-6.78$ (m, 2H, ArH), 6.04 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $5.55-5.54$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}), 3.82(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 159.7,154.9$, $149.0,135.5,131.4,130.8$ (2C), 128.3, 126.4, 122.8, 113.6 (2C), 109.5, 95.0, 94.4, 92.3, 91.7, 55.3; MS (ESI) m/z $398[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) cal. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{CrNO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$398.0406, found $[\mathrm{M}+\mathrm{H}]^{+}$398.0482; Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{CrNO}_{4}$: C, 63.48; H, 3.81; N, 3.53. Found: C, 58.46; H, 3.80; N, 3.91.

2-(2' -Methylphenyl)pyridine 12^{2}

A solution of o-tolylboronic acid $(0.50 \mathrm{~g}, 3.68 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(2.01 \mathrm{~g}, 9.48 \mathrm{mmol})$ in toluene : $\mathrm{H}_{2} \mathrm{O}(10: 1 \mathrm{~mL})$ was added to a stirring solution of 2-bromopyridine $(0.30$ $\mathrm{mL}, 3.40 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.092 \mathrm{~g}, 0.10 \mathrm{mmol})$ and SPhos $(0.082 \mathrm{~g}, 0.20 \mathrm{mmol})$ in toluene (2.0 mL) and was heated under reflux for 3 h . The reaction mixture was
allowed to cool to room temperature and was diluted with $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ $(10.0 \mathrm{~mL})$. The resulting layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15.0 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to afford a crude yellow oil. The crude product was purified via column chromatography (silica, hexanes : EtOAc $3: 1$) to yield the titled compound $\mathbf{1 2}$ as a yellow oil ($0.53 \mathrm{~g}, 3.12 \mathrm{mmol}, 92 \%$); $\mathrm{R}_{\mathrm{f}} 0.39$ (hexanes : EtOAc 3 : 1); IR 1585, 1467, 1424, $747 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.73$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.77(\mathrm{dt}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar} H), 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 2.40\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $160.0,149.2,140.5,136.1,135.8,130.8,129.6,128.3,125.9,124.1,121.6,20.3 ; \mathrm{MS}$ (EI) m/z $168\left[\mathrm{M}^{+}\right]$; HRMS (EI) calc. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}\left[\mathrm{M}^{+}\right]$169.0815, found $\left[\mathrm{M}^{+}\right]$ 169.0891.

2-(3' -Methylphenyl)pyridine 13^{2}

A solution of m-tolylboronic acid $(0.50 \mathrm{~g}, 3.68 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(2.01 \mathrm{~g}, 9.48 \mathrm{mmol})$ in toluene : $\mathrm{H}_{2} \mathrm{O}(13.0: 1.0 \mathrm{~mL})$ was added to a stirring solution of 2-bromopyridine $(0.30 \mathrm{~mL}, 3.40 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.092 \mathrm{~g}, 0.10 \mathrm{mmol})$ and SPhos $(0.082 \mathrm{~g}, 0.20$ $\mathrm{mmol})$ in toluene (2.0 mL) and was heated under reflux for 3 h . The reaction mixture was allowed to cool to room temperature and was diluted with $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10.0 \mathrm{~mL})$. The resulting layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15.0 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to afford crude orange oil. The crude product was purified via column chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc 40 : 1) to yield the titled compound $\mathbf{1 3}$ as a yellow oil ($0.56 \mathrm{~g}, 3.31 \mathrm{mmol}, 98 \%$); $\mathrm{R}_{\mathrm{f}} 0.34$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: EtOAc $\left.40: 1\right)$; IR 1584, 1565, 1460, 1432, $764 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ MHz) $\delta 8.72(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.80-7.74(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H)$, $7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 2.47\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 157.7,149.6,139.4,138.4,136.7,129.7,128.7,127.7,124.0$,
122.0, 120.7, 21.5; MS (EI) m/z $169\left[\mathrm{M}^{+}\right]$; HRMS (EI) calc. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}\left[\mathrm{M}^{+}\right]$ 169.0891, found [M^{+}] 169.0888.

