## Supplementary Information for

# Electrochemical and optical properties of a redox-active Cu(II) coordination framework incorporating the tris(4-(pyridin-4-yl)phenyl)amine ligand

Carol Hua,<sup>*a*</sup> Peter Turner<sup>*a*</sup> and Deanna M. D'Alessandro<sup>*a*,\*</sup>

<sup>a</sup> School of Chemistry, The University of Sydney, New South Wales 2006, Australia.

\* Corresponding author: Fax: +61 (2) 9351 3329; Tel: +61 (2) 9351 3777; E-mail: <u>deanna@chem.usyd.edu.au</u>

## **EXPERIMENTAL DETAILS**

All chemicals and solvents used were used as obtained and used without further purification. Tris(4-bromophenyl)amine<sup>1</sup> and Pd(PPh<sub>3</sub>)<sub>4</sub><sup>2</sup> were synthesised according to literature procedures. Distilled and degrassed acetonitrile (dried over CaH<sub>2</sub>) was used for all experiments requiring acetonitrile. DMF was dried over activated CaSO<sub>4</sub>.

<sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra were recorded on a Bruker DMX500 spectrometer operating at 500 MHz for <sup>1</sup>H and 125 MHz for <sup>13</sup>C respectively. <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts were referenced internally to residual solvent resonances. Spectra were recorded at 298K and chemical shifts ( $\delta$ ), with uncertainties of  $\pm$  0.01 Hz for 1H and  $\pm$  0.05 Hz for <sup>13</sup>C are quoted in ppm. Coupling constants (*J*) are quoted in Hz and have uncertainties of  $\pm$  0.05 Hz for <sup>1</sup>H-<sup>1</sup>H. Deuterated solvents were obtained from Cambridge Stable Isotopes and used as received.

Microanalyses were carried out at the Chemical Analysis Facility – Elemental Analysis Service in the Department of Chemistry and Biomolecular Science at Macquarie University, Australia. Melting points were carried on a Stuart Melting point SMP11 apparatus from Barloworld Scientific Limited.

#### Synthesis

#### Synthesis of Tris(4-(pyridin-4-yl)phenyl)amine (Npy<sub>3</sub>)



Potassium carbonate (2.29 g, 16.6 mmol) was suspended in a degassed solution of 1,4-dioxane (47.5 mL) and water (2.5 mL). Tris(4-bromophenyl)amine (1.00 g, 2.07 mmol), 4-pyridyl boronic acid (1.63 g, 11.6 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (122 mg, 0.106 mmol, 5.1 mol%) were then added and the reaction mixture heated at 90 °C under nitrogen for 26 hours. The solvent was removed under vacuum and the bright yellow residue redissolved in dichloromethane. The organic layer was washed three times with water and the combined water layers back extracted with dichloromethane. The combined organic layers were dried over MgSO<sub>4</sub> and the solvent evaporated to yield a bright yellow crude product. The crude product was then purified by column chromatography on silica gel (gradient EtOAc to acetone) to yield the pure product as a pale yellow solid (650 mg, 66%). m.p. >210 °C.

Elemental Analysis: Found C, 83.30; H, 5.21 and N, 11.45; Calculated for  $C_{33}H_{24}N_4$ : C, 83.17; H, 5.08 and N, 11.76%.

ESI-MS (ESI<sup>+</sup>, MeOH): 953.33 (Calculated  $[2M+1]^+ = 953.30, 100\%$ ) amu.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.63 (d, <sup>3</sup>*J*<sub>H6-H7</sub> = 4.5 Hz, 4H, **H**7 pyridyl), 7.59 (d, <sup>3</sup>*J*<sub>H2-H3</sub> = 8.5 Hz, 4H, **H**3 phenyl), 7.49 (d, <sup>3</sup>*J*<sub>H6-H7</sub> = 4.5 Hz, 4H, **H**6 pyridyl), 7.25 (d, <sup>3</sup>*J*<sub>H2-H3</sub> = 8.5 Hz, 4H, **H**2 phenyl) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 125 MHz): *δ* 150.5 (C7), 150.0 (C1), 147.5 (C4), 133.1 (C5), 128.2 (C3), 124.8 (C2), 121.2 (C6) ppm.

