Supporting information

Romain Gautier^a, ^{*}, Régis Gautier^a, Olivier Hernandez^a, ^{*}, Nathalie Audebrand^a, Thierry Bataille^a,

Claire Roiland^a, Erik Elkaïm^b, Laurent Le Polles^a, Eric Furet^a, Eric Le Fur^{a,}*

Solid state NMR of α_1 -VOPO₄

Table S1. Atomic parameters of the α_1 -VOPO₄ unit-cell used for DIFFaX+ refinement with the space-group *P1*. Bold numbers are the refined parameters.

Table S2. Information of the different stacking faults and their probabilities refined by DIFFaX+ code.

Table S3. Atomic positions of α_1 -VOPO₄ in the monoclinic model before Rietveld refinement (*C2/m*, *a* = 8.69 Å, *b* = *c* = 6.18 Å, β = 104.32°).

Table S4. Crystal data and summary of data collection, structure solution and refinement for α_2 -VOPO₄ considering disordered oxygen positions or twinning crystals.

Figure S1. Representation of α_1 -VOPO₄ layer isolated in a supercell. Blue square pyramids and green tetrahedra represent VO₅ and PO₄ units, respectively.

Figure S2. Williamson-Hall plot for α_1 -VOPO₄.

Figure S3. ³¹P NMR spectra in MAS conditions recorded at 17.6T (a) and ⁵¹V NMR spectra in MAS conditions recorded at 7.1T and 17.6T (b).

Figure S4. ⁵¹V-decoupled ³¹P NMR spectra recorded in MAS conditions at 7.1T.

Figure S5. Representation of α_2 -VOPO₄ layer isolated in a supercell. Blue square pyramids and green tetrahedra represent VO₅ and PO₄ units, respectively.

Solid state NMR of α_1 -VOPO₄

In order to validate the α_1 -VOPO₄ model, ³¹P and ⁵¹V solid-state NMR have been performed (Figure S3). ³¹P NMR spectra recorded in 30 kHz MAS conditions show a main peak at 2.6 ppm in agreement with the value reported by Aït-Lachgar *et al.*¹ (3.6 ppm). For both magnetic fields, a shoulder at ca 7 ppm is also visible. ⁵¹V NMR spectra in MAS conditions exhibit one line at -690 ppm in good agreement with Lapina *et al.* reported value² (-691 ppm). At 17.6 T, it is possible to observe a shoulder at ca -680 ppm. The shoulders in ³¹P and ⁵¹V spectra could be attributed to the presence of VOPO₄.2H₂O. Indeed, α_1 -VOPO₄ is an hygroscopic phase whose rehydration product is the dihydrate VOPO₄.2H₂O. Moreover, Aït-Lachgar *et al.*¹ reported a ³¹P signal at 7.6 ppm and Zhu *et al.*³ reported a ⁵¹V signal at -685 ppm for the VOPO₄.2H₂O compound.

Atoms	X	У	Z
01	0	0.5	0.22
O2	0.5	0	0.78
O3	0.038	0.183	0.715
O4	0.183	0.962	0.285
O5	0.683	0.462	0.715
O6	0.538	0.683	0.285
07	0.462	0.317	0.285
O8	0.317	0.538	0.715
O9	0.962	0.817	0.715
O10	0.817	0.038	0.285
P1	0	0	0.5
P2	0.5	0.5	0.5
V1	0	0.5	0.6419(1) / 0.6176
V2	0.5	0	0.3461(1) / 0.3824

Table S1. Atomic parameters of the α_1 -VOPO₄ unit-cell used for DIFFaX+ refinement with the space-group *P1*. Bold numbers are the refined parameters.