2-(Tricarbonyl($\boldsymbol{\eta}^{\mathbf{6}} \mathbf{- 2}^{\mathbf{\prime}}$-methylphenyl)chromium(0))pyridine 14

2-(2'-methylphenyl)pyridine (12) ($0.25 \mathrm{~g}, 1.48 \mathrm{mmol})$ was added to a stirring solution of hexacarbonylchromium(0$)(0.39 \mathrm{~g}, 1.77 \mathrm{mmol})$ in a deoxygenated mixture of $\mathrm{Bu}_{2} \mathrm{O}$: THF ($10.0: 1.0,22.0 \mathrm{~mL}$) and heated under reflux for 24 hrs . The reaction mixture was cooled to room temperature and filtered through celite and the solvent evaporated under reduced pressure to yield the crude complex to give a yellow solid. This solid was recrystallised from hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title complex $\mathbf{1 4}$ as yellow plates ($0.29 \mathrm{~g}, 0.95 \mathrm{mmol}, 64 \%)$; Rf $0.21\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{mp} 75-78{ }^{\circ} \mathrm{C}$; IR 1944, 1874 , 1843, $627 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.64(b r \mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.80(b r \mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.60(b r \mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 7.31(b r \mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 5.73(b r \mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 5.55(b r \mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}), 5.23(b r \mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 2.25\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 155.6$, 149.0, 136.9, 125.3, 123.0, 109.9, 109.8, 97.5, 95.1, 92.2, 88.5, 20.0; MS (EI) m/z 305 [$\left.\mathrm{M}^{+}\right]$; HRMS (EI) calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{CrNO}_{3}\left[\mathrm{M}^{+}\right]$305.0144, found $\left[\mathrm{M}^{+}\right]$305.0221.

2-(Tricarbonyl $\left(\boldsymbol{\eta}^{6}\right.$-3'-methylphenyl)chromium(0))pyridine 15

2-(3'-methylphenyl)pyridine ($\mathbf{1 3}$) $(0.57 \mathrm{~g}, 3.37 \mathrm{mmol})$ was added to a stirring solution of hexacarbonylchromium $(0)(0.89 \mathrm{~g}, 4.04 \mathrm{mmol})$ in a deoxygenated mixture of $\mathrm{Bu}_{2} \mathrm{O}$: THF ($10.0: 1.0,22.0 \mathrm{~mL}$) and heated under reflux for 24 hrs . The reaction mixture was cooled to room temperature and filtered through celite rinsing with $\mathrm{Et}_{2} \mathrm{O}$. After washing with brine (50.0 mL), the ethereal layer was dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and the
solvent evaporated under reduced pressure to yield the crude complex as yellow solid. This solid was purified by column chromatography (silica, hexane : $\mathrm{Et}_{2} \mathrm{O} 1: 1$) and recrystallised from hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title complex $\mathbf{1 5}$ as orange crystal blocks ($0.420 \mathrm{~g}, 1.38 \mathrm{mmol}, 41 \%$); $\mathrm{R}_{\mathrm{f}} 0.47\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{mp} 82-90{ }^{\circ} \mathrm{C}$; IR 1939, 1853 , 1584, $618 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.66(b r \mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.79(b r \mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.60(b r \mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.30(b r \mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.06(\mathrm{~s}, 1 \mathrm{H}$, ArH), 5.96 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $5.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.28(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 2.35(\mathrm{~s}, 3 \mathrm{H},-\mathrm{Me}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 233.1,153.9,149.5$, 136.9, 123.8, 120.4, 109.1, 107.0, 93.8, 92.3, 92.0, 88.8, 21.0; MS (EI) m/z $305\left[\mathrm{M}^{+}\right]$; HRMS (EI) calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{CrNO}_{3}\left[\mathrm{M}^{+}\right]$305.0144, found [M^{+}] 305.0222; Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{CrNO}_{3}$: C, 59.02; H, 3.63; N, 4.59. Found: C, 59.12; H, 3.55; N, 4.61.

2-(Tricarbonyl(η^{6} - $\mathbf{3}^{\prime}$ methyl--6'-methoxyphenyl-phenyl)chromium(0))pyridine

