Slow magnetic relaxation in a cyano-bridged ferromagnetic ${Fe^{III}Ni^{II}}$ alternating chain

Da-Peng Dong,^a Yan-Juan Zhang,^{*a} Hui Zheng,^b Peng-Fei Zhuang,^b Liang Zhao,^b Yang Xu,^b Jixiang Hu,^b Tao Liu,^{*b} Chun-Ying Duan^b

^aChemistry College, Dalian University of Technology, Dalian 116024, China; E-mail: yanjuanzhang@dlut.edu.

^bState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China. E-mail:liutao@dlut.edu.cn;

Contents

1. Fig. S1 Thermal variation of the real parts of the ac susceptibilities χ 'T of compound **1** under a

zero dc-field in the temperature range of 2–300 K with a 3Oe ac field.

2. Table S1 Selected bond lengths (Å) and angles (°) for compound 1.

Fig. S1. Thermal variation of the real parts of the ac susceptibilities χ 'T of compound 1 under a zero dc-field in the temperature range of 2–300 K with a 3Oe ac field.

2. Table 2 Selected bond lengths (A	Å) :	and angle	s (°)	for 1	1.
-------------------------------------	------	-----------	-------	-------	----

Ni(1)-N(15)	2.085(4)	Ni(2)-N(12)	2.097(4)
Ni(1)-N(15)#1	2.085(4)	Ni(2)-N(11)#2	2.132(4)
Ni(1)-N(14)#1	2.107(4)	Ni(2)-N(11)	2.132(4)
Ni(1)-N(14)	2.107(4)	Fe(1)-C(14)	1.916(4)
Ni(1)-N(10)	2.128(4)	Fe(1)-C(15)	1.924(5)
Ni(1)-N(10)#1	2.128(4)	Fe(1)-C(13)	1.928(5)
Ni(2)-N(13)	2.080(4)	Fe(1)-N(4)	1.966(4)
Ni(2)-N(13)#2	2.080(4)	Fe(1)-N(2)	1.977(4)
Ni(2)-N(12)#2	2.097(4)	Fe(1)-N(6)	1.991(3)
N(15)-Ni(1)-N(15)#1	180.0	N(12)#2-Ni(2)-N(11)#2	92.50(16)
N(15)-Ni(1)-N(14)#1	97.22(14)	N(12)-Ni(2)-N(11)#2	87.50(16)
N(15)#1-Ni(1)-N(14)#1	82.78(14)	N(13)-Ni(2)-N(11)	89.42(16)
N(15)-Ni(1)-N(14)	82.78(14)	N(13)#2-Ni(2)-N(11)	90.58(16)
N(15)#1-Ni(1)-N(14)	97.22(14)	N(12)#2-Ni(2)-N(11)	87.50(16)
N(14)#1-Ni(1)-N(14)	180.000(1)	N(12)-Ni(2)-N(11)	92.50(16)
N(15)-Ni(1)-N(10)	89.94(15)	N(11)#2-Ni(2)-N(11)	180.0(3)
N(15)#1-Ni(1)-N(10)	90.06(15)	C(14)-Fe(1)-C(15)	84.87(18)
N(14)#1-Ni(1)-N(10)	93.25(15)	C(14)-Fe(1)-C(13)	87.03(18)
N(14)-Ni(1)-N(10)	86.75(15)	C(15)-Fe(1)-C(13)	91.12(19)
N(15)-Ni(1)-N(10)#1	90.06(15)	C(14)-Fe(1)-N(4)	94.77(16)
N(15)#1-Ni(1)-N(10)#1	89.94(15)	C(15)-Fe(1)-N(4)	177.95(17)
N(14)#1-Ni(1)-N(10)#1	86.75(15)	C(13)-Fe(1)-N(4)	90.87(17)
N(14)-Ni(1)-N(10)#1	93.25(15)	C(14)-Fe(1)-N(2)	93.09(16)
N(10)-Ni(1)-N(10)#1	180.000(1)	C(15)-Fe(1)-N(2)	90.86(17)
N(13)-Ni(2)-N(13)#2	180.00(16)	C(13)-Fe(1)-N(2)	178.01(17)
N(13)-Ni(2)-N(12)#2	97.39(16)	N(4)-Fe(1)-N(2)	87.15(15)
N(13)#2-Ni(2)-N(12)#2	82.61(16)	C(14)-Fe(1)-N(6)	176.89(17)
N(13)-Ni(2)-N(12)	82.61(16)	C(15)-Fe(1)-N(6)	92.10(17)
N(13)#2-Ni(2)-N(12)	97.39(16)	C(13)-Fe(1)-N(6)	92.35(16)
N(12)#2-Ni(2)-N(12)	180.000(1)	N(4)-Fe(1)-N(6)	88.28(15)
N(13)-Ni(2)-N(11)#2	90.58(16)	N(2)-Fe(1)-N(6)	87.63(15)
N(13)#2-Ni(2)-N(11)#2	89.42(16)		

Symmetry transformations used to generate equivalent atoms for 1: #1 - x - 1, -y, -z+1 #2 - x, -y+1, -z+1.