Transition description	Stacking vectors	Refined probabilities
1 to 1	(0; 0)	0.001
1 to 2	(0.5; 0.1724)	0.000
1 to 3	(0.5; 0.8276)	0.999
1 to 4	(0.1724; 0.5)	0.000
1 to 5	(0.8276; 0.5)	0.000
2 to 1	(0; 0)	0.000
2 to 2	(0.5; 0.1724)	0.000
2 to 3	(0.5; 0.8276)	0.000
2 to 4	(0.1724; 0.5)	1.000
2 to 5	(0.8276; 0.5)	0.000
3 to 1	(0; 0)	0.000
3 to 2	(0.5; 0.1724)	0.000
3 to 3	(0.5; 0.8276)	0.939
3 to 4	(0.1724; 0.5)	0.026
3 to 5	(0.8276; 0.5)	0.035
4 to 1	(0; 0)	0.000
4 to 2	(0.5; 0.1724)	0.017
4 to 3	(0.5; 0.8276)	0.029
4 to 4	(0.1724; 0.5)	0.917
4 to 5	(0.8276; 0.5)	0.037
5 to 1	(0; 0)	0.000
5 to 2	(0.5; 0.1724)	0.000
5 to 3	(0.5; 0.8276)	0.000
5 to 4	(0.1724; 0.5)	0.142
5 to 5	(0.8276; 0.5)	0.858

Table S2. Information of the different stacking faults and their probabilities refined by DIFFaX+ code.

Atoms	X	У	Z
01	0.11	0.5	0.2013
O2	0.3575	0.5	0.6043
O3	0.1425	0.317	0.7126
O4	0.1425	0	0.0296
P1	0.25	0.5	0.75
V1	0.3088	0.5	0.2704

Table S3. Atomic positions of α_1 -VOPO₄ in the monoclinic model before Rietveld refinement (*C*2/*m*, *a* = 8.69 Å, *b* = *c* = 6.18 Å, β = 104.32°).