## Synthesis of the [Cu(Npy3)Cl2] ·DMF framework

Tris(4-(pyridin-4-yl)phenyl)amine (22.4 mg, 4.69 x  $10^{-5}$  mol) and CuCl<sub>2</sub>.2H<sub>2</sub>O (19.2 mg, 1.12 x  $10^{-4}$  mol) were dissolved in dry and distilled DMF (2.0 mL) in a 20 mL vial and heated in a heating block at 100 °C for 3 days, upon which the fluffy green solid initially observed formed dark yellow block crystals. The crystals were then washed several times with DMF. Yield: 26.5 mg (83%).

UV/Vis/NIR (solid state): 10000, 22500, 29000, 41000 cm<sup>-1</sup>.

Found C, 63.68; H, 4.79 and N, 10.18; Calculated for C<sub>33</sub>H<sub>24</sub>Cl<sub>2</sub>CuN<sub>4</sub>·DMF: C, 63.20; H, 4.57 and N, 10.24%

*X-ray single crystal structure of* [*Cu*(*Npy*<sub>3</sub>)*Cl*<sub>2</sub>].*DMF:* A single crystal of [Cu(Npy<sub>3</sub>)*Cl*<sub>2</sub>].DMF was mounted on a thin piece of copper wire inserted into a copper mounting pin. The crystal was quenched in a cold nitrogen gas stream from an Oxford Cryosystems Cryostream. An APEXII-FR591 diffractometer employing mirror monochromated MoK $\alpha$  radiation generated from a rotating anode was used for the data collection. Cell constants were obtained from a least squares refinement against 1677 reflections located between 4 and 66° 20. Data were collected at 150(2) Kelvin with  $\omega$ + $\phi$  scans to 61° 20. The data integration and reduction were undertaken with SAINT and XPREP<sup>3</sup>, and subsequent computations were carried out with the WinGX<sup>4</sup> and ShelXle<sup>5</sup> graphical user interfaces. A multi-scan absorption correction determined with SADABS<sup>6</sup> was applied to the data.

The structure was solved in the space group C1c1(#9) by direct methods with SIR97<sup>7</sup> and extended and refined with SHELXL-97.<sup>8</sup> The asymmetric unit contains the unique unit of the framework and a dimethylformamide solvate molecule. The non-hydrogen atoms in the asymmetric unit were modelled with anisotropic displacement parameters and a riding atom model with group displacement parameters was used for the hydrogen atoms. The absolute structure was established with the Flack parameter<sup>9</sup> refining to 0.00(5).

| $C_{36}H_{31}Cl_2CuN_5O$      |
|-------------------------------|
| 684.1                         |
| 150(2)                        |
| monoclinic                    |
| 0.265 	imes 0.131 	imes 0.123 |
| 14.2786(6)                    |
| 18.6712(7)                    |
| 11.8323(4)                    |
| 92.933(2)                     |
| 3150.3(2)                     |
| 4                             |
| 1.442                         |
| 0.901                         |
| 1412                          |
| 55714/9605[R(int) = 0.0279]   |
| 9605/2/408                    |
| $R_1 = 0.0344, wR_2 = 0.0976$ |
| $R_1 = 0.0372, wR_2 = 0.1100$ |
| 1.608                         |
|                               |

| Table S1. Crystal d | lata and structure | refinement details | s for [Cu( | Npy <sub>3</sub> )Cl <sub>2</sub> ].DMF |
|---------------------|--------------------|--------------------|------------|-----------------------------------------|
|---------------------|--------------------|--------------------|------------|-----------------------------------------|

 $RI = \Sigma(|F_o| - |F_c|) / \Sigma(|F_o|); wR_2 = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma \{w(F_o^2)^2\}]^{1/2}$ 

## Chemical oxidation of the [Cu(Npy3)Cl2] DMF framework

The Cu<sup>II</sup> framework (20 mg,  $3.26 \times 10^{-6}$  mol) was suspended in acetonitrile (1 mL) and a solution of NOBF<sub>4</sub> (3.8 mg,  $3.26 \times 10^{-6}$  mol) in acetonitrile (2.5 mL) was added slowly dropwise with vigorous bubbling of nitrogen through the solution (to prevent the liberated NO from undergoing any nitration reaction with the framework) to yield the formation of a yellow/red solid. This was left to stir at room temperature with bubbling of nitrogen for 30 minutes before the reaction mixture was filtered and washed with acetonitrile.