 17

A solution of 2-(tricarbonyl $\left(\eta^{6}-3^{\prime}\right.$-methylphenyl)chromium(0))pyridine (15) $(0.05 \mathrm{~g}$, $0.16 \mathrm{mmol})$ and palladium acetate $(0.036 \mathrm{~g}, 0.16 \mathrm{mmol})$ in DCE $(3.0 \mathrm{~mL})$ was left to stir for 1 h at ambient temperature. A solution of p-methoxyphenyl boronic acid (0.13 $\mathrm{g}, 0.82 \mathrm{mmol})$ and $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(0.8 \mathrm{~mL}, 1.60 \mathrm{mmol})$ in DCE (3.0 mL) was added to the stirring palladacycle, immediately followed by a solution of p-benzoquinone (0.02 $\mathrm{g}, 1.60 \mathrm{mmol})$ in DCE $(3.0 \mathrm{~mL})$ and resulting mixture was stirred at rt for 3 h . The reaction mixture was filtered through a thin pad of MgSO_{4} (eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The filtrate was concentrated under reduced pressure and purified by column chromatography (silica, hexane : $\mathrm{Et}_{2} \mathrm{O} 1: 1$) to give the titled compound $\mathbf{1 7}$ as an orange gum ($0.034 \mathrm{~g}, 0.082 \mathrm{mmol}, 51 \%$); $\mathrm{R}_{\mathrm{f}} 0.20$ (hexanes : $\mathrm{Et}_{2} \mathrm{O}$ 1:1); IR 1950, 1862, 1515, 1249, $624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.62(b r \mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $7.46(b r \mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.45(b r \mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 6.79(b r \mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 5.90(b r \mathrm{~s}, 1 \mathrm{H}$, $\mathrm{Ar} H), 5.62(b r \mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 5.37(b r \mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 3.79\left(b r \mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.34(b r \mathrm{~s}$,
$\left.3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 233.3,159.5,154.9,149.0,135.4,131.5$, $130.7,128.4,126.6,122.9,113.6,113.5,111.0,110.7,108.8,96.2,94.9,92.2,55.3$, 20.4; MS (EI) m/z $411\left[\mathrm{M}^{+}\right]$; HRMS (EI) calc. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{CrNO}_{4}\left[\mathrm{M}^{+}\right] 411.0563$, found $\left[\mathrm{M}^{+}\right] 411.0637$.

Coordination Chemistry of 4

Pallacycle $4(455 \mathrm{mg})$ was dissolved acetone (20 mL). $\mathrm{LiCl}(85 \mathrm{mg}, 2.00 \mathrm{mmol}, 2.0$ eq) in acetone: $\mathrm{H}_{2} \mathrm{O}(3: 1,20 \mathrm{~mL})$ were introduced into the reaction vessel. After stirring at ambient temperature for 18 h the solvents were evaporated under reduced pressure and the residue purified by column chromatography (silica, acetone:hexanes, 30:70 to $50: 50$ to 100:0). Recrystallisation of the resultant solid from acetone and acetone/hexanes afforded the product as orange solid, which was used immediately in the next step. The obtained chloride complex ($26 \mathrm{mg}, 0.03 \mathrm{mmol}$) and pyridine (24 $\mu \mathrm{L}, 0.30 \mathrm{mmol}, 10.0 \mathrm{eq})$ were dissolved in acetone (2 mL). After 1 h at ambient temperature, the solution was filtered over celite, the solvents evaporated under reduced pressure and the residue washed with $\mathrm{Et}_{2} \mathrm{O}$. This afforded orange crystals (3 mg) that were suitable for X-ray diffraction analysis: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $=9.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-H), 8.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.94-7.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.54(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-H)$, $7.42(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H), 5.77(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-H), 5.23(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar}-H), 4.24(\mathrm{~s}, 1 \mathrm{H}$, Ar- H)

X-ray data

The structure of $\mathbf{4}$ was found to have crystallographic C_{2} symmetry about an axis that bisects the $\operatorname{Pd}(1) \cdots \operatorname{Pd}(1 \mathrm{~A})$ and $\mathrm{O}(13) \cdots \mathrm{O}(13 \mathrm{~A})$ vectors. The position of the nitrogen atom of the $\mathrm{C}(6)$-based pyridyl ring in the structure of 7 , and of the $\mathrm{C}(7)$-based pyridyl ring in the structures of both $\mathbf{1 4}$ and 15, was determined in each case by comparison of the thermal parameters and bond lengths when both possible ortho sites were refined as carbon atoms, and by the location from a ΔF map of a hydrogen atom bound to one of the two sites. The absolute structure of $\mathbf{1 5}$ was determined by a combination of R-factor tests $\left[R_{1}^{+}=0.0295, R_{1}^{-}=0.0416\right]$ and by use of the Flack parameter $\left[x^{+}=+0.000(14)\right]$.

Table S1. Crystal Data, Data Collection and Refinement Parameters for the structures of $4,[\operatorname{Pd}(\mathbf{3}) \mathrm{Cl}($ py $)], 7,14$ and 15.