Chemical formula	VPO ₅ Crystal 1	VPO ₅ Crystal 2	VPO ₅ Crystal 3				
Crystal system	Tetragonal	Tetragonal	Tetragonal				
Space group	P4/n	P4/n	P4/n				
a (Å)	6.014(5)	6.024(5)	6.019(5)				
c (Å)	4.438(5)	4.440(5)	4.441(5)				
$V(Å^3)$	160.5(3)	161.1(3)	160.9(3)				
T (°K)	293(2)	293(2)	293(2)				
Z	2	2	2				
Maximum 2θ	54.96°	69.96°	54.96°				
Data collected	h: -7, 7	h: -9, 9	h: -7, 7				
	k: -7, 7	k: -9, 9	k: -7, 7				
	1: -5, 5	1: -7, 6	1: -5, 5				
Unique data after merging	188	358	188				
Observed data (> $2.0\sigma(F^2)$)	188	328	186				
Chemical formula weight $(g.mol^{-1})$	40.48	40.48	40.48				
λ (Mo Ka) (Å)	0.71073	0.71073	0.71073				
Absorption coefficient	3.455 cm^{-1}	3.442 cm^{-1}	3.446 cm^{-1}				
ρ_{calc} (g.cm ⁻³)	3.350	3.337	3.342				
Disordered oxygen positions							
Free parameters	28	29	29				
R _{int}	0.0464	0.0551	0.0291				
\mathbf{R}_{1}	0.0836	0.0393	0.0620				
wR ₂	0.2793	0.1702	0.1776				
Candrana of fit	1 200						
Goodness-oi-iit	1.298	1.322	1.437				
Min, Max ($e/Å^3$)	1.298 -1.363, +1.580	1.322 -1.291, +1.540	1.437 -0.877, 0.254				
Min, Max $(e/Å^3)$ Disorder occupancy	1.298 -1.363, +1.580 0.16(6)	1.322 -1.291, +1.540 0.18(3)	1.437 -0.877, 0.254 0.25(13)				
Min, Max (e/ Å ³) Disorder occupancy	1.298 -1.363, +1.580 0.16(6) Twinning cry	1.322 -1.291, +1.540 0.18(3) //stals	1.437 -0.877, 0.254 0.25(13)				
Goodness-of-fit Min, Max (e/ Å ³) Disorder occupancy Free parameters	1.298 -1.363, +1.580 0.16(6) Twinning cry 19	1.322 -1.291, +1.540 0.18(3) /stals 19	1.437 -0.877, 0.254 0.25(13) 19				
Goodness-of-fit Min, Max (e/ Å ³) Disorder occupancy Free parameters R _{int}	1.298 -1.363, +1.580 0.16(6) Twinning cry 19 0.0208	1.322 -1.291, +1.540 0.18(3) /stals 19 0.0323	1.437 -0.877, 0.254 0.25(13) 19 0.0293				
Goodness-of-fit Min, Max (e/ Å ³) Disorder occupancy Free parameters R _{int} R ₁	1.298 -1.363, +1.580 0.16(6) Twinning cry 19 0.0208 0.0146	1.322 -1.291, +1.540 0.18(3) /stals 19 0.0323 0.0279	1.437 -0.877, 0.254 0.25(13) 19 0.0293 0.0172				
Goodness-of-fit Min, Max (e/ Å ³) Disorder occupancy Free parameters R_{int} R_1 wR2	1.298 -1.363, +1.580 0.16(6) Twinning cry 19 0.0208 0.0146 0.0375	1.322 -1.291, +1.540 0.18(3) 7stals 19 0.0323 0.0279 0.0720	1.437 -0.877, 0.254 0.25(13) 19 0.0293 0.0172 0.0440				
Goodness-of-fit Min, Max (e/ Å ³) Disorder occupancy Free parameters R_{int} R_1 wR_2 Goodness-of-fit	1.298 -1.363, +1.580 0.16(6) Twinning cry 19 0.0208 0.0146 0.0375 1.199	1.322 -1.291, +1.540 0.18(3) 7stals 19 0.0323 0.0279 0.0720 1.138	1.437 -0.877, 0.254 0.25(13) 19 0.0293 0.0172 0.0440 1.202				
Goodness-of-fit Min, Max (e/ Å ³) Disorder occupancy Free parameters R_{int} R_1 wR_2 Goodness-of-fit Min, Max (e/ Å ³)	1.298 -1.363, +1.580 0.16(6) Twinning cry 19 0.0208 0.0146 0.0375 1.199 -0.299, +0.220	1.322 -1.291, +1.540 0.18(3) /stals 19 0.0323 0.0279 0.0720 1.138 -0.719, +0.947	1.437 -0.877, 0.254 0.25(13) 19 0.0293 0.0172 0.0440 1.202 -0.525, 0.250				

Table S4. Summary of data collection, structure solution and refinement for α_2 -VOPO₄ considering disordered oxygen positions or twinning crystals.

Figure S1. Representation of α_1 -VOPO₄ layer isolated in a supercell. Blue square pyramids and green tetrahedra represent VO₅ and PO₄ units, respectively.

Figure S2. Williamson-Hall plot for α_1 -VOPO₄.

Figure S3. ³¹P NMR spectra in MAS conditions recorded at 17.6T (a) and ⁵¹V NMR spectra in MAS conditions recorded at 7.1T and 17.6T (b) for α_1 -VOPO₄

Figure S4. ⁵¹V-decoupled ³¹P NMR spectra recorded in MAS conditions at 7.1T for α_1 -VOPO₄

Figure S5. Representation of α_2 -VOPO₄ layer isolated in a supercell. Blue square pyramids and green tetrahedra represent VO₅ and PO₄ units, respectively.

References

- (1) Aït-Lachgar, K.; Tuel, A.; Brun, M.; Herrmann, J. M.; Krafft, J. M.; Martin, J. R.; Volta, J. C.; Abon, M. J. Catal. **1998**, *177*, 224-230.
- (2) Lapina, O. B.; Khabibulin, D. F.; Shubin, A. A.; Bondareva, V. M. J. Mol. Catal. A Chem. **2000**, *162*, 381-390.
- (3) Zhu, J.; Huang, Y. Langmuir **2010**, *26*, 10115-10121