UV/Vis/NIR (solid state): 11000, 20000, 27500, 33000, 41000 cm<sup>-1</sup>.

## **Physical Characterisation**

<u>General details</u>: Thermal gravimetric analysis was performed under a flow of nitrogen (0.1 L/min) on a TA Instruments Hi-Res Thermogravimetric Analyser from 25-600 °C at 1 °C/min. Powder X-ray diffraction (PXRD) data were obtained on a PANalytical X'Pert PRO Diffractometer producing Cu (1.5406 Å) radiation. <u>UV/Vis/NIR</u>: UV/Vis/NIR spectroscopy was performed on a Cary 5E Spectrophotometer equipped with a Harrick Praying Mantis accessory, where dried KBr was used for the baseline. Spectra are reported as the Kubelka-Munk transform, where  $F(R) = (1-R)^2/2R$  (*R* is the diffuse reflectance of the sample as compared to KBr). Spectral deconvolution was performed using the curve-fitting subroutine implemented within the Thermo GRAMS AI commercial software package. The following procedure was employed for the analysis of all spectral data. The positions of the underlying components were estimated by examining the first- and second-order derivatives of the bands as a guide to the energies of the major components. While the band parameters for these components varied slightly over repeat iterations, their relative energies, intensities and bandwidths remained constant. Based on the reproducibility of the parameters obtained from the deconvolutions, the uncertainties in the energies (F(R)), intensities and bandwidths ( $\Delta F(R)_{1/2}$ ) were estimated as  $\pm$  10 cm<sup>-1</sup>, 0.001 x 10<sup>3</sup> and  $\pm$  10 cm<sup>-1</sup>, respectively. In all cases, the correlation coefficient ( $R^2$ ) for the fits reported was >0.995. While the spectra were also adequately fitted using Lorentzian bands, results from the deconvolution procedure using purely Gaussian-shaped bands were adequate.

<u>Electrochemistry</u>: Solid state electrochemical measurements were performed using a Bioanalytical Systems BAS 100A Electrochemical Analyser. Argon was bubbled through solutions of 0.1 M [ $(n-C_4H_9)_4N$ ]PF<sub>6</sub> dissolved in distilled CH<sub>3</sub>CN. The cyclic voltammograms (CVs) were recorded using a glassy carbon working electrode (1.5 mm diameter), a platinum wire auxiliary electrode and an Ag/Ag+ wire quasi reference electrode. Solid state samples were mounted on the glassy carbon working electrode by dipping the electrode into a paste made of the powder sample in acetonitrile. Ferrocene was added as an internal standard upon completion of each experiment. All potentials are quoted in mV versus Fc<sup>+</sup>/Fc<sup>0</sup>.

<u>Fluorescence</u>: Fluorescence spectra were performed on a Varian Cary Eclipse Fluorescence spectrophotometer in both solution and solid state. The scan rate used for all measurements was 120 nm/min with a 1 nm data interval. The fluorescence spectrum of the ligand was performed as a solution in acetone in a quartz cuvette (1cm x 1cm x 1cm) with excitation at 380 nm, the emission spectrum obtained from 400-750 nm and slit widths of 2.5 mm used for both excitation and emission. The fluorescence spectrum of the ligand and framework in the solid state was performed by gently pressing a thin film of the dry powder using a spatula onto a quartz plate cut to rest diagonally inside the quartz cuvette used for solution state measurements. The excitation beam was aligned with each measurement to ensure that the solid sample was being irradiated. The sample was excited at 380 nm, the emission spectrum obtained from 400-750 nm and 1.5 mm slit widths used for both excitation and emission. The cuvette and quartz slide were washed with concentrated nitric acid, water and acetone prior to use.