data	4	$[\mathrm{Pd}(3) \mathrm{Cl}(\mathrm{py})]$	7
formula	$\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{Cr}_{2} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Pd}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClCrN}_{2} \mathrm{O}_{3} \mathrm{Pd}$	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{CrNO}_{3}$
solvent	$2 \mathrm{CHCl}_{3}$	-	-
formula weight	1150.05	511.16	381.34
colour, habit	orange blocks	orange blocky needles	yellow shards
crystal size / mm ${ }^{3}$	$0.29 \times 0.21 \times 0.14$	$0.50 \times 0.18 \times 0.13$	$0.25 \times 0.16 \times 0.05$
temperature / K	173	173	173
crystal system	monoclinic	monoclinic	monoclinic
space group	C2/c (no. 15)	C2/c (no. 15)	$P 2 / c$ (no. 14)
a / A	16.0719(3)	26.7584(5)	8.89230(17)
b / A	19.7859(2)	13.0677(2)	14.2567(3)
c / A	14.6400(3)	$11.01544(19)$	13.8089(3)
α / deg	-	-	-
β / deg	123.678(3)	104.3242(18)	94.6477(17)
$\mathrm{Y} / \mathrm{deg}$	-	-	-
V / \AA^{3}	3874.13(18)	3732.03(11)	1744.87(6)
Z	4 [b]	8	4
$D_{\text {c }} / \mathrm{g} \mathrm{cm}^{-3}$	1.972	1.820	1.452
radiation used	Mo-K ${ }^{\text {a }}$	Mo-K α	Mo-K ${ }^{\text {d }}$
μ / mm^{-1}	1.933	1.711	0.676
2θ max / deg	65	66	64
no. of unique refins measured ($R_{\text {int }}$)	6472 (0.0199)	6366 (0.0208)	5390 (0.0279)
obs, $\left\|F_{\mathrm{o}}\right\|>4 \sigma\left(\left\|F_{\mathrm{o}}\right\|\right)$	5238	5064	4230
no. of variables	254	244	236
R_{1} (obs), w R_{2} (all) [a]	0.0260, 0.0727	0.0213, 0.0499	0.0372, 0.0982

[^1]Table S1. Continued
data

14
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{CrNO}_{3}$
-
305.25
yellow blocks
$0.31 \times 0.26 \times 0.14$
173
orthorhombic
Pbca (no. 61)
7.62537(16)
12.3834(2)
27.5890(5)
\qquad
-
2605.17(8)

8
1.557

Mo-K α
0.883

62
$3768(0.0270)$
3352
182
$0.0494,0.1089$

15
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{CrNO}_{3}$ -
305.25
yellow blocks
$0.46 \times 0.20 \times 0.14$
173
orthorhombic
$P 2_{12} 2_{1}$ (no. 19)
7.00453(14)
8.13150(15)
24.1140(4)
-
-
1373.47(4)

4
1.476

Mo-K α
0.838

65

4627 (0.0281)
4350
182
$0.0295,0.1007$

Table 1 provides a summary of the crystallographic data for the structures of 4, $[\mathrm{Pd}(\mathbf{3}) \mathrm{Cl}(\mathrm{py})], 7,14$ and 15. Data were collected using an Oxford Diffraction Xcalibur 3 diffractometer, and the structures were refined based on F^{2} using the SHELXTL and SHELX-97 program systems. ${ }^{3}$ The absolute structure of $\mathbf{1 5}$ was determined by a combination of R-factor tests $\left[R_{1}^{+}=0.0295, R_{1}^{-}=0.0416\right]$ and by use of the Flack parameter $\left[x^{+}=+0.000(14)\right]$. CCDC 912626 to 912630 .

References

1. A. Berger, J. -P. Djuckic, M. Pfeffer, Organometallics, 2003, 22, 5243.
2. V. Martínez-Barrasa, A. García de Viedma, C. Burgos, J. Alvarez-Builla, Org. Lett. 2000, 2, 3933.
3. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

Fig. S1 The crystal structure of 4 (50\% probability ellipsoids).

Fig. S2 The crystal structure of $[\operatorname{Pd}(\mathbf{3}) \mathrm{Cl}(\mathrm{py})]$.

Fig. S3 The crystal structure of $[\operatorname{Pd}(3) \mathrm{Cl}(\mathrm{py})]$ (50\% probability ellipsoids).

Fig. S4 The crystal structure of 7.

Fig. S5 The crystal structure of 7 (50% probability ellipsoids).

Fig. S6 The crystal structure of $\mathbf{1 4}$ (50\% probability ellipsoids).

Fig. S7 The crystal structure of $\mathbf{1 5}$ (50\% probability ellipsoids).

NMR data

Fig. S8 ${ }^{1}$ H NMR spectrum of compound 7

Fig. S9 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7

Fig. S10 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}$

Fig. S11 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8}$

Fig. S12 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14

Fig. S13 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 14

Fig. S14 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 15

Fig. S15 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 15

Fig. S16 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17

Fig. S17 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 7}$

Fig. S18 ${ }^{1} \mathrm{H}$ NMR spectrum of palladacycle 4 and the unidentified by-product

[^0]: * To whom correspondence should be addressed:

 Phone: +44 (0)20 7594 5815; E-mail: m.fuchter@imperial.ac.uk

[^1]: $[\mathrm{a}] R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{0}\right| ; w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right\}^{1 / 2} ; w^{-1}=\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+b P$. [b] The molecule has crystallographic C_{2} symmetry.

