Supporting Information

Dithia[3.3]paracyclophane-Based Monometal Ruthenium Acetylide Complexes: Synthesis, Characterization and Substituent Effects

Xingxun Zhu, Yaping Ou, Jing Zhang, Jian-Long Xia, Jun Yin, Guang-Ao Yu*, Sheng Hua Liu*

Received (in XXX, XXX) Xth XXXXXXXX 201X, Accepted Xth XXXXXXXX 201X First published on the web Xth XXXXXXXX 201X

Crystallographic Information

Table S1 partial datas for Bond lengths (Å) and bond angles (°) of complex 2a

Bond distances (Å)					
Ru(1)-C(37)	2.010(4)	Ru(1)-P(2)	2.267(9)		
Ru(1)-C(29)	2.227(3)	C(37)-C(38)	1.205(5)		
Ru(1)-C(28)	2.235(3)	C(38)-C(39)	1.449(5)		
Bond angles (°)					
C(37)-Ru(1)-C(29)	93.87(14)	C(38)-C(37)-Ru(1)	170.4(3)		
C(37)-Ru(1)-C(28)	89.98(14)	C(37)-C(38)-C(39)	166.6(4)		
C(29)-Ru(1)-C(28)	37.19(13)	C(44)-C(39)-C(40)	118.1(3)		

S2 partial datas for Bond lengths (Å) and bond angles (°) of complex 3e

Bond distances (Å)				
Ru(1)-C(37)	2.021(2)	Ru(1)-P(2)	2.2636(8)	
Ru(1)-C(30)	2.217(3)	Ru(1)-C(31)	2.266(3)	
Ru(1)-P(1)	2.2528(7)	Ru(1)-C(27)	2.268(2)	
Bond angles (°)				
C(37)-Ru(1)-C(30)	97.67(10)	C(38)-C(37)-Ru(1)	175.2(2)	
C(37)-Ru(1)-C(29)	89.28(10)	C(37)-C(38)-C(39)	177.2(3)	
C(30)-Ru(1)-C(29)	36.93(13)	C(44)-C(39)-C(40)	117.9(3)	

Figure S1. UV/Vis absorption spectrum changes of complexes 1a, 2a-2c and 1b, 3a, 3e, 3f in the presence of increasing amounts of ferrocenium hexafluorophosphate as a chemical oxidant: Black lines, neat compounds before adding any oxidant; red lines, after addition of 0.5 equiv of oxidant; blue traces, after addition of 1 equiv of oxidant.

Electrochemistry Information

Figure S2. Cyclic voltammograms (CV) of complexes **1a**, **2a-e** and **1b**, **3a-f** in CH₂Cl₂/Bu₄NPF₆ at ν =0.1 V s⁻¹. Square-wave voltammograms (SWV) at *f*=10 Hz. Potentials are given relative to the Ag/Ag⁺ standard.

Figure S3 IR spectroscopy changes of complexes 1a, 2a-c and 1b, 3a, 3e, 3f in the presence of increasing amounts of ferrocenium

hexafluorophosphate as a chemical oxidant from 0 eq to $1.0 \; \rm eq$

20 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 fl (ppm)

300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -120 -160 -200 -240 -280 f1 (ppm)

80.12

300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -120 -160 -200 -240 -280 fl (ppm)

80.62