## **FIGURES**



**Fig. S1** Crystal structure of the [Cu(Npy<sub>3</sub>)Cl<sub>2</sub>].DMF framework showing the series of linked metallocycles and their extended structure (a single metallocycle is highlighted in red). Hydrogen atoms have been omitted for clarity (C = grey, N = blue, Cl = yellow, Cu = cyan).



Fig. S2 Solution state fluorescence spectrum of the Npy<sub>3</sub> ligand as a solution in acetone



Fig. S3 Solid state fluorescence spectrum of the Npy<sub>3</sub> ligand as a thin film on a quartz plate



Fig. S4 Predicted and as synthesised Powder XRD Pattern for the [Cu(Npy<sub>3</sub>)Cl<sub>2</sub>].DMF framework.



Fig. S5 PXRD Pattern obtained for the oxidised [Cu(Npy<sub>3</sub>)Cl<sub>2</sub>].DMF framework.



**Fig. S6** PXRD Pattern obtained for the oxidised [Cu(Npy<sub>3</sub>)Cl<sub>2</sub>].DMF framework overlayed with the PXRD Pattern for the oxidised ligand



**Fig. S7** Thermal Gravimetric Analysis (TGA) of [Cu(Npy<sub>3</sub>)Cl<sub>2</sub>].DMF where the sample was loaded wet (mass loss at <50 °C is due to solvent loss from the surface of the solid)



Fig. S8 Overlay of the UV/Vis/NIR diffuse reflectance spectra for the [Cu(Npy<sub>3</sub>)Cl<sub>2</sub>].DMF framework(a) and its oxidised analogue (b). The dotted curves represent the best fit Gaussian deconvolution to the overall band manifold.

**Table S2.** Peak parameters<sup>*a*</sup> from the UV/Vis/NIR diffuse reflectance spectra of the  $[Cu(Npy_3)Cl_2]$ .DMF framework and its oxidised analogue. The parameters in bold relate to the overall band manifold (sh = shoulder band).

|           | F(R)        | Reflectance  | $\Delta F(R)_{1/2}$ | Area        |
|-----------|-------------|--------------|---------------------|-------------|
|           | $(cm^{-1})$ | (arb. Units) | $(cm^{-1})$         | $(cm^{-2})$ |
| Framework | 9970        | 0.101        |                     |             |
|           | 12720       | 0.105        |                     |             |
|           | 23010       | 0.444        |                     |             |
|           | 29010       | 1.123        |                     |             |
|           | 40800       | 0.687        |                     |             |
|           | 9427        | 0.09158      | 3153                | 307.2       |
|           | 12934       | 0.1052       | 4068                | 455.7       |
|           | 20484       | 0.1431       | 2832                | 431.5       |
|           | 23032       | 0.4155       | 2865                | 1267        |
|           | 24724       | 0.07715      | 1621                | 133.2       |
|           | 25801       | 0.1825       | 2264                | 440.0       |
|           | 28845       | 0.1860       | 1414                | 280.1       |
|           | 29198       | 0.8696       | 4518                | 4182        |
|           | 33197       | 0.3702       | 4477                | 1764        |
|           | 40811       | 0.6868       | 11943               | 6936        |
| Oxidised  | 11800       | 0.0543       |                     |             |
| Framework | sh 20510    | 0.71         |                     |             |
|           | 26840       | 1.289        |                     |             |
|           | 33135       | 0.926        |                     |             |
|           | 41215       | 1.047        |                     |             |
|           | 11814       | 0.05378      | 4668                | 267.1       |
|           | 19906       | 0.3056       | 2186                | 711.2       |
|           | 21733       | 0.3455       | 4064                | 1495        |
|           | 26774       | 1.264        | 7596                | 10223       |
|           | 33391       | 0.4251       | 5012                | 2268        |
|           | 41073       | 1.031        | 12128               | 10346       |

<sup>*a*</sup> F(R) represents the energy at the band maximum and  $\Delta F(R)_{1/2}$  is the bandwidth at half-height.



Fig. S9 Overlay of the UV/Vis/NIR diffuse reflectance spectra for the Npy<sub>3</sub> ligand (a) and its oxidised analogue (b). The dotted curves represent the best fit Gaussian deconvolution to the overall band manifold.

**Table S3.** Peak parameters<sup>*a*</sup> from the UV/Vis/NIR diffuse reflectance spectra of the Npy<sub>3</sub> ligand and its oxidised analogue. The parameters in bold relate to the overall band manifold.

|                 | $F(\mathbf{R})$     | Reflectance  | $\Delta F(R)_{1/2}$ | Area        |
|-----------------|---------------------|--------------|---------------------|-------------|
|                 | (cm <sup>-1</sup> ) | (arb. Units) | $(cm^{-1})$         | $(cm^{-2})$ |
| Ligand          | sh 23385            | 0.785        |                     |             |
|                 | sh 24590            | 0.881        |                     |             |
|                 | 27590               | 0.993        |                     |             |
|                 | 32345               | 0.945        |                     |             |
|                 | 21767               | 0.05301      | 4958                | 279.4       |
|                 | 22859               | 0.2364       | 1261                | 317.6       |
|                 | 23874               | 0.3851       | 2424                | 993.8       |
|                 | 26508               | 0.8267       | 4675                | 4114        |
|                 | 29502               | 0.3574       | 3313                | 1260        |
|                 | 32261               | 0.4383       | 4236                | 1976        |
|                 | 35657               | 0.1003       | 3324                | 355.1       |
|                 | 39064               | 0.8442       | 13822               | 10510       |
| Oxidised ligand | sh 21850            | 0.789        |                     |             |
|                 | 27680               | 1.017        |                     |             |
|                 | 33770               | 1.009        |                     |             |
|                 | 20100               | 0.3742       | 2693                | 1073        |
|                 | 22258               | 0.4991       | 3943                | 2095        |
|                 | 26483               | 0.7739       | 6394                | 5267        |
|                 | 30317               | 0.03391      | 1929                | 69.65       |
|                 | 32188               | 0.4824       | 7567                | 3885        |
|                 | 36930               | 0.007721     | 1605                | 13.19       |
|                 | 40483               | 0.9678       | 15000               | 11560       |

<sup>*a*</sup> F(R) represents the energy at the band maximum and  $\Delta F(R)_{1/2}$  is the bandwidth at half-height.

#### References

- 1. J. Cremer, P. Bauerle, J. Mater. Chem. 2006, 16, 874-884
- D. R. Coulson, L. C. Satek, S. O. Grim, in *Inorg. Synth.* John Wiley & Sons, Inc., 2007, pp. 121-124
- Bruker (1995); SMART, SAINT and XPREP. Area detector control and data integration and reduction software. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
- 4. WinGX, L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837-838
- C. B. Hübschle, G. M. Sheldrick, B. Dittrich, "ShelXle: a Qt graphical user interface for SHELXL", J. Appl. Crystallogr. 2011, 44, 1281–1284
- 6. R. H. Blessing, *Acta Cryst.* **1995**, A51 33 38; G. M. Sheldrick, SADABS. Empirical absorption correction program for area detector data. University of Göttingen, Germany, **1996**
- A. Altomare, M. C. Burla, M. Camalli, G. L.Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Cryst.* 1998, 32, 115-119

- G. M. Sheldrick, SHELX97 Programs for Crystal Structure Analysis. University of Göttingen. Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998
- 9. (a) H. D. Flack, Acta Crystallogr. Sect A 1983, 39, 876-881. (b) G. Bernardinelli, H. D. Flack, Acta Crystallogr., Sect A 1985, 41, 500-511. (c) H. D. Flack, G. Bernardinelli, Acta Crystallogr. Sect A 1999, 55, 908-915. (d) H. D. Flack, G. Bernardinelli, J. Appl. Cryst. 2000, 33, 1143-